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Logic programming: why?

1960s-1970s: search for new approaches in knowledge
representation and reasoning for AI

representation: axioms in some logic

reasoning: inference rules to prove new theorems from axioms

Example: first order logic

Axioms:  Oscar is a professor.

Inference rule: If A is a professor, then A gives lectures.

Theorem: Oscar gives lectures.
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Logic programming: vison

Program consists of two parts:

database of facts (axioms)

what data we have about problem domain

set of inference rules

how to infer new data
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Different paradigms

Logic programming 
Program = Facts + Rules 
or 
Program = Logic + Control
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Different paradigms

Logic programming 
Program = Facts + Rules 
or 
Program = Logic + Control

Imperative programming 
Program = Data structures +
Algorithms
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Logic programming: first steps

1969 PLANNER programming language (MIT, by Carl Hewitt)

1970 SHRDLU (MIT, by Terry Winograd): NL conversation program
about block world

  Person: Which cube is sitting on the table?

  Computer: THE LARGE GREEN ONE WHICH SUPPORTS THE RED PYRAMID.

  Person: Is there a large block behind a pyramid?

  Computer: YES, THREE OF THEM: A LARGE RED ONE, A LARGE GREEN CUBE, AND THE BLUE ONE.

  Person: Put a small one onto the green cube which supports a pyramid.

  Computer: OK.
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Logic programming: Prolog

1972 Prolog (Marseille, by Alain Colmerauer et al.)

enables programmers to write highly declarative programs that
express intuitively logical queries,

uses a very powerful backtracking algorithm to answer those
queries.
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Prolog language basic syntax (1/3)

variables (named or anonymous, like last one) X , Value , A12 , _42 , 
Res , _

numbers 1 , -15 , 3.1415 , 0.23e-5

constants (AKA atoms) aa , [] , 'hello' , @

logical connectives: ,  and, ;  or

comments: % full line  or /* C-style inline */
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Prolog language basic syntax (2/3)

compound terms:

can denote nested data structures person(name(curt), age(27))

can denote predicates (logical relations, coming next) and
functions (relations between expressions and values, stay tuned)

Name of the compound term is called a functor.

To refer to a term we can write its functor and the number of
arguments: person/2 , age/1  etc.
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Prolog language basic syntax (3/3)

facts (named relations between entities in the problem domain)

female(elizabeth).

% 'elizabeth' is a parent of 'charles'

parent(elisabeth, charles).                % here ',' is just a comma

rules (named relations that can be inferred from other relations)

% X is a mother of Y IF X is a parent of Y AND X is female

mother(X, Y) :- parent(X, Y), female(X).   % here ',' is a connective

Prolog programs are sets of clauses, that can be either. 10



Horn clauses

Prolog clauses H :- B1, ..., Bn.

are instances of Horn clauses H if B0 and B1 and ... and Bn

H  is the head and B0 and B0 and ... Bn  is the body of the clause.

HEAD           BODY

mother(X,Y) IF parent(X,Y) AND female(X)  % rule

female(X)   IF true                       % fact

11



Computation in an
interpreter

Prolog program execution
starts with a query (AKA goal)

marked as ?-  in the
interpreter window ->

A query is a statement that
can be answered by expansion
using facs and rules.
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Running example

Let's consider the domain of
genealogical relationships in
the British Royal family,
written as relations:

facts: female/1 , male/1 , 
parent/2

rules: mother/2 , father/2
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Closed world
assumption

Anything that cannot be
inferred with given data is
assumed false.

Here this is illustrated for the
query ?- female(meghan).
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Computation mechanisms

Queries are answered by:

matching (sub)goals against facts or rules

unifying free variables with terms (NOT assignment)

backtracking when (sub)goal matching fails

Let's briefly see these three mechanisms on the family tree example.
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Example goal resolution

female(diana).                             parent(diana, william).  % r1

mother(M,C) :- parent(M, C), female(M).    parent(diana, harry).    % r2

Answers to a query (initial goal) ?- mother(diana, C)  are computed
by expanding sub-goals in a search tree:

                      mother(diana, C) {M=diana}

                              |

                      parent(diana,C),female(diana) {M=diana}

                      / (r1)        \ (r2)

parent(diana,william),female(diana)     parent(diana,harry),female(diana)

      {M=diana, C=william}                           {M=diana, C=harry}
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Query to explore
values

to accept variable
unification press ENTER

to explore unification
options press ;  for
backtracking

use anonymous variables _
when you do not care about
some values
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Unification and comparison

In Prolog there is no assignment, but terms can be unified and
compared using:

=/2  - a binary unification operator

==/2  and \==/2  - binary term comparison operators

Arithmetic operations are treated in a special way, stay tuned.
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Unification (1/2)

Unification is instantiating variables by pattern matching:

a constant only unifies with itself:

?- diana = diana.

yes

?- charles = diana.

no

a free variable unifies with anything:

?- parent(elisabeth, charles) = Y.

Y = parent(elisabeth, charles) ?

yes
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Unification (2/2)

Unification is instantiating variables by pattern matching:

a term unifies with another term only if it has the same functor
name and number of arguments, and the arguments can be unified
recursively:

?- parent(elisabeth, X) = parent(Y,Z).

Y = elisabeth,

Z = X ? 

yes

20



Comparison

Comparison operators check if
two terms are strictly
identical (or not):

functors match

number of arguments for
compound terms matches

free variables are shared
(same name in scope or
explicitly unified)
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Backtracking

Prolog applies resolution in
deterministic manner:

(sub)goals are substituted
left to right

clauses are tried top-to-
bottom

Consider the query: 
?- father(F, william)
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Disjunction (1/2)

Logical OR operator ;  can be used directly in the rules:

is_parent(P, C) :- mother(P, C).

is_parent(P, C) :- father(P, C).

can be written for convenience as:

is_parent(P, C) :- mother(P, C) ; father(P, C).
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Disjunction (1/2)

female(diana).     parent(diana, harry).       mother(diana, harry).

male(charles).     parent(charles, harry).     father(charles, harry).

is_mother(M, C) :- parent(M, C), female(M).

is_parent(M, C) :- mother(M, C) ; father(M,C).

When designing the relations about domain objects think first:

which way is it easier to express facts?

which way makes it faster to evaluate queries?
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Recursion

Recursive relations contain the same term in the head and the body:

ancestor(A, D) :- parent(A, D).                 % C1: base case

ancestor(A, D) :- parent(P, D), ancestor(A, P). % C2: recursive case 

Remember the left-to-right, top-to-bottom literal and clause
evaluation order?

be sure to write base case first

and the recursive goal - last
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Failure

Search can be controlled
explicitly with fail/0  special
goal.

In the first clause of the
predicate printall/1  failture
forces exploration of all
possible variable unifications.

Note the I/O system
predicates: print/1 , nl/0
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Cuts

Search can be also explicitly controlled by the cut operator !/0 , that
commits Prolog to a specific search path and controlls backtracking:

parent(C,P) :- mother(C,P), !. % mother is a valid parent

parent(C,P) :- father(C,P).

The !  operator prunes the search tree by telling Prolog to discard:

clauses below the clause in which the !  appears

all alternative solutions to the goals to the left of the !
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Red and Green Cuts

A green cut does not change the semantics of the program. It just
eliminates useless searching:

max(X, Y, X) :- X > Y, !. % mutually exclusive cases, optmization

max(X, Y, Y) :- X =< Y.

A red cut changes the semantics of your program. If you remove
the cut, you can get incorrect results: ?- max(5,2,2).

max(X, Y, X) :- X > Y, !. % not really mutually exclusive:

max(_, Y, Y).  % this clause will succeed if comarison before cut fails
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Negation as failure

By default there is no negation: remember the closed world
assumption?

Negation can be implemented by a combination of a (red) cut and fail:

not(X) :- X, !, fail. % if X succeeds, we fail

not(_).               % if X fails, we succeed

If the !  is removed, the first clause will keep failing both when X
succeeds and fails itself, and thus X  will trivially succeed always.
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Unification and comparison ...and arithmetics

Apart from usual distinction between unification and comparison
arithmetic operations are treated separately:

is/2  is a function from its second operand to its first

=:=/2  and =\=/2  are arithmetic expression comparison operators

Valid goals: X is 3 + 4 , 7 + 4 =\= 10 + 2 , 2 + 2 =:= 3 + 1
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Functions

User-defined functions are written in a relational style:

fact(0, 1).

fact(N, F) :- N > 0,

              N1 is N - 1,

              fact(N1,F1),

              F is N * F1.
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Lists

Prolog lists can be written using 3 syntax flavors:

% FORMAL             CONS PAIR          ELEMENT

.(a,[])              [a|[]]             [a]

.(a,.(b,[]))         [a|[b|[]]]         [a,b]

.(a,.(b,.(c,[])))    [a|[b|[c|[]]]]     [a,b,c]

.(a,b)               [a|b]              [a|b]

.(a,.(b,c))          [a|[b|c]]          [a,b|c]

Lists consist of either an empty list [] , or a non-empty list (e.g. 
[a | [b,c]] ) consisting of the head element ( a ) and the tail of the

list ( [b,c] ). Free variables are allowed.
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Pattern Matching in
Lists

Consider predicate for
checking list membership

in(X, [X | _ ]).  
in(X, [ _ | L]) :- in(X, L).

and several different queries:
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No Order

Since there is no notion of
input and return arguments,
any argument can be both:
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Resources

On logic programming:

Chapter 12 of Programming Languages book by Kenneth C.
Louden

On Prolog specifically:

The Art of Prolog book by Leon S. Sterling and Ehud Y. Shapiro

On Ciao Prolog:

Ciao documentation page
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http://www.cs.sjsu.edu/~louden/pltext/
https://mitpress.mit.edu/books/art-prolog-second-edition
http://ciao-lang.org/documentation.html

