UNIVERSITAT

11. Logic Programming Applications

Nataliia Stulova

roadmap

B Efficiency in computations —®

B Datalog

B CLP and numeric computaitons

B Assertions and program verification

B Natural language and parsing with DCGs

Efficiency in computations

Green and red cuts revised: optimize the search

Geen cuts (discarding solutions we do not need)
E.g., personnel management software: one address is enough

address(',) :- home_address(",), .

address(',) :- business_address(",) .

e pay attention to variable unifications
e pay attention to declarative semantics

e solutions with and without green cuts should match

Efficiency in computations

Green and red cuts revised: optimize the search
Red cuts (manipulating the search in a wrong way, avoid)

E.g., for a given year return a number of days (but forgot to account
for unification in the head)

leap_year (') :- number(), is ' mod

days_in_year(',) :- leap_year('),!.
days_in_year(,) . % return 365 for any term?

queries that will succeed: yEEENVEIRHMZEICE R

?- days_in_year(a, D)

Efficiency in computations

Think sets, use lists

A lot of Prolog computations
Is producing sets of possible
solutions to a query/goal, like

with [PISigIvA

Lists are the native data
structure that most intuitively
represents sets.

rile cdit UPLONs bditers 10015 LidUays Ul

[Visit New File [Open Directory x Close

ancestor(A, D) :- parent(A, D).
ancestor(A, D) :- parent(P, D), ancestor(A, P).

printall(X) :- X, print(X), nl, fail.
printall().

-:--- family.pl Bot L26 Git:master (Ciao) |

7- printall(female(}).
female(anne)
female(diana)
female(elizabeth)

yes

7- printall(ancestor(,)J}.
ancestor({elizabeth,andrew)
ancestor({elizabeth,anne)
ancestor(elizabeth,charles)
ancestor(elizabeth, edward)
ancestor(diana,harry)
ancestor({diana,william)
ancestor{charles, harry)
ancestor({charles,william)
ancestor{elizabeth, harry)
ancestor(elizabeth,william)

es

y
EE

U:**. *Ciag* Bot L274 (Ciao Listener:

run

parent(diana, harry).

parent(diana, william).

parent(charles, harry).

Lists and aggregates parent(charles, william). I
parent(elizabeth, andrew).

parent(elizabeth, anne).

parent(elizabeth, charles).

-1--- family.pl Bot L14 (Ciao)

7- ensure_loaded('family.pl’').

Efficiency in computations

A number of system
predicates is available to

yes
return sets of answers EE—
CO”eCted W|th backtracking: Note: module aggregates already in exi#

fecutable, just made visible

~ (and bagof/3) fﬁﬁetuf{c,parent{P,C},S}.

P = charles,
S = [harry,william] ? ;

P = diana,
S = [harry,william] ? ;

P = elizabeth,
S = [andrew,anne,charles, edward] 7 ;

no

Il = B Pronr L b I L« B b= T = Faemz

L] i Vel] i Dt [t [e e N W e | LI e (] Nl R

Efficiency in computations parent(diana, harry).
parent(diana, william).
° parent{charles, harry).
Lists and aggregates Parent(charles, william).
parent({elizabeth, andrew).
parent({elizabeth, anne).

A number Of SYStem parent(elizabeth, charles]).

. . . -:--- family.pl Bot L14 (Ciao)
predicates is available to 1
return sets Of anNsSWers ?7- findall(X, parent(elizabeth,X),All).
collected with bathraCking: All = [andrew,anne,charles,edward] ?

y&s

(I setof /3 (and bagof/3 7- findnsols(2,X,parent(elizabeth,X),All).
°® indall/3 All = [andrew,anne] 7 ;

L findnsols/4 T

L

&Ciao Aggregates I .

U:-*%_ =Cizp* Bot L343 (Ciao Listen

http://ciao-lang.org/ciao/build/doc/ciao.html/aggregates.html

L L = I N [e T Al N = L T e

Efficiency in computations inc(X,X1) :- X1 is X + 1.
° sumi{X,¥,7) :- Z 1s X + ¥,

Higher-order i
even(X) :- 8 1s X mod 2.

Processing parallellists is very

. U:--- eff.pl ALl L4 (Ciao)
common, eSpeCla”y When 7- ensure_ loaded('eff.pl’).
using higher-order predicates Jes

like maplist/N ?- use_module(library(hiordlib)).

Note: module hiordlib already in execu®
$table, just made visible

HO predicates accept other Jes

predicates (’) as ?- maplist(inc,[1,2],L).
arguments natively in Prolog, L =1[2,3] 7

just make them visible in the yes

. ?7- maplist(sum,b[1,2,3],[4,5,6],L).
scope (interpreter, module).
L = [Sl?lg] ?

& Ciao HO predicates — 8

U:**. *Ciao* 7% L16 (Ciao Li

http://ciao-lang.org/ciao/build/doc/ciao.html/hiordlib.html

L L = I N [e T Al N = L T e

Efficiency in computations inc(X,X1) :- X1 is X + 1.
° sumi{X,¥,7) :- Z 1s X + ¥,

Higher-order i
even(X) :- 8 1s X mod 2.

Processing parallellists is very

. U:--- eff.pl ALl L4 (Ciao)
common, especially when ?- filter(even,[1,2,3,4,5],L).
using higher-order predicates L - [2.4] 7

Y filter/3l o

?7- partition(even,[1,2,3,4,5],L,R).

L= 1[2,4],
R=[1,3,5] 7
yes

9
U:**. *Ciao* Bot LZ21 (Ciao Li

roadmap

v Efficiency in computations

B Datalog @

B CLP and numeric computaitons

B Assertions and program verification

B Natural language and parsing with DCGs

Datalog

Logic Programming + Relational Databases =
Deductive Databases

Origins: the 1977 Symposium on Logic and Data Bases

Deductive databases have the advantage of making inference
(deduction) of additional facts based on relations (facts and rules)
already present in the database.

e data representation: relations (based on Horn clauses)

e query language: Datalog

11

Datalog

Datalog VS Prolog

recursion is allowed
negation is allowed, but only for facts
clause order does not matter

not cut operator to control search

function symbols not allowed - cannot construct complex terms

Y=¥-Mperson(name(elisabeth), age(inf),

=l person(elisabeth, inf,

has to be expressed

e queries are made on finite sets of values, so termination is

guaranteed

12

Datalog

Datalog queries and database operations

consider relations [JE&2), NICHAI] :

e intersection IERIERZCAIICHAM (logical AND)

e Uunion MICAIEERICR TR ICAI SN ICHR AN (logical OR)
o difference DICAI ISR LICHINIIHICAARY

o projection [ZACIERICHNDE
o selection NESI S ICHA AN N S}
o product HNCAARIEERICAIICAAIY

¢ JOIn J(X,y,Z) .~ P(X,y), Q(y;Z;—)°

13

Datalog

Datalog systems - few examples

LogicBlox
& logicblox.com - a commercial implementation of Datalog used for
web-based retail planning and optimization

o . Datomic
Data, meet Simple

& datomic.com - a transactional database with a flexible data model,
elastic scaling, and rich queries

...and many more systems with Datalog components

14

https://developer.logicblox.com/
https://www.datomic.com/

roadmap

v Efficiency in computations

v Datalog

B CLP and numeric computaitons =®
B Assertions and program verification

B Natural language and parsing with DCGs

CLP and numeric computaitons

Constraint satisfaction problems

In the fields of artificial intelligence and operations research there is
a need in answering questions in different domains that specify a
number of constraints for an answer:

e route planning with time or price budget
e diet meal preparation accounting for calories intake
e solving chess problems (e.g. N-queens)

e map coloring

Constraint satisfaction problems are typically solved using a form of
search.

16

CLP and numeric computaitons

Constraint Logic Programming (CLP)

CLP is an extension of logic programming that includes constraint
satisfaction in the computations:

CLP = Prolog + Solver(for a given domain)
Some domains:

e finite (CLPFD) - e.g. the familty tree
e rational numbers (CLP(Q))
e real numbers (CLP(R))

17

CLP and numeric computaitons

CLP(R) in Ciao 1/2

As a language extension CLP
functionality is available as a
library that defines special

operators: (equals),
(less than), etc.

Example: vector dot product
(T1,...,zN) -

(Y1, YN) =

1 Y1+ ...+ TN YN

:- use package(clpr).

prod([],[], Result) :

Result .=. 0.
prod([X]|Xs],[Y]|Ys], Result) :
Result .=. X * ¥ + Rest,

prod(Xs, ¥Ys, REEtI.

U:--- clp.pl All L7
Ciao 1.20.0 [LINUXxB86 64]
7- ensure loaded('clp.pl’').

yes
7- prod([2,3], [4,5], P).

P.=.23.8 7

yes

7- prod([2,7,3],[Vx, Vy,Vz],k0).

(Ciao)

Vz.=. -0.bbbbbbbbbbbbbbbb*Vx-2,333330

%3333333333%Vy ¢ ;

no

18

CLP and numeric computaitons

CLP(R) in Ciao 2/2

Another example: solving
systems of linear equations

D
3

3T +y
r + 8y

To solve this system we reuse
the dot product relation for
each equation

&’Ciao Language Extensions

pro

pro

W: -
?_

Vz.
«“333

no
T-

-
o

use package(clpr).

d([]1,[], Result) :

Result .=. 0.
d{[X]|Xs],[¥|¥s], Result) :
Result .=. X * ¥ + Rest,

prod(Xs, ¥Ys, REEtI.

-- clp.pl All L7 (Ciao)
prod([2,7,3], [Vx,Vy, Vz],0).

=. -0.bbbbbbbbbbbbbbbb*Vx-2.33333e

3333333%Vy 7 ;

prod([3,1]1,[X,¥],5),
prod([1,8],[X,¥Y],3).

.=.08.173913843478260875,

.=.1.608695652173913 7

yes

19

http://ciao-lang.org/ciao/build/doc/ciao.html/ExtendLang.html

roadmap

v Efficiency in computations

v Datalog

v CLP and numeric computaitons

B Assertions and program verification =9

B Natural language and parsing with DCGs

Assertions and program verification

Program correctness: testing and verification

Two (complementary) approaches to checking correctness of program
behavior

Testing

e at run time

o for specific inputs (e.g. IR
Verification

e at compile or run time (or both)

e for classes of inputs (e.g.,)

21

Assertions and program verification

Software verification

e define properties in a domain of interest: memory addresses,
numeric ranges of array indices, dangling pointers, energy
consumption constratins...

e write program specifications using these properties (often in some
formal laguage)

e check the specifications with some technique: code
instrumentation, theorem proving, logical inference

22

Assertions and program verification

Specification examples

(define / contract (our-div num denom)
(number ? (and / ¢ number ? (not / ¢ zero ?)) . -> .
(/ num denom))

:- pred append(A,B,C) : list(A), list(B), var(C)
=> size(ub, ,length(")+length('))
+ cost(ub, steps,length(/)+).

number ?)

Racket

23

Assertions and program verification

Horn clause-based program verification

e programming language and its specification are based on same
formal representation

e nowadays a number of mature analysis techniques and tools exist
for logic programs analysis and verification

e for several high-level languages (C/C++, Java) their intermediate
representation (produced by the compiler) can be
straightforwardly translated to Horn clauses

24

Assertions and program verification

Example: factorial (1/2)

Consider the factorial function in XC, a dialect of C for
microcontroller programming:

Properties of interest: energy consumption estimates.

25

Assertions and program verification

Example: factorial (2/2)

1 1 check pred fact(N, Ret)
2 2 intervals(nat(N),[i(1,inf))
3 3 + costb(energy_mnJ, 6.0,
4 4 2.3+*nat(N)+9.0) .
H | <fact>: G | fact (RO,RO0_3)
7 |001: entsp Ox2 T entsp(0x2),
H |002: stw r0, =splOo=x1] b stw (RO, SpOx1),
9 |003: ldw ri, splO=xi] Q ldw(R1,SpOx1),
10 |004: 1lde rO, Ox0 10 1dc (RO_1,0x0),
11 |006: 1=ss r0, r0o, ri 11 lss (RO_2 ,RO_1,R1),
12 | 006: bf rd, <008> 12a bf (RO_2 ,0x8),
12b fact_aux(RO_2,3p0Ox1,R0_3,R1_1)

ISA (instruction set architecture) instructions for the XC program and
respective Horn clause representation with a specification

Assertions and program verification

Some HC-based verification tools

Ca-re

for Java, XC, C and C++ the Ciao preprocessor - CiaoPP - offers

abstract interpretation-based analyses over several domains: types,
variable instantiation, bounds on computational and energy costs etc

-

JayHorn

JayHorn is a software model checking tool for Java that tries to find a
proof that certain bad states in a Java program are never reachable.

27

http://ciao-lang.org/ciao/build/doc/ciaopp.html/
https://github.com/jayhorn/jayhorn

roadmap

v Efficiency in computations

v Datalog

v CLP and numeric computaitons

v Assertions and program verification

B Natural language and parsing with DCGs @

Natural language and parsing with DCGs

IBM Watson

POETS & POETRY: He was a bank clerk in the Yukon before he published

“Songs of a Sourdough” in 1907

"We required a language in which we could conveniently express
pattern matching rules over the parse trees and other annotations”

partOfSpeech(', pronoun). subject(,

partOfSpeech(,verb). object(,
partOfSpeech(, noun).

@Natural Language Processing With Prolog in the IBM Watson
System

).

).

29

https://www.cs.nmsu.edu/ALP/2011/03/natural-language-processing-with-prolog-in-the-ibm-watson-system/

Natural language and parsing with DCGs

Languages and grammars (1/2)

Every language has a grammar - a set of elements and rules on
combining those elements.

Consider English language and some of its elemets (parts of speech):

e articles: definite iy, and indefinite fJ and

e nouns: proper BB, and common 34, B84,
» pronouns: [, [IEA.
» verbs: (3B},

Natural language and parsing with DCGs

Languages and grammars (2/2)
We need to add some rules to combile language elements:

sentence — noun_phrase,verb_phrase
noun_phrase — article, noun
verb_phrase — verb, noun_phrase

Let's try to build sentences with the elements we have defined so far:

a cat eats a bat sentence
\ _np_/ \ __np__/ [/ / noun_phrase

verb_phrase

Natural language and parsing with DCGs

Sentences as lists

We can express sentences as lists of elements provided by Prolog
facts and rules:

s(°) - np("), vp(), append(’, ",
np(-) :- det('), n("), append(", ,
vp(©) - v(") , np("), append(’,",

det([a]). n([cat]).
det([the]). n([fish]). v([eats]).

Why lists? Sentences can be of arbitrary length and designing terms
for each possible structure is not feasible.

32

Natural language and parsing with DCGs

Grammar in Prolog vl

We can both parse and
generate sentences with this
implementation

However, this is a
computation-heavy
implemetnation.

Alternative specialized
representation:
difference lists

e LUl PVl DUl o WS AW lah

s(C) :- np(A), wvp(B), append(A,E,C).
np({C) :- det(A), n(B), append(A,B,C).
vp(C) :- v(A) , np(B), append(A,B,C).

det([a]). n([catl).

det([the]). n([fish]). vileats])[]
U:--- deg.pl All L6 (Ciao)
7- s(5).

S = [a,cat,eats,a,cat] ? ;
S = [a,cat,eats,a,fish] ?

yes
?- s({[a,fish,eats,a,6 fishl]l).

yes
?- s([a,bat,eats,a, fishl]).

no

?_ |

3
U:**- *Ciao* Bot L191 (Ciao Listg

Natural language and parsing with DCGs

Difference lists

Prolog's special way of representing lists for language parsing and
generation tasks:

0 is the empty list [{

o is the list

0 is the list

o is the list - with a free tail

Think of it as a literal difference between the first and the second list.

34

Natural language and parsing with DCGs

Definite clause grammars

In addition to difference lists, Prolog has a special notation for
grammar representation, that implicitly uses difference lists:

IS an expansion of a difference lists version:

s(A-C) :- np(A-B), vp(B-C).NGI@Ms(S-[1) :- np(S-VP), vp(VP-[]).}

which is in turn a from of:

s(S) :- np(NP), vp(VP), append(NP,VP,S).

35

Natural language and parsing with DCGs

Grammar in Prolog v2

Notice how we still need to
provide the two list
arguments in the query

?-s([a,cat,eats,a, fish],[]).

File Edit Options Buffers
:- use_ package(dcg).

s =-=> np, vp.

np --> det, n.

vp --> ¥, np.

det --= [the]l. det --= [a].

n -=> [cat]. n -=-> [f1ishl].
v --= [eats].

U:--- decg2.pl All LB

7- ensure loaded('dcg2.pl’').

yes
?7- s([a,cat,eats,a,fishl,[]).

yes
7- s({[a,cat|Y],[]1).

Y = [eats,the,cat] ? ;

Y = [eats,the,fish] 7

U:**- *Ciao* Bot L3238

Tools Ciac

(Ciao)

(Ciao Listd 36

roadmap

v Efficiency in computations

v Datalog

v CLP and numeric computaitons

v Assertions and program verification

v Natural language and parsing with DCGs

