
11. Logic Programming Applications

Nataliia Stulova

 Efficiency in computations

 Datalog

 CLP and numeric computaitons

 Assertions and program verification

 Natural language and parsing with DCGs

roadmap

Green and red cuts revised: optimize the search

Geen cuts (discarding solutions we do not need)

E.g., personnel management software: one address is enough

address(X,Add) :- home_address(X,Add),!.

address(X,Add) :- business_address(X,Add).

pay attention to variable unifications

pay attention to declarative semantics

solutions with and without green cuts should match

Efficiency in computations

3

Green and red cuts revised: optimize the search

Red cuts (manipulating the search in a wrong way, avoid)

E.g., for a given year return a number of days (but forgot to account
for unification in the head)

leap_year(Y) :- number(Y), 0 is Y mod 4.

days_in_year(Y,366) :- leap_year(Y),!.

days_in_year(_,365). % return 365 for any term?

queries that will succeed: ?- days_in_year(4, 365).
?- days_in_year(a, D)

Efficiency in computations

4

Think sets, use lists

A lot of Prolog computations
is producing sets of possible
solutions to a query/goal, like
with printall/1

Lists are the native data
structure that most intuitively
represents sets.

Efficiency in computations

5

Lists and aggregates

A number of system
predicates is available to
return sets of answers
collected with backtracking:

setof/3 (and bagof/3)

Efficiency in computations

6

Lists and aggregates

A number of system
predicates is available to
return sets of answers
collected with backtracking:

setof/3 (and bagof/3)

findall/3

findnsols/4

Ciao Aggregates

Efficiency in computations

7

http://ciao-lang.org/ciao/build/doc/ciao.html/aggregates.html

Higher-order

Processing parallel lists is very
common, especially when
using higher-order predicates
like maplist/N

HO predicates accept other
predicates (inc/2 , sum/3) as
arguments natively in Prolog,
just make them visible in the
scope (interpreter, module).

Ciao HO predicates

Efficiency in computations

8

http://ciao-lang.org/ciao/build/doc/ciao.html/hiordlib.html

Higher-order

Processing parallel lists is very
common, especially when
using higher-order predicates
like filter/3 , partition/4

Efficiency in computations

9

 Efficiency in computations

 Datalog

 CLP and numeric computaitons

 Assertions and program verification

 Natural language and parsing with DCGs

roadmap

Logic Programming + Relational Databases =
Deductive Databases

Origins: the 1977 Symposium on Logic and Data Bases

Deductive databases have the advantage of making inference
(deduction) of additional facts based on relations (facts and rules)
already present in the database.

data representation: relations (based on Horn clauses)

query language: Datalog

Datalog

11

Datalog VS Prolog

recursion is allowed

negation is allowed, but only for facts

clause order does not matter

not cut !/0 operator to control search

function symbols not allowed - cannot construct complex terms
(e.g. person(name(elisabeth), age(inf), ...) has to be expressed
as person(elisabeth, inf, ...))

queries are made on finite sets of values, so termination is
guaranteed

Datalog

12

Datalog queries and database operations

consider relations P(x,y) , Q(x,y,z) :

intersection I(x,y) :- P(x,y), Q(x,y,_). (logical AND)

union U(x,y) :- P(x,y). ; U(x,y) :- Q(x,y,_). (logical OR)

difference D(x,y) :- P(x,y), not Q(x,y,_).

projection Px(x) :- P(x,_).

selection S(x,y) :- Q(x,y,_), x > 10.

product PR(x,y,z,v,w) :- P(x,y), Q(z,v,w).

join J(x,y,z) :- P(x,y), Q(y,z,_).

...

Datalog

13

Datalog systems - few examples

 logicblox.com - a commercial implementation of Datalog used for
web-based retail planning and optimization

 datomic.com - a transactional database with a flexible data model,
elastic scaling, and rich queries

... and many more systems with Datalog components

Datalog

14

https://developer.logicblox.com/
https://www.datomic.com/

 Efficiency in computations

 Datalog

 CLP and numeric computaitons

 Assertions and program verification

 Natural language and parsing with DCGs

roadmap

Constraint satisfaction problems

In the fields of artificial intelligence and operations research there is
a need in answering questions in different domains that specify a
number of constraints for an answer:

route planning with time or price budget

diet meal preparation accounting for calories intake

solving chess problems (e.g. N-queens)

map coloring

Constraint satisfaction problems are typically solved using a form of
search.

CLP and numeric computaitons

16

Constraint Logic Programming (CLP)

CLP is an extension of logic programming that includes constraint
satisfaction in the computations:

CLP = Prolog + Solver(for a given domain)

Some domains:

finite (CLPFD) - e.g. the familty tree

rational numbers (CLP(Q))

real numbers (CLP(R))

CLP and numeric computaitons

17

CLP(R) in Ciao 1/2

As a language extension CLP
functionality is available as a
library that defines special
operators: .=./2 (equals),
.<./2 (less than), etc.

Example: vector dot product

CLP and numeric computaitons

(x , … , x) ⋅1 N

(y , … , y) =1 N

x ⋅1 y +1 … + x ⋅N y N
18

CLP(R) in Ciao 2/2

Another example: solving
systems of linear equations

To solve this system we reuse
the dot product relation for
each equation

Ciao Language Extensions

CLP and numeric computaitons

3x + y = 5
x + 8y = 3

19

http://ciao-lang.org/ciao/build/doc/ciao.html/ExtendLang.html

 Efficiency in computations

 Datalog

 CLP and numeric computaitons

 Assertions and program verification

 Natural language and parsing with DCGs

roadmap

Program correctness: testing and verification

Two (complementary) approaches to checking correctness of program
behavior

Testing

at run time

for specific inputs (e.g. min(-2,5,-2))

Verification

at compile or run time (or both)

for classes of inputs (e.g., min(+,-,-))

Assertions and program verification

21

Software verification

define properties in a domain of interest: memory addresses,
numeric ranges of array indices, dangling pointers, energy
consumption constratins...

write program specifications using these properties (often in some
formal laguage)

check the specifications with some technique: code
instrumentation, theorem proving, logical inference

Assertions and program verification

22

Specification examples

int magic (int size , char *format) C

 assert (size <= LIMIT) ;

(define / contract (our-div num denom) Racket

(number ? (and / c number ? (not / c zero ?)) . -> . number ?)

(/ num denom))

:- pred append(A,B,C) : list(A), list(B), var(C) Prolog

 => size(ub,C,length(B)+length(A))

 + cost(ub,steps,length(A)+1).

Assertions and program verification

23

Horn clause-based program verification

programming language and its specification are based on same
formal representation

nowadays a number of mature analysis techniques and tools exist
for logic programs analysis and verification

for several high-level languages (C/C++, Java) their intermediate
representation (produced by the compiler) can be
straightforwardly translated to Horn clauses

Assertions and program verification

24

Example: factorial (1/2)

Consider the factorial function in XC, a dialect of C for
microcontroller programming:

#pragma check fact(n): (1 <= n) ==> (6.0 <= energy_nJ <= 2.3*n+9.0)

int fact(int N) {

 if (N <= 0) return 1;

 return N * fact(N - 1);

}

Properties of interest: energy consumption estimates.

Assertions and program verification

25

Example: factorial (2/2)

ISA (instruction set architecture) instructions for the XC program and
respective Horn clause representation with a specification

Assertions and program verification

26

Some HC-based verification tools

for Java, XC, C and C++ the Ciao preprocessor - CiaoPP - offers
abstract interpretation-based analyses over several domains: types,
variable instantiation, bounds on computational and energy costs etc

JayHorn is a software model checking tool for Java that tries to find a
proof that certain bad states in a Java program are never reachable.

Assertions and program verification

27

http://ciao-lang.org/ciao/build/doc/ciaopp.html/
https://github.com/jayhorn/jayhorn

 Efficiency in computations

 Datalog

 CLP and numeric computaitons

 Assertions and program verification

 Natural language and parsing with DCGs

roadmap

IBM Watson

POETS & POETRY: He was a bank clerk in the Yukon before he published

“Songs of a Sourdough” in 1907

"We required a language in which we could conveniently express
pattern matching rules over the parse trees and other annotations"

lemma(1, "he"). partOfSpeech(1,pronoun). subject(2,1).

lemma(2, "publish"). partOfSpeech(2,verb). object(2,3).

lemma(3, "Songs of a Sourdough"). partOfSpeech(3,noun). ...

Natural Language Processing With Prolog in the IBM Watson
System

Natural language and parsing with DCGs

29

https://www.cs.nmsu.edu/ALP/2011/03/natural-language-processing-with-prolog-in-the-ibm-watson-system/

Languages and grammars (1/2)

Every language has a grammar - a set of elements and rules on
combining those elements.

Consider English language and some of its elemets (parts of speech):

articles: definite the , and indefinite a and an

nouns: proper alice , and common cat , fish , bat

pronouns: she , whose , their

verbs: play , eats

...

Natural language and parsing with DCGs

30

Languages and grammars (2/2)

We need to add some rules to combile language elements:

Let's try to build sentences with the elements we have defined so far:

 a cat eats a bat s = sentence

\ _np_/ \ __np__/ / / np = noun_phrase

 \ ___vp____/ / vp = verb_phrase

 _______s___________/

Natural language and parsing with DCGs

sentence → noun_phrase, verb_phrase
noun_phrase → article, noun
verb_phrase → verb, noun_phrase

31

Sentences as lists

We can express sentences as lists of elements provided by Prolog
facts and rules:

s(C) :- np(A), vp(B), append(A,B,C).

np(C) :- det(A), n(B), append(A,B,C).

vp(C) :- v(A) , np(B), append(A,B,C).

det([a]). n([cat]).

det([the]). n([fish]). v([eats]).

Why lists? Sentences can be of arbitrary length and designing terms
for each possible structure is not feasible.

Natural language and parsing with DCGs

32

Grammar in Prolog v1

We can both parse and
generate sentences with this
implementation

However, this is a
computation-heavy
implemetnation.

Alternative specialized
representation:
difference lists

Natural language and parsing with DCGs

33

Difference lists

Prolog's special way of representing lists for language parsing and
generation tasks:

X-X is the empty list []

[a,b,c]-[] is the list [a,b,c]

[a,b,c,d]-[d] is the list [a,b,c]

[a,b,c|T]-[T] is the list [a,b,c] - with a free tail

Think of it as a literal difference between the first and the second list.

Natural language and parsing with DCGs

34

Definite clause grammars

In addition to difference lists, Prolog has a special notation for
grammar representation, that implicitly uses difference lists:

s --> np, vp.

is an expansion of a difference lists version:

s(A-C) :- np(A-B), vp(B-C). (or s(S-[]) :- np(S-VP), vp(VP-[]).)

which is in turn a from of:

s(S) :- np(NP), vp(VP), append(NP,VP,S).

Natural language and parsing with DCGs

35

Grammar in Prolog v2

Notice how we still need to
provide the two list
arguments in the query
?-s([a,cat,eats,a,fish],[]).

Natural language and parsing with DCGs

36

 Efficiency in computations

 Datalog

 CLP and numeric computaitons

 Assertions and program verification

 Natural language and parsing with DCGs

roadmap

