
Oscar Nierstrasz

7. Introduction to Denotational
Semantics

Roadmap

> Syntax and Semantics
> Semantics of Expressions
> Semantics of Assignment
> Other Issues

References

> D. A. Schmidt, Denotational Semantics, Wm. C. Brown Publ., 1986
> D. Watt, Programming Language Concepts and Paradigms, Prentice

Hall, 1990

3

Roadmap

> Syntax and Semantics
> Semantics of Expressions
> Semantics of Assignment
> Other Issues

Defining Programming Languages

There are three main characteristics of programming languages:

1. Syntax: What is the appearance and structure of its programs?

2. Semantics: What is the meaning of programs?  
The static semantics tells us which (syntactically valid) programs are
semantically valid (i.e., which are type correct) and the dynamic
semantics tells us how to interpret the meaning of valid programs.

3. Pragmatics: What is the usability of the language? How easy is it to
implement? What kinds of applications does it suit?

5

Uses of Semantic Specifications

Semantic specifications are useful for language designers to communicate with
implementors as well as with programmers.

A precise standard for a computer implementation:
How should the language be implemented on different machines?

User documentation:
What is the meaning of a program, given a particular combination of language
features?

A tool for design and analysis:
How can the language definition be tuned so that it can be implemented
efficiently?

Input to a compiler generator:
How can a reference implementation be obtained from the specification?

6

Methods for Specifying Semantics

Operational Semantics:
>⟦ program ⟧ = abstract machine
program

>can be simple to implement
>hard to reason about

Denotational Semantics:
>⟦ program ⟧ = mathematical
denotation

>(typically, a function)
>facilitates reasoning
>not always easy to find suitable
semantic domains

Axiomatic Semantics:
>⟦ program ⟧ = set of properties
>good for proving theorems about
programs

>somewhat distant from
implementation

Structured Operational
Semantics:

>⟦ program ⟧ = transition system
>(defined using inference rules)
>good for concurrency and non-
determinism

>hard to reason about equivalence

7

The “semantic brackets” notation is commonly used as follows:
⟦ <program fragment> ⟧ = <mathematical object>

Sometimes the semantic brackets have addition subscripts,
superscripts or arguments to indicate additional information that
is needed to determine the meaning of the code fragment (for
example, a table of the names and types of declared variables).
As we shall see, there will typically be different semantic
brackets for different kinds of program elements (e.g, programs,
statements, expressions, modules, classes, etc.).

The first attempts to specify the operational semantics of
programming languages in the 1960s did so by translating
programs to abstract machines. Such specifications are useful as a
reference for implementing a compiler or interpreter, but can be
very difficult to use as a basis for proving properties of programs.
The semantics of the lambda calculus is specified operationally in
terms of reductions (i.e., transitions) over syntactic lambda
expressions. Note that this does not yield a mathematical object
(i.e., a denotation) that represents the meaning of a lambda
expression. This is a problem because we have no way of saying
whether two lambdas have the same semantics. Dana Scott and
Christopher Strachey laid the foundations of denotational
semantics in the 1970s to address this problem.

Axiomatic semantics attempts to understand the meaning of
programs in terms of algebras of mathematical objects with
operators over them. Considerable work on modeling
concurrency using “process algebras” took places in the 1980s.
Programs are modeled as communicating “processes” that can be
composed using various algebraic operators. Various and
theorems allow process expressions to be rewritten to other,
equivalent forms.
In recent years, most work on semantics has adopted the
structural operational style that we saw briefly in the slide on
Featherweight Java. This has a strong affinity to the lambda
calculus in that semantics of programs is described operationally
in terms of transitions between program states. The states may by
syntactic expressions (as in the lambda calculus) or states of some
kind of abstract machine (or even a combination of the two).

In this lecture we will focus on denotational semantics. Programs
and their components will be given meaning in terms of
mathematical objects, i.e., numbers, sets, functions etc.
As we shall see, this approach is especially nice for specifying the
semantics of plain, imperative languages, and offers a nice basis
for translating the semantics to a straightforward language
implementation.
Things get complicated, however, when we start to consider
issues like objects, exceptions, concurrency, distribution, and so
on. For this reason, denotational semantics is preferred only for
relatively simple languages.

Roadmap

> Syntax and Semantics
> Semantics of Expressions
> Semantics of Assignment
> Other Issues

Concrete and Abstract Syntax

How to parse “4 * 2 + 1”?
Abstract Syntax is compact but ambiguous:

Expr ::= Num | Expr Op Expr
Op ::= + | - | * | /

Concrete Syntax is unambiguous but verbose:
Expr ::= Expr LowOp Term | Term
Term ::= Term HighOp Factor | Factor
Factor ::= Num | (Expr)
LowOp ::= + | -
HighOp ::= * | /

Concrete syntax is needed for parsing; abstract syntax suffices for
semantic specifications.

9

Concrete syntax refers to the detailed, unambiguous grammar
needed to parse (i.e., recognize) program source into a structured
form. The parsed structure may be a concrete syntax tree
representing the fine details of the concrete grammar, but more
usually it is expressed as an abstract syntax tree (AST) that
eliminates details that are not interesting after the code has
already been parsed.
In the example, once we know the structure of the parsed
expression, it is no longer of interest to us that multiplication and
division have higher precedence that addition and subtraction. We
can group them all together as operators.
In short: concrete syntax is for parsers, abstract syntax is for
semantics.

A Calculator Language

Abstract Syntax:
Prog ::= 'ON' Stmt
Stmt ::= Expr 'TOTAL' Stmt

| Expr 'TOTAL' 'OFF'
Expr ::= Expr1 '+' Expr2

| Expr1 '*' Expr2
| 'IF' Expr1 ',' Expr2 ',' Expr3
| 'LASTANSWER'
| '(' Expr ')'
| Num

The program “ON 4 * (3 + 2) TOTAL OFF” should print out 20
and stop.

10

This language represents a programmatic interface to a calculator.
Programs start by turning the calculator on (keyword ON),
proceed by evaluation a number of expressions, and conclude by
turning the calculator off (keyword OFF).
Each expression is computed and printed when the keyword
TOTAL is encountered. The value of the last computed expression
is available in the special register LASTANSWER.
The meaning of a program P is therefore the list of numbers
printed out.

Calculator Semantics

We need three semantic functions: one for programs, one for statements
(expression sequences) and one for expressions.

The meaning of a program is the list of integers printed:
Programs:

 P : Program → Int*
P ⟦ ON S ⟧ = S ⟦ S ⟧ (0)

A statement may use and update LASTANSWER:
Statements:

S : ExprSequence → Int → Int*
S ⟦ E TOTAL S ⟧ (n) = let n' = E ⟦ E ⟧ (n) in

cons(n', S ⟦ S ⟧ (n'))
S ⟦ E TOTAL OFF ⟧ (n) = [E ⟦ E ⟧ (n)]

11

Calculator Semantics...

Expressions:
E : Expression → Int → Int

E ⟦ E1 + E2 ⟧ (n) = E ⟦ E1 ⟧ (n) + E ⟦ E2 ⟧ (n)
E ⟦ E1 * E2 ⟧ (n) = E ⟦ E1 ⟧ (n) × E ⟦ E2 ⟧ (n)

E ⟦ IF E1 , E2 , E3 ⟧ (n) = if E ⟦ E1 ⟧ (n) = 0  
then E ⟦ E2 ⟧ (n) 
else E ⟦ E3 ⟧ (n)

E ⟦ LASTANSWER ⟧ (n) = n
E ⟦ (E) ⟧ (n) = E ⟦ E ⟧ (n)

E ⟦ N ⟧ (n) = N

12

We have three different sets of semantic brackets:
• P⟦<program>⟧ interprets a program as a list of numbers
• S⟦<statement>⟧ interprets a statements as a lists of numbers (given

a LASTANSWER)
• E⟦<expression>⟧ interprets an expression as a number (given a
LASTANSWER)

Each semantic function is defined in terms of simpler ones, by
decomposing the structure of the syntactic argument (program is
broken into statements, and so on).
The semantic functions for statements and expressions need extra
arguments to represent the state of the computation, in this case n, the
value of the LASTANSWER register.
Note the distinction between the syntactic operators (+ and *)
appearing as arguments to E⟦⟧ and the semantic ones appearing in the
interpretation (+ and ×).

Semantic Domains

data Bool = True | False
(&&), (||) :: Bool -> Bool -> Bool
False && x = False
True && x = x
False || x = x
True || x = True

not :: Bool -> Bool
not True = False
not False = True

13

In order to define semantic mappings of programs and their features to their
mathematical denotations, the semantic domains must be precisely defined:

In denotational semantics, we map programs to semantic
domains, i.e., sets of mathematical objects whose behavior is
precisely defined. For our language, we are mapping programs to
the domain of functions, but these in turn need Booleans, so we
should be precise about how they are defined.
Actually we will cheat here and just use the Haskell Booleans, but
we could just as well define our own Booleans, as shown here.

Data Structures for Abstract Syntax

We can represent programs in our calculator language as syntax trees:

data Program = On ExprSequence
data ExprSequence = Total Expression ExprSequence

| TotalOff Expression
data Expression = Plus Expression Expression

| Times Expression Expression
| If Expression Expression Expression
| LastAnswer
| Braced Expression
| N Int

14

These data types simply express the content of an AST for the
calculator language. The constructors are chosen so that they
resemble somewhat the syntax of the source language.
A program consists of a statement (expression sequence). An
expression can take one of six different forms, each possibly
containing further subexpressions.

Representing Syntax

The test program “ON 4 * (3 + 2) TOTAL OFF” can be parsed
as:

test = On (TotalOff (Times (N 4)
(Braced (Plus (N 3)

(N 2)))))

And represented as:

Prog

ON

Stmt

TOTAL OFF

4

*
() +

3

2

15

Note that we are not implementing a parser for the calculator
language. We assume that we have a parser that will parse the
string:
“ON 4 * (3 + 2) TOTAL OFF”

and produce an AST represented in Haskell as:
On (TotalOff (Times (N 4) (Braced (Plus (N 3) (N 2)))))

Now, given this AST, we would like to interpret this program
using our denotational semantics for the calculator language.

pp :: Program -> [Int]
pp (On s) = ss s 0

ss :: ExprSequence -> Int -> [Int]
ss (Total e s) n = let n' = (ee e n) in n' : (ss s n')
ss (TotalOff e) n = (ee e n) : []

ee :: Expression -> Int -> Int
ee (Plus e1 e2) n = (ee e1 n) + (ee e2 n)
ee (Times e1 e2) n = (ee e1 n) * (ee e2 n)
ee (If e1 e2 e3) n

| (ee e1 n) == 0 = (ee e2 n)
| otherwise = (ee e3 n)

ee (LastAnswer) n = n
ee (Braced e) n = (ee e n)
ee (N num) n = num

Implementing the Calculator

We can implement our denotational semantics directly in a functional
language like Haskell:

16

Note how the semantic functions defined earlier can be directly
implemented in Haskell, with little modification.
Note in particular that the arguments to the semantic functions are
not strings, but syntactic structures (ASTs). This may not be
obvious from the denotational semantics we saw earlier, but it is
very clearly the case here.
This is true of all semantic specifications (including
Featherweight Java): semantic functions operate over syntactic
structures, not strings. We always assume that parsing is a
separate issue.

See Calc.hs in the lectures-pl-examples git repo for the Haskell
implementation.

pp (On s) = ss s 0

ss (Total e s) n = let n' = (ee e n) in n' : (ss s n')
ss (TotalOff e) n = (ee e n) : []

ee (Plus e1 e2) n = (ee e1 n) + (ee e2 n)
ee (Times e1 e2) n = (ee e1 n) * (ee e2 n)
ee (If e1 e2 e3) n

| (ee e1 n) == 0 = (ee e2 n)
| otherwise = (ee e3 n)

ee (LastAnswer) n = n
ee (Braced e) n = (ee e n)
ee (N num) n = num

P ⟦ ON S ⟧ = S ⟦ S ⟧ (0)
S ⟦ E TOTAL S ⟧ (n) = let n' = E ⟦ E ⟧ (n) in cons(n', S ⟦ S ⟧ (n'))

S ⟦ E TOTAL OFF ⟧ (n) = [E ⟦ E ⟧ (n)]
E ⟦ E1 + E2 ⟧ (n) = E ⟦ E1 ⟧ (n) + E ⟦ E2 ⟧ (n)
E ⟦ E1 * E2 ⟧ (n) = E ⟦ E1 ⟧ (n) × E ⟦ E2 ⟧ (n)

E ⟦ IF E1 , E2 , E3 ⟧ (n) = if E ⟦ E1 ⟧ (n) = 0  
then E ⟦ E2 ⟧ (n) 
else E ⟦ E3 ⟧ (n)

E ⟦ LASTANSWER ⟧ (n) = n
E ⟦ (E) ⟧ (n) = E ⟦ E ⟧ (n)

E ⟦ N ⟧ (n) = N

Here you can easily
compare the two versions.

Roadmap

> Syntax and Semantics
> Semantics of Expressions
> Semantics of Assignment
> Other Issues

A Language with Assignment

Prog ::= Cmd '.'
Cmd ::= Cmd1 ';' Cmd2

| 'if' Bool 'then' Cmd1 'else' Cmd2
| Id ':=' Exp

Exp ::= Exp1 '+' Exp2
| Id
| Num

Bool ::= Exp1 '=' Exp2
| 'not' Bool

Example:

Input number initializes a; output is final value of z.

z := 1 ; if a = 0 then z := 3 else z := z + a .

18

This example is a simple imperative language with assignments
to variables.
Variables are named a to z. The input to a program is stored as
the initial value of a. The output is the value of z, i.e., the
program should assign a value to z to produce an output.
There are four syntactic (and semantic) categories: programs,
commands, (numeric) expressions and Booleans.

Representing abstract syntax trees

Data Structures:

data Program = Dot Command
data Command = CSeq Command Command

| Assign Identifier Expression
| If BooleanExpr Command Command

data Expression = Plus Expression Expression
| Id Identifier
| Num Int

data BooleanExpr = Equal Expression Expression
| Not BooleanExpr

type Identifier = Char

19

As before, we define data structures to represent the syntactic
elements of our language

An abstract syntax tree

Example:

Is represented as:

z := 1 ; if a = 0 then z := 3 else z := z + a .

Dot (CSeq (Assign 'z' (Num 1))
(If (Equal (Id 'a') (Num 0))

(Assign 'z' (Num 3))
(Assign 'z' (Plus (Id 'z') (Id 'a')))

)
)

20

Modelling Environments

A store is a mapping from identifiers to values:

type Store = Identifier -> Int
newstore :: Store
newstore id = 0

update :: Identifier -> Int -> Store -> Store
update id val store = store'

where store' id'
| id' == id = val
| otherwise = store id'

21

Pay particular attention to the types of newstore and update:
A newstore maps every identifier to the initial value 0.
The update function takes an identifier, a new value and an old
store, and produces a new store. The new store is just like the old
store, except it maps the identifier to the new value.

Note how assignment and update are modeled in a pure language
(Haskell) without assignment or update: state is represented as an
environment (a store), and an update is modeled as the creation of
a new environment.

Functional updates

Example:

env1 = update 'a' 1 (update 'b' 2 (newstore))
env2 = update 'b' 3 env1

env1 'b'
➪ 2
env2 'b'
➪ 3
env2 'z'
➪ 0

22

Semantics of assignments in Haskell

pp :: Program -> Int -> Int
pp (Dot c) n = (cc c (update 'a' n newstore)) ‘z’

cc :: Command -> Store -> Store
cc (CSeq c1 c2) s = cc c2 (cc c1 s)
cc (Assign id e) s = update id (ee e s) s
cc (If b c1 c2) s = ifelse (bb b s) (cc c1 s) (cc c2 s)

ee :: Expression -> Store -> Int
ee (Plus e1 e2) s = (ee e2 s) + (ee e1 s)
ee (Id id) s = s id
ee (Num n) s = n

bb :: BooleanExpr -> Store -> Bool
bb (Equal e1 e2) s = (ee e1 s) == (ee e2 s)
bb (Not b) s = not (bb b s)

ifelse :: Bool -> a -> a -> a
ifelse True x y = x
ifelse False x y = y

23

We model the semantics of our language in much the way as we
did before — we have a separate semantic function for each of
the four syntactic (and semantic categories). Look carefully at the
type declarations for insight into what they do:
• A program takes an integer as input (a) and produces an

integer output (z).
• A command updates the store, a mapping from identifiers to

integers; that is, it takes a store and produces an updated store.
• An expression accesses the store and produces an integer value.
• A Boolean accesses the store and produces a Boolean value.
Finally ifelse is a helper function that takes a Boolean and
selects between two alternative values.

Running the interpreter

src1 = "z := 1 ; if a = 0 then z := 3 else z := z + a ."
ast1 = Dot (CSeq

(Assign 'z' (Num 1))
(If (Equal (Id 'a') (Num 0))

(Assign 'z' (Num 3))
(Assign 'z' (Plus (Id 'z') (Id 'a')))))

pp ast1 10
➪ 11

24

Roadmap

> Syntax and Semantics
> Semantics of Expressions
> Semantics of Assignment
> Other Issues

Practical Issues

Modelling:
> Errors and non-termination:

—need a special “error” value in semantic domains
> Branching:

—semantic domains in which “continuations” model “the rest of the
program” make it easy to transfer control

> Interactive input
> Dynamic typing
> ...

26

Theoretical Issues

What are the denotations of lambda abstractions?
> need Scott’s theory of semantic domains

What are the semantics of recursive functions?
> need least fixed point theory

How to model concurrency and non-determinism?
> abandon standard semantic domains
> use “interleaving semantics”
> “true concurrency” requires other models ...

27

What you should know!

✎ What is the difference between syntax and semantics?
✎ What is the difference between abstract and concrete

syntax?
✎ What is a semantic domain?
✎ How can you specify semantics as mappings from

syntax to behaviour?
✎ How can assignments and updates be modelled with

(pure) functions?

Can you answer these questions?

✎ Why are semantic functions typically higher-order?
✎ Does the calculator semantics specify strict or lazy

evaluation?
✎ Does the implementation of the calculator semantics use

strict or lazy evaluation?
✎ Why do commands and expressions have different

semantic domains?

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

