
10. Logic Programming

Nataliia Stulova

Logic programming: why?

1960s-1970s: search for new approaches in knowledge
representation and reasoning for AI

representation: axioms in some logic

reasoning: inference rules to prove new theorems from axioms

Example: first order logic

Axioms: Oscar is a professor.

Inference rule: If A is a professor, then A gives lectures.

Theorem: Oscar gives lectures.
2

Logic programming: vison

Program consists of two parts:

database of facts (axioms)

what data we have about problem domain

set of inference rules

how to infer new data

3

Different paradigms

Logic programming
Program = Facts + Rules
or
Program = Logic + Control

4

Different paradigms

Logic programming
Program = Facts + Rules
or
Program = Logic + Control

Imperative programming
Program = Data structures +
Algorithms

5

Logic programming: first steps

1969 PLANNER programming language (MIT, by Carl Hewitt)

1970 SHRDLU (MIT, by Terry Winograd): NL conversation program
about block world

 Person: Which cube is sitting on the table?

 Computer: THE LARGE GREEN ONE WHICH SUPPORTS THE RED PYRAMID.

 Person: Is there a large block behind a pyramid?

 Computer: YES, THREE OF THEM: A LARGE RED ONE, A LARGE GREEN CUBE, AND THE BLUE ONE.

 Person: Put a small one onto the green cube which supports a pyramid.

 Computer: OK.

6

Logic programming: Prolog

1972 Prolog (Marseille, by Alain Colmerauer et al.)

enables programmers to write highly declarative programs that
express intuitively logical queries,

uses a very powerful backtracking algorithm to answer those
queries.

7

Prolog language basic syntax (1/3)

variables (named or anonymous, like last one) X , Value , A12 , _42 ,
Res , _

numbers 1 , -15 , 3.1415 , 0.23e-5

constants (AKA atoms) aa , [] , 'hello' , @

logical connectives: , and, ; or

comments: % full line or /* C-style inline */

8

Prolog language basic syntax (2/3)

compound terms:

can denote nested data structures person(name(curt), age(27))

can denote predicates (logical relations, coming next) and
functions (relations between expressions and values, stay tuned)

Name of the compound term is called a functor.

To refer to a term we can write its functor and the number of
arguments: person/2 , age/1 etc.

9

Prolog language basic syntax (3/3)

facts (named relations between entities in the problem domain)

female(elizabeth).

% 'elizabeth' is a parent of 'charles'

parent(elisabeth, charles). % here ',' is just a comma

rules (named relations that can be inferred from other relations)

% X is a mother of Y IF X is a parent of Y AND X is female

mother(X, Y) :- parent(X, Y), female(X). % here ',' is a connective

Prolog programs are sets of clauses, that can be either. 10

Horn clauses

Prolog clauses H :- B1, ..., Bn.

are instances of Horn clauses H if B0 and B1 and ... and Bn

H is the head and B0 and B0 and ... Bn is the body of the clause.

HEAD BODY

mother(X,Y) IF parent(X,Y) AND female(X) % rule

female(X) IF true % fact

11

Computation in an
interpreter

Prolog program execution
starts with a query (AKA goal)

marked as ?- in the
interpreter window ->

A query is a statement that
can be answered by expansion
using facs and rules.

12

Running example

Let's consider the domain of
genealogical relationships in
the British Royal family,
written as relations:

facts: female/1 , male/1 ,
parent/2

rules: mother/2 , father/2

13

Closed world
assumption

Anything that cannot be
inferred with given data is
assumed false.

Here this is illustrated for the
query ?- female(meghan).

14

Computation mechanisms

Queries are answered by:

matching (sub)goals against facts or rules

unifying free variables with terms (NOT assignment)

backtracking when (sub)goal matching fails

Let's briefly see these three mechanisms on the family tree example.

15

Example goal resolution

female(diana). parent(diana, william). % r1

mother(M,C) :- parent(M, C), female(M). parent(diana, harry). % r2

Answers to a query (initial goal) ?- mother(diana, C) are computed
by expanding sub-goals in a search tree:

 mother(diana, C) {M=diana}

 |

 parent(diana,C),female(diana) {M=diana}

 / (r1) \ (r2)

parent(diana,william),female(diana) parent(diana,harry),female(diana)

 {M=diana, C=william} {M=diana, C=harry}

16

Query to explore
values

to accept variable
unification press ENTER

to explore unification
options press ; for
backtracking

use anonymous variables _
when you do not care about
some values

17

Unification and comparison

In Prolog there is no assignment, but terms can be unified and
compared using:

=/2 - a binary unification operator

==/2 and \==/2 - binary term comparison operators

Arithmetic operations are treated in a special way, stay tuned.

18

Unification (1/2)

Unification is instantiating variables by pattern matching:

a constant only unifies with itself:

?- diana = diana.

yes

?- charles = diana.

no

a free variable unifies with anything:

?- parent(elisabeth, charles) = Y.

Y = parent(elisabeth, charles) ?

yes
19

Unification (2/2)

Unification is instantiating variables by pattern matching:

a term unifies with another term only if it has the same functor
name and number of arguments, and the arguments can be unified
recursively:

?- parent(elisabeth, X) = parent(Y,Z).

Y = elisabeth,

Z = X ?

yes

20

Comparison

Comparison operators check if
two terms are strictly
identical (or not):

functors match

number of arguments for
compound terms matches

free variables are shared
(same name in scope or
explicitly unified)

21

Backtracking

Prolog applies resolution in
deterministic manner:

(sub)goals are substituted
left to right

clauses are tried top-to-
bottom

Consider the query:
?- father(F, william)

22

Disjunction (1/2)

Logical OR operator ; can be used directly in the rules:

is_parent(P, C) :- mother(P, C).

is_parent(P, C) :- father(P, C).

can be written for convenience as:

is_parent(P, C) :- mother(P, C) ; father(P, C).

23

Disjunction (1/2)

female(diana). parent(diana, harry). mother(diana, harry).

male(charles). parent(charles, harry). father(charles, harry).

is_mother(M, C) :- parent(M, C), female(M).

is_parent(M, C) :- mother(M, C) ; father(M,C).

When designing the relations about domain objects think first:

which way is it easier to express facts?

which way makes it faster to evaluate queries?

24

Recursion

Recursive relations contain the same term in the head and the body:

ancestor(A, D) :- parent(A, D). % C1: base case

ancestor(A, D) :- parent(P, D), ancestor(A, P). % C2: recursive case

Remember the left-to-right, top-to-bottom literal and clause
evaluation order?

be sure to write base case first

and the recursive goal - last

25

Failure

Search can be controlled
explicitly with fail/0 special
goal.

In the first clause of the
predicate printall/1 failture
forces exploration of all
possible variable unifications.

Note the I/O system
predicates: print/1 , nl/0

26

Cuts

Search can be also explicitly controlled by the cut operator !/0 , that
commits Prolog to a specific search path and controlls backtracking:

parent(C,P) :- mother(C,P), !. % mother is a valid parent

parent(C,P) :- father(C,P).

The ! operator prunes the search tree by telling Prolog to discard:

clauses below the clause in which the ! appears

all alternative solutions to the goals to the left of the !

27

Red and Green Cuts

A green cut does not change the semantics of the program. It just
eliminates useless searching:

max(X, Y, X) :- X > Y, !. % mutually exclusive cases, optmization

max(X, Y, Y) :- X =< Y.

A red cut changes the semantics of your program. If you remove
the cut, you can get incorrect results: ?- max(5,2,2).

max(X, Y, X) :- X > Y, !. % not really mutually exclusive:

max(_, Y, Y). % this clause will succeed if comarison before cut fails

28

Negation as failure

By default there is no negation: remember the closed world
assumption?

Negation can be implemented by a combination of a (red) cut and fail:

not(X) :- X, !, fail. % if X succeeds, we fail

not(_). % if X fails, we succeed

If the ! is removed, the first clause will keep failing both when X
succeeds and fails itself, and thus X will trivially succeed always.

29

Unification and comparison ...and arithmetics

Apart from usual distinction between unification and comparison
arithmetic operations are treated separately:

is/2 is a function from its second operand to its first

=:=/2 and =\=/2 are arithmetic expression comparison operators

Valid goals: X is 3 + 4 , 7 + 4 =\= 10 + 2 , 2 + 2 =:= 3 + 1

30

Functions

User-defined functions are written in a relational style:

fact(0, 1).

fact(N, F) :- N > 0,

 N1 is N - 1,

 fact(N1,F1),

 F is N * F1.

31

Lists

Prolog lists can be written using 3 syntax flavors:

% FORMAL CONS PAIR ELEMENT

.(a,[]) [a|[]] [a]

.(a,.(b,[])) [a|[b|[]]] [a,b]

.(a,.(b,.(c,[]))) [a|[b|[c|[]]]] [a,b,c]

.(a,b) [a|b] [a|b]

.(a,.(b,c)) [a|[b|c]] [a,b|c]

Lists consist of either an empty list [] , or a non-empty list (e.g.
[a | [b,c]]) consisting of the head element (a) and the tail of the

list ([b,c]). Free variables are allowed.

32

Pattern Matching in
Lists

Consider predicate for
checking list membership

in(X, [X | _]).
in(X, [_ | L]) :- in(X, L).

and several different queries:

33

No Order

Since there is no notion of
input and return arguments,
any argument can be both:

34

Resources

On logic programming:

Chapter 12 of Programming Languages book by Kenneth C.
Louden

On Prolog specifically:

The Art of Prolog book by Leon S. Sterling and Ehud Y. Shapiro

On Ciao Prolog:

Ciao documentation page
35

http://www.cs.sjsu.edu/~louden/pltext/
https://mitpress.mit.edu/books/art-prolog-second-edition
http://ciao-lang.org/documentation.html

