
Oscar Nierstrasz

12. Visual Programming

Roadmap

> Terminology
> A Quick Tour
> A Taxonomy of Taxonomies
> EToys (demo and evaluation)

Roadmap

> Terminology
> A Quick Tour
> A Taxonomy of Taxonomies
> EToys (demo and evaluation)

scg.unibe.ch/scgbib?query=visprog

Sources

> Myers, “Visual programming, programming by example, and program
visualization: a taxonomy,” SIGCHI Bull., 1986.
— http://dx.doi.org/10.1145/22339.22349

> Chang, “Visual languages: a tutorial and survey”, IEEE Software, 1987.
— http://dx.doi.org/10.1109/MS.1987.229792

> Burnett and Baker, “A Classification System for Visual Programming Languages,”
Journal of Visual Languages and Computing, 1994.
— ftp://ftp.cs.orst.edu/pub/burnett/VPLclassification.JVLC.Sept94.pdf

> Boshernitsan and Downes, “Visual Programming Languages: A Survey”, TR UCB/
CSD-04-1368, December 1997.
— http://nitsan.org/~maratb/pubs/csd-04-1368.pdf

> Burnett, “Visual Programming,” Encyclopedia of Electrical and Electronics
Engineering, 1999.
— ftp://ftp.cs.orst.edu/pub/burnett/whatIsVP.pdf

> Wikipedia (!)
— http://en.wikipedia.org/wiki/Visual_programming_language

4

http://scg.unibe.ch/scgbib?query=visprog
http://scg.unibe.ch/scgbib?query=visprog
http://dx.doi.org/10.1145/22339.22349
http://dx.doi.org/10.1109/MS.1987.229792
http://nitsan.org/~maratb/pubs/csd-04-1368.pdf
http://en.wikipedia.org/wiki/Visual_programming_language
http://dx.doi.org/10.1145/22339.22349
http://dx.doi.org/10.1109/MS.1987.229792
http://nitsan.org/~maratb/pubs/csd-04-1368.pdf
http://en.wikipedia.org/wiki/Visual_programming_language

Although visual programming continues to be of current interest,
curiously there are no recent survey articles available. This
lecture is therefore cobbled together from a variety of sources,
some of which are rather dated, but nonetheless relevant.

What is Visual Programming?

Wikipedia (2008): A Visual programming
language (VPL) is any programming language
that lets users specify programs by
manipulating program elements graphically
rather than by specifying them textually. A
VPL allows programming with visual
expressions, spatial arrangements of text and
graphic symbols. Most VPLs are based on the
idea of “boxes and arrows,” that is, boxes or
circles or bubbles, treated as screen objects,
connected by arrows, lines or arcs.

Burnett (1999): Visual programming is
programming in which more than one
dimension is used to convey semantics.
Examples of such additional dimensions
are the use of multidimensional objects, the
use of spatial relationships, or the use of
the time dimension to specify “before-after”
semantic relationships.

Myers (1986): “Visual Programming” (VP)
refers to any system that allows the user
to specify a program in a two (or
more) dimensional fashion.
Conventional textual languages are not
considered two dimensional since the
compiler or interpreter processes it as a
long, one-dimensional stream. Visual
Programming includes conventional flow
charts and graphical programming
languages. It does not include systems
that use conventional (linear)
programming languages to define
pictures. This eliminates most graphics
editors, like Sketchpad [Sutherland 63].

5

Textual programming languages are formally one-dimensional,
since they are expressed as sequences of tokens, even though they
obviously make use of two-dimensionally formatting
conventions.
Visual programming inherently uses two or more dimensions, and
tends to use graphical elements other than textual symbols.
Such rather literal definitions, however, do not reveal much
insight into visual programming paradigms.

Roadmap

> Terminology
> A Quick Tour
> A Taxonomy of Taxonomies
> EToys (demo and evaluation)

1963: Sutherland’s Sketchpad

Ivan Edward Sutherland, Sketchpad: A man-machine graphical communication system,
Ph.D. thesis, MIT, January 1963. www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf

The first computer
system with a GUI,
using an X-Y plotter
and a light pen to
construct 2D graphics.

NB: not a VPL

7

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf

Sketchpad was not really a visual programming system, but rather
the first computer application with a purely visual interface.
Sutherland was awarded the Turing Award in 1968 for this work.
NB: The mouse was also invented in 1963 by Douglas Engelbart.
See also: http://en.wikipedia.org/wiki/Sketchpad
Sutherland's PhD thesis is available online.

www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf

Here is a YouTube video of the original SketchPad:
https://www.youtube.com/watch?v=6orsmFndx_o

Programming by Example

Pygmalion was an early
system to let programmers
interactively “demonstrate”
how to compute a function.
Pygmalion would then infer
the actual algorithm.

David Canfield Smith, “Pygmalion: a creative
programming environment,” Ph.D. thesis,
Stanford University, Stanford, CA, USA, 1975.

8

Pygmalion introduced both the use of icons and the notion of
programming by demonstration.
Here we want to “teach the computer” how to compute a factorial. We
first create an icon for the function with a crude graphic. We then teach
the Pygmalion how to compute the example 6! We introduce the test
6=1, which evaluates to false. We then instantiate a * function and say
that we want to compute 6 * (6-1)! (So we need a box for 6-1 and a
box for 5!) Now Pygmalion computes until it hits 1=1 which is true.
Pygmalion asks us what to do in this case, which is to return 1. Finally
Pygmalion blocks at the multiplication. We drag 1! into 2 * _ and now
Pygmalion knows everything and computes 6! = 720.

Dozens of PBE systems have been implemented over the years …
Allen Cypher, et al. (Eds.), Watch what I do: programming by
demonstration, MIT Press, Cambridge, MA, USA, 1993.
http://acypher.com/wwid/

ARK — The Alternate Reality Kit

Ark was a 2D
environment for creating
interactive simulations
implemented in
Smalltalk-80

Randall B. Smith, “Experiences with the alternate reality kit: an example of the tension
between literalism and magic,” 1987. http://dx.doi.org/10.1145/30851.30861

9

http://dx.doi.org/10.1145/30851.30861
http://dx.doi.org/10.1145/30851.30861

In ARK, objects could be created and manipulated in an
environment where various physical “laws” are at work. Since
then, various such physical simulation environments have been
developed mainly as teaching tools for children.

ThingLab — graphical constraints

Alan Borning, Thinglab — constraint-oriented simulation laboratory, Ph.D. thesis, Stanford University,
Stanford, CA, USA, 1979. www.2share.com/thinglab/ThingLab%20-%20index.html

ThingLab is a
graphical constraint
satisfaction system
implemented in
Smalltalk.

10

http://www.2share.com/thinglab/ThingLab%20-%20index.html
http://www.2share.com/thinglab/ThingLab%20-%20index.html

ThingLab is another simulation environment, where the
computational paradigm is that of constraint satisfaction.
In this example, two bar widgets are connected using (bi-
directional)) constraints that convert between Celsius and
Fahrenheit temperatures. If you adjust the temperature in either
widget, the other one will automatically adjust.
For details, see the ACM TOPLAS paper:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.2858&rep=rep1&type=pdf

Fabrik — bidirectional dataflow

Dan Ingalls, “Fabrik: A Visual Programming Environment,” Proceedings OOPSLA '88, ACM
SIGPLAN Notices, vol. 23, November 1988, pp. 176-190. http://dx.doi.org/10.1145/62084.62100

With Fabrik, you could build computations and GUIs using
bidirectional dataflow instead of constraints.

11

http://dx.doi.org/10.1145/62084.62100
http://dx.doi.org/10.1145/62084.62100

Fabrik adopted a components-and-connectors approach to
general purpose visual programming. Instead of using constraints,
Fabrik was based on dataflow. The Fahrenheit-Celsius converter
uses two slider components connected with a bi-directional
dataflow component that performs the calculation.

Architectural Description Languages

www.cs.cmu.edu/~acme/docs/language_overview.html

Architectural Description
Languages (ADLs) model
systems in terms of
• components that offer
services,

• connectors that bind
services, and

• architectural constraints
that must be respected.

As a consequence, certain
system properties are
obtained.

Mary Shaw and David Garlan, Software Architecture:
Perspectives on an Emerging Discipline, Prentice-Hall, 1996.

12

http://www.cs.cmu.edu/~acme/docs/language_overview.html
http://www.cs.cmu.edu/~acme/docs/language_overview.html

ADLs express (software) architectural constraints structurally in
terms of components and connectors. The constraints are intended
to guarantee certain desirable properties. For example, in a
layered design, the components are layers, and the connectors are
the mono-directional APIs offered by a given layer to the layer
above. The constraint is that a layer may only address the layer
below. The property guaranteed is that changes within a layer do
not affect other layers; changes to an API only affect the layer
above.
Although ADLs are often expressed as visual languages, only
some are visual programming languages. Generally these are
components and connectors builders.

Components and Connectors

Vista — a Visual Scripting Language

Many ADLs provide a
components and
connectors graphical
tool interface:
• ConicDraw
(Imperial College)

• Vista (U Geneva)
• Wright (CMU)
• ACME (CMU/USC)

13Vicki de Mey, PhD thesis, U Geneva, 1994

Most components-and-connectors tools allow you to connect
input and output ports of components to build an application.
The semantics of connections vary — sometimes it is dataflow,
but more generally a connection stands for binding required and
provided services.
Some tools allow composite components to be built from parts.
The screenshot is from Vista, a tool developed at the University
of Geneva in the early 90s. The underlying components were
Unix programs.

Prograph — dataflow graphs

www.mactech.com/articles/mactech/Vol.10/10.11/PrographCPXTutorial/

Prograph is a visual, object-
oriented dataflow language.

A product during the 1990s.
Now reborn as Andescotia
“Marten” for Mac OSX.
(www.andescotia.com)

14

http://www.mactech.com/articles/mactech/Vol.10/10.11/PrographCPXTutorial/
http://www.mactech.com/articles/mactech/Vol.10/10.11/PrographCPXTutorial/

A Prograph program is a directed graph of connected dataflow
components.
Paragraph supports composite components, iteration with failure
handling, and various other control constructs.
There are 10 basic data types (Boolean, integer, list, object …)
and 307 (!) primitives.
Research started in 1982 as part of a course at Acadia University
on functional and dataflow languages.
A prototype was developed 1983-1985, then work started on a
commercial tool.
The tool was called Prograph from 1990-1995. A new company
Pictorius then formed.

https://en.wikipedia.org/wiki/Prograph

Yahoo Pipes — mashup dataflow

Mashup internet resources by composing pipes and filters

15

Yahoo pipes used the components-and-connectors paradigm to
allow users to visually compose mashups.
This data flow script filters out the blog articles from the PhD
comics feed and only shows the comics.

https://en.wikipedia.org/wiki/Yahoo!_Pipes

EToys — Tile-Based Programming

Program
simulations
by composing
“tiles”

16

EToys uses the tile-based programming paradigm. Graphical
elements are controlled by scripts that are composed of jigsaw-
like tiles that can only be combined in a fixed manner. The only
text you type are the names of objects, scripts and variables.
Everything else is done by dragging and dropping tiles.
Scripts manipulate graphical objects (Morphs) which can interact
with each other and with the user and the environment.
EToys can be downloaded from SqueakLand.
More on this later.

https://en.wikipedia.org/wiki/Etoys_(programming_language)
http://www.squeakland.org

OSX Automator — Workflow-based scripting

OSX
Automator is
a built-in tool
for scripting
common
actions as
“workflows”.

17

Naked Objects — visual domain objects

… generate both
persistence layer
and UI automatically
from domain objects.

Instead of coding all
4 tiers by hand …

www.nakedobjects.org

18

http://www.nakedobjects.org
http://www.nakedobjects.org

“Naked Objects” is both an architectural pattern and an open
source project.
See also Pawson’s PhD thesis.
Naked Objects is often contrasted to MVC, but actually closer in
spirit to the original idea. (See Reenskaug’s preface to the thesis.)

https://en.wikipedia.org/wiki/Naked_objects
http://downloads.nakedobjects.net/resources/Pawson%20thesis.pdf

Subtext —example-centric schematic tables

Jonathan Edwards, “No ifs, ands, or buts:
uncovering the simplicity of conditionals,” OOPSLA
2007. http://dx.doi.org/10.1145/1297027.1297075

http://subtextual.org/
19

http://dx.doi.org/10.1145/1297027.1297075
http://dx.doi.org/10.1145/1297027.1297075
http://subtextual.org/
http://subtextual.org/

Subtext encodes program logic as visual tables whose columns
represent logical alternatives, and rows represent computational
elements. Interestingly, the same tables can represent both
conventional control structures (if-then-else) as well as
polymorphic dispatch. (Logical choices can represent subclasses.)
Some affinity to spreadsheets is claimed.
The tool is example-centric — as you edit, the tables compute.
There is a very nice video demonstration on the web site. No
public download available however.

https://en.wikipedia.org/wiki/Subtext_(programming_language)

AGG — graph transformation rules

“AGG is a rule
based visual
language
supporting an
algebraic approach
to graph
transformation.”

http://tfs.cs.tu-berlin.de/agg/

20

http://tfs.cs.tu-berlin.de/agg/
http://tfs.cs.tu-berlin.de/agg/

AGG (Attributed Graph Grammar System) is an evolution of graph
grammars. Basically you specify rules that transform parts of graphs to
new graphs. A key application is as a tool to support UML metamodel
transformations.
This demo is in the example repo and is inspired by Pygmalion. The graph
starts with a factorial node that has an argument attribute set. The rules
will transform this to a final Result node.
Here we see the graph after one step of the Recurse rule having been
applied. This rule transforms a Fact node to add a new subnode to
compute the recursive factorial. There are two negative application
conditions (NACs: no result or recursive factorial exists already), and one
attribute condition (AC: n>1).
There is a canned video available of the demo:

http://scg.unibe.ch/download/Demos/Videos/AGG-demo.mp4

A number of similar graph transformation tools exist.
https://www.cs.le.ac.uk/people/rh122/gratra/applications.html

Roadmap

> Terminology
> A Quick Tour
> A Taxonomy of Taxonomies
> EToys (demo and evaluation)

Meyers, 1986 — a 23 partition

22

This rather old taxonomy includes many things that are not VPLs,
and does not really offer any detailed insight into the design space
of VPLs.
Basically the lower right quadrants are the real VPLs
(VP+Interactive).

Chang/Shu, 1987 — a 3 dimensional scale

Shi-Kuo Chang, “Visual languages: a tutorial
and survey,” IEEE Software, 1987
http://dx.doi.org/10.1109/MS.1987.229792

23

http://dx.doi.org/10.1109/MS.1987.229792
http://dx.doi.org/10.1109/MS.1987.229792

This survey of visual languages focuses on visualization, not
programming.

Burnett, 1994 — an empirical classification for
research papers

24

This paper offers a taxonomy for classifying research papers, not
VPLs. VPL-II focuses on language paradigms.
The classification has been empirically tested on a set of research
papers.

Time for a new taxonomy?

1. What are the visual elements?
> Icons, graphs, tables, forms …
> How much text? Purely visual, or mixed?

2. What paradigm is used?
> PBE, constraints, dataflow, tile composition, components and

connectors, graph transformation …
3. What is the application domain?

> Simulation, games, animations, modeling, component composition,
algorithms …

4. What is the target audience?
> Beginner? Domain specialist?

25

Astonishingly there exists no proper, up-to-date survey of VPLs
today.
The dimensions listed here reflect the results of a seminar project
that surveyed over 100 past and present VPLs.
This is not a full-fledged taxonomy, but just a sketch of some of
the design dimensions for VPLs. Clearly the dimensions are not
orthogonal, and there can be many overlaps between the various
criteria identified.

Roadmap

> Terminology
> A Quick Tour
> A Taxonomy of Taxonomies
> EToys (demo and evaluation)

EToys references

> Allen-Conn and Rose, Powerful Ideas in the Classroom,
Viewpoints Research Institute, Inc., 2003.
—www.squeakland.org/sqmedia/books/order.html

> Gaelli, Composing Simple Games with EToys
—www.emergent.de/etoys.html

> Gaelli, et al., Idioms for Composing Games with EToys,
C5 2006
—scg.unibe.ch/archive/papers/Gael06aC5.pdf

27

http://www.squeakland.org/sqmedia/books/order.html
http://www.emergent.de/etoys.html
http://scg.unibe.ch/archive/papers/Gael06aC5.pdf
http://www.squeakland.org/sqmedia/books/order.html
http://www.emergent.de/etoys.html
http://scg.unibe.ch/archive/papers/Gael06aC5.pdf

EToys in a nutshell

> “The GUI is the model”
— No MVC — “morphs” are graphical objects with behaviour
— Prototype-based — morphic framework ported to Squeak from Self

> Tile-based programming
— The only thing you type are names: Scripts, Objects and Variables
— The rest is composed via drag and drop of tiles.

> Toolbox of existing objects
— Numerous pre-packaged morphs are available with special behaviour

> Build your own
— You can compose your own morphs from the tookit
— Or you can program new kinds of Morphs in Smalltalk

28

Squeakland — Squeak for Educators

Squeakland’s
version of Squeak
supports a plugin to
run Squeak
“projects” directly in
your browser.

29

Squeak Projects

Squeak projects
can be used to
save the state of
a set of objects,
(i.e, not just
source code).

“Publish” a project (i.e., as a file
that can be loaded from Squeak
or from a browser plugin)

A project

30

The eToys demos are available here:
git clone git@scg.unibe.ch:lectures-pa-examples

The demos are all canned projects that can be loaded into the
Squeakland eToys image.

Morphic objects in Squeak

Object catalog

A flap with various supplies

A morph with “handles”

31

Morphic is the graphical framework originally developed by
Randall Smith and John Maloney for Self, a prototype-based
language inspired by Smalltalk.
Morphic was ported to Squeak and served as the foundation for
eToys.
A morphic object can be selected with an “option-click” to reveal
its “morphic handles”. These consist of a graphical menu of
operators that allow you to rotate it, clone it, debug it, and so on.
The “object catalog” and the “supplies flap” provide a number of
pre-defined morphic objects.

The canonical car demo — step 1: paint a car

32

This is the canonical eToys demo. We draw a simple graphic of a
car, and script it so it races around a drawing of a race track.
A canned video is also available from the SCG web site.

http://scg.unibe.ch/download/Demos/Videos/eToys-car-demo.mp4

Morphic “handles”

Morphic handles are
used to manipulate and
script graphical objects

Click on the name to change it

33

EToys — scripting objects by composing tiles

Open an object’s
Viewer to see the
commands it
understands.

Commands can be
dragged out to form
tiles, which can be
composed to script
new commands

34

Step 2: make the car move

Click to run this command

35

Step 3: drag out commands to compose a script

36

Step 4: paint a racing track

We now add a conditional
to make the car turn if it
veers off the track

37

Step 5: script the behaviour

38

The car always moves forward. If it sees green, it should turn
right. If it sees white, it should turn left. In this way it should
always stay on the track.
(In practice you will have to fiddle with the parameters to keep it
from going too fast, running off the track, and not being able to
recover.)

Step 6: publish!

39

Demo: State Machines as EToys

1. Open the Connectors Object Catalog
2. Clone a “Pin”

— Rename it to State
— Define “turnOn” and “turnOff” scripts to set

the colour
— Add an “enabled” variable and “enable”

and “disable” scripts
3. Connect two States
4. Define the “click” script

— Adapt “turnOn” and “turnOff” to enable/
disable successors

5. Make buttons for On and Off states and
curvy connectors

6. Put the buttons in a Button Bar

40

In this demo we develop a factory for constructing finite state
machines as graphs consisting of connected nodes. Each graph
should contain one black node representing the current state. You
may click on any white node that is connected by a transition (an
arrow) following the black node. This triggers a state change and
causes that node to turn black. Clicking on an illegal node (i.e.
not following the current state) will just generate an error noise.
A canned video is also available for this demo.

http://scg.unibe.ch/download/Demos/Videos/eToys-stateMachine-demo.mp4

EToys idioms — Visible Factory

Visible Factory:
Store the prototype
of an object in
some place which
makes sense to
the end user.

http://scg.unibe.ch/download/petitpetri/

41

http://scg.unibe.ch/download/petitpetri/
http://scg.unibe.ch/download/petitpetri/

This demo is a Petri net simulator used in a MSc course on
Concurrent Programming.

http://scg.unibe.ch/teaching/cp
http://scg.unibe.ch/download/petitpetri/

Like the state machine demo, it uses the idiom of a “visible
factory” to generate the elements of a Petri net. This idiom and
others are documented in the paper, “Idioms for Composing
Games with EToys”.

http://scg.unibe.ch/archive/papers/Gael06aC5.pdf

EToys idioms — Connected Neighbours

Connected Neighbours:
encode neighbourhood
relationships between objects by
letting them overlap.

The table layout of the “Lights Out”
Playfield is adjusted so that diagonally
adjacent Cells do not overlap!

Example: Lights Out

42

EToys idioms — Visual Cursor

Visual Cursor: Store a
selected element of a
playfield in a “cursor”.

Playfield and Holder objects
have a “cursor” which keeps
track of (the index of) the
currently selected object that
they contain.

Example: The 15 Puzzle’s cursor keeps track of the current
empty Cell. Each Cell keeps track of its current number. If a
move is legal, the number is transferred to the empty cell, and
the clicked cell becomes the puzzle’s currently empty cell.

43

EToys idioms — Intelligent Environment

Intelligent Environment:
Encode otherwise implicit
behavior of an object into
another object of the
environment.

Example: The winning condition
for TicTacToe is computed with
the help of StoneCounter objects
for each row, column and
diagonal.

44

EToys critique

The Good
> Unified GUI and model
> Tile composition
> Rich toolkit (holders,

connectors …)
> Prototype-based (encourages

exploration)
> Variables typed by example
> Generates Smalltalk behind

the scenes
> Highly expressive (e.g., not

limited to animation)

The Bad
> Hard to extend with Smalltalk
> Limited event set
> No matrices
> Projects are stuck in Squeak 3.0
> No arithmetic expressions
> No debugger
> Command menu structure is strange

(e.g., “misc”)
> Scripts can’t “return” a value

The Ugly
> Etoys code pervades Squeak

www.emergent.de/pub/smalltalk/squeak/projects/EtoysLecture.pr 45

http://www.emergent.de/pub/smalltalk/squeak/projects/EtoysLecture.pr
http://www.emergent.de/pub/smalltalk/squeak/projects/EtoysLecture.pr

Scratch

More professional
appearance than
Etoys, but less
expressive.
(Communication
by broadcasting;
no connectors.)

46

Scratch was developed at the MIT Media Lab and is widely used
to teach children how to program.
As with eToys, programmers compose scripts from pre-packaged
tiles to animate graphical objects. Although the GUI is more
appealing than that of eToys, Scratch is strictly less powerful due
to its underlying computational model of broadcasting events. It
is not possible, for example to implement the Petri net interpreter
in Scratch.

What you should know!

✎ How would you define Visual Programming Languages?
✎ Is Excel a VPL?
✎ What are the key paradigms of VPLs?
✎ What is the relationship between ADLs and VPLs?
✎ What role do types play in VPLs?
✎ What are typical ways of classifying VPL?
✎ What are the capabilities and limits of EToys?

Can you answer these questions?

✎Why has Smalltalk been used to implement many VPLs?
✎Do Naked Objects violate the principles of MVC?
✎What are practical applications of graph transformations?
✎Why do so many VPLs seem to be based on dataflow?
✎Why are all mainstream programming languages textual?

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

