P2 — Exercise Hour



Outline

* Coding Issues
* Exercise 6: Recap

* Exercise 7: Recap



Attributes

public class Board {
public Square firstSquare;

}

public class Game {
public void client() {
Square start = board.firstSquare;

// ...

}
}




Attributes

public class Board
public] List<Square> squares;

}

public class Game {
public void client() {
Square start = board.firstSquare;

// ...

}
} What if we change ‘firstSquare’?




Attributes

public class Board {
public List<Square> squares;

}

public class Game {

public void clien
Square start = | board.firstSquare;

// ...

} Does not work anymore!
} We need to change the code in all clients.




Attributes

public class Board {
public List<Square> squares;

}

public class Game {

public void client
/] ...
}

} Now it works, but changing client code is not nice!




Attributes

public class Board {

protected Square firstSquare;

public Square getFirstSquare() {
return firstSquare;

}

public void setFirstSquare(Square square) {
firstSquare = square;

}

}

public class Game {
public void client

Square start = | board.getFirstSquare();

/] .. Better solution: Use getters/setters
} Allows changes in implementation without affecting clients.

}




Attributes

public class Board {

protected List<Square> squares;

public Square getFirstSquare() {
return squares.get(0);

}

public void setFirstSquare(Square square) {
squares.set(0, square);

}

public class Game {
public void client

Square start = fboard.getFirstSquare();

/] .. If we now change the implementation in the Board class,
} the code of the client remains unchanged.

}




Attributes

* Make attributes protected
= Subclasses should be able to access their own state

» Use getters/setters to make them available to clients
= Does not expose raw data structures
" |ncrease complexity of getters/setters without worrying about clients



Constants

public class Board {
protected final int BOARD_SIZE;
protected final char[] ROW_NAMES = {A’, ‘B, ‘C’};
protected final int[] COL_NAMES ={1, 2, 3};

}




Constants

public class Board {
protected final int BOARD_SIZE;
protected final char[] ROW_NAMES = {A’, ‘B, ‘C’};
protected final int[] COL_NAMES ={1, 2, 3};

}

These are not constants.




Constants

public class Board {
protected final int BOARD_SIZE;
protected final char[] ROW_NAMES = {A’, ‘B, ‘C’};
protected final int[] COL_NAMES ={1, 2, 3};

} These are not constants.

public class Board {
protected final int boardSize;
protected final char[] rowNames = {'A, ‘B’, ‘C’};
protected final int[] colNames = {1, 2, 3};

} Use camelCase for attributes




Constants

public class Board {
protected final int BOARD_SIZE;
protected final char[] ROW_NAMES = {A’, ‘B, ‘C’};
protected final int[] COL_NAMES ={1, 2, 3};

} These are not constants.

public class Board {
protected final int boardSize;
protected final char[] rowNames = {'A, ‘B’, ‘C’};
protected final int[] colNames = {1, 2, 3};

} Use camelCase for attributes

public class Board
protected | static final Jint BOARD_SIZE = 3;
protected | static final fchar[] ROW_NAMES = {‘A’, ‘B’, ‘C’};
protected | static final Jint[] COL_NAMES ={1, 2, 3};

} Use ‘static final’ for constants




Constants vs. Enumerations

final class Direction {
protected static final int LEFT = 1;
protected static final int RIGHT = 2;
protected static final int UP = 3;
protected static final int DOWN = 4;

}

public static Command createCommand(int type) {
if (type == LEFT) {
return new commandLeft();
} else if (type == RIGHT) {
return new commandRight();
} else {
/] ..
}

return null;




Constants vs. Enumerations

final class Direction {
protected static final int LEFT = 1;
protected static final int RIGHT = 2;
protected static final int UP = 3;
protected static final int DOWN = 4;

}

public static Command createCommand(int type) {
if (type == LEFT) {
return new commandLeft();
} else if (type == RIGHT) {
return new commandRight();
} else {
/] ..
}

return null;

} Lots of ‘if-then-else’ statements. Code smell!




Constants vs. Enumerations

enum Direction {
LEFT,
RIGHT,
UP,
DOWN

}

Command createCommand(Direction dir) {
switch(dir) {
case LEFT: return new CommandLeft();
case RIGHT: return new CommandRight();
case UP: return new CommandUp();
case DOWN: return new CommandDown();

}
// ...
}




Constants vs. Enumerations

enum Direction {
LEFT,
RIGHT,
UP,
DOWN

}

Command createCommand(Direction dir) {
switch(dir) {
case LEFT: return new CommandLeft();
case RIGHT: return new CommandRight();
case UP: return new CommandUp();
case DOWN: return new CommandDown();

! Slightly better, less error prone.




Constants vs. Enumerations

interface CommandFactory {
Command create();

}

enum Direction implements CommandFactory {
LEFT {
public Command create() {
return new CommandLeft();

}

b
RIGHT {

public Command create() {
return new CommandRight();

) Enums can implement interfaces.




Constants vs. Enumerations

// Client
Command createCommand(Direction dir) {
return dir.create();

}

Enums can implement interfaces.




Switch Instructions

private int convertTolnt(char c) {

int output;

switch (c) {
case ‘a’: output = 0;
case ‘b’: output = 1;
case ‘c’: output = 2;
case ‘d’: output = 3;
case ‘e’: output = 4;
case ‘f’: output = 5;
default: output = 10;

}

return output;

}

What does convertTolnt('e’) return?

10




Switch Instructions

private int convertTolnt(char c) {

int output;

switch (c) {
case ‘a’: output = 0;
case ‘b’: output = 1;
case ‘c’: output = 2;
case ‘d’: output = 3;
case ‘e’: output = 4;
case ‘f’: output = 5;
default: output = 10;

}

return output;

}

I Always returns 10

What does convertTolnt('e’) return?

10




Switch Instructions

private int convertTolnt(char c) {
int output;
switch (c) {
case ‘a’: output = 0;
case ‘b’: output =1;
case ‘c’: output = 2;
case ‘d’: output = 3;
case ‘e’: output = 4;
case ‘f’: output = 5; Joreak;
default: output = 10] break;
}

return output;

}

Don’t forget to break or return

10




Switch Instructions

private boolean isLowercaseletterBeforeE(char c) {
boolean result;
switch (c) {
case ‘a’:
case ‘b’:
case ‘c’:
case ‘d’:
result = true;
break;
default:
result = false;
break;

}

return result;

“Falling through” can be useful

11




Switch Instructions

private boolean isLowercaseletterBeforeE(char c) {
return c — ‘@’ < 4;

}

This is a bit simpler...

11




Switch Instructions

/**

* Checks whether the given character comes before ‘e’ in the alphabet

* @param ¢ a character, must be lowercase letter between ‘@’ & 7’
*/

private boolean isLowercaseletterBeforeE(char c) {
assert c >= ‘2’ && c<=7’;
returnc—‘a’ < 4;

} ...but don’t forget your contracts!

11




Exercise 6: Recap

For the third stage, you should have:

* Player movement
* Player can move one step in given four directions

* Validate Player movement
* Check that a player can execute only valid moves

* Add a new tile
e 'C’ Completed tile: when a box is on top of a goal tile, the tile should be
changed to a completed tile.

Once you have finished, tag your solution:

git tag —a v3 —m “sokoban3”
git push origin --tags




Exercise 6: Recap

For the fourth stage, you should have:

e Override 'toString()’ method
* Write 'toString()’ method for all main objects such as Game, Player, Tiles.

* Grouping packages

e Group srcfiles in the 'src’, test cases files in "test’, .sok files in ‘resource’, and
exception files in the "exception’ package.

» “Refactoring.md”
* Document atleast three scenario where you refactored the existing code



Exercise 6: Recap

* Testing

* Cover at least the 5 given cases from the exercise description:
e Regular placement of box

Player movement (cannot move onto illegal/blocked tiles)

Player moving the box onto the goal tile

Completed tile

Player winning the game

16



Exercise 6: Recap

* Polishing
* Finish off your implementation. This includes:
* JavaDoc

* Design by Contract
e Responsibility Driven Design

Once you have finished, tag your final solution:

git tag —a v4 —m “sokoban4”
git push origin --tags

17



Exercise 7: Recap

* Document your sketches

* Create several sketches for Mobile, Desktop, terminal etc.
* The sketches should be different

* Prototypes

* Choose one of the sketch and show different states of the game via the
prototype.

* For example, Welcome state of the game, Game params, Player’s turn, winning
screen and after game screen.

* Use physical objects to represent the objects whenever possible e.g players
can be a paper craft.



Information

Next week we will have:
The last exercise on Smalltalk

Exam preparation session

18



