b
UNIVERSITAT
BERN

Roadmap

> Terminology

> A Quick Tour

> A Taxonomy of Taxonomies
> EToys (demo and evaluation)

Roadmap

> Terminology

> A Quick Tour

> A Taxonomy of Taxonomies
> EToys (demo and evaluation)

Sources

Myers, “Visual programming, programming by example, and program
visualization: a taxonomy,” SIGCHI Bull., 1986.
— http://dx.doi.org/10.1145/22339.22349

Chang, “Visual languages: a tutorial and survey”, IEEE Software, 1987.

— http://dx.doi.org/10.1109/MS.1987.229792

Burnett and Baker, “A Classification System for Visual Programming Languages,”
Journal of Visual Languages and Computing, 1994.

— ftp://itp.cs.orst.edu/pub/burnett/VPLclassification.JVLC.Sept94.pdf

Boshernitsan and Downes, “Visual Programming Languages: A Survey”, TR UCB/
CSD-04-1368, December 1997.

— http://nitsan.org/~maratb/pubs/csd-04-1368.pdf

Burnett, “Visual Programming,” Encyclopedia of Electrical and Electronics
Engineering, 1999.

— ftp://itp.cs.orst.edu/pub/burnett/whatlsVP.pdf

Wikipedia (!)

— http://en.wikipedia.org/wiki/Visual_programming_language

scg.unibe.ch/scgbib?query=visprog

http://scg.unibe.ch/scgbib?query=visprog
http://scg.unibe.ch/scgbib?query=visprog
http://dx.doi.org/10.1145/22339.22349
http://dx.doi.org/10.1109/MS.1987.229792
http://nitsan.org/~maratb/pubs/csd-04-1368.pdf
http://en.wikipedia.org/wiki/Visual_programming_language
http://dx.doi.org/10.1145/22339.22349
http://dx.doi.org/10.1109/MS.1987.229792
http://nitsan.org/~maratb/pubs/csd-04-1368.pdf
http://en.wikipedia.org/wiki/Visual_programming_language

Although visual programming continues to be of current interest,
curiously there are no recent survey articles available. This
lecture 1s therefore cobbled together from a variety of sources,
some of which are rather dated, but nonetheless relevant.

What is Visual Programming?

Burnett (1999): Visual programming is
programming in which more than one
dimension is used to convey semantics.
Examples of such additional dimensions
are the use of multidimensional objects, the
use of spatial relationships, or the use of
the time dimension to specify “before-after”
semantic relationships.

Mpyers (1986): “Visual Programming” (VP)
refers to any system that allows the user
to specify a program in a two (or
more) dimensional fashion.
Conventional textual languages are not
considered two dimensional since the
compiler or interpreter processes it as a

long, one-dimensional stream. Visual e A .
Programming includes conventional flow Wikipedia (2008): A Visual programming

charts and graphical programming language (VPL) is 2y programming language
languages. It does not include systems el I_ets USETS Sp ST L (2] :

that use conventional (linear) manipulating program elements graphically
orogramming languages to define rather than by specifying them textually. A

pictures. This eliminates most graphics VIFE allqws progra_lmming D VS
editors, like Sketchpad [Sutherland 63] expressions, spatial arrangements of text and

graphic symbols. Most VPLs are based on the
idea of “boxes and arrows,” that is, boxes or
circles or bubbles, treated as screen objects,
connected by arrows, lines or arcs.

Iextual programming languages are formally one-dimensional,
since they are expressed as sequences of tokens, even though they
obviously make use of two-dimensionally formatting

conventions.

Visual programming inherently uses two or more dimensions, and
tends to use graphical elements other than textual symbols.

Such rather literal definitions, however, do not reveal much
insight into visual programming paradigms.

Roadmap

> Terminology

> A Quick Tour

> A Taxonomy of Taxonomies
> EToys (demo and evaluation)

1963: Sutherland’s Sketchpad

The first computer
system with a GUI,
using an X-Y plotter
and a light pen to
construct 2D graphics.

NB: not a VPL

lvan Edward Sutherland, Sketchpad: A man-machine graphical communication system,
Ph.D. thesis, MIT, January 1963. www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf

Sketchpad was not really a visual programming system, but rather
the first computer application with a purely visual interface.

Sutherland was awarded the Turing Award in 1968 for this work.
NB: The mouse was also invented 1n 1963 by Douglas Engelbart.
See also: http://en.wikipedia.org/wiki/Sketchpad

Sutherland's PhD thesis 1s available online.
www.cl.cam.ac.uk/techreports/ UCAM-CL-TR-574.pdf

Here 1s a YouTube video of the original SketchPad:

https://www.youtube.com/watch?v=6orsmFndx o

Programming by Example

=[J Pygmalion demo ETE
me
iiiii
create
change 6 = 720
delete Q
opy
refresh
how
ame
value false true
shape
body
opcodes 5 = | 120
:
*
!
<
N 720
and
r
not
control B
?
call
return mo J mouse
repeat
done
eval
others | femem bered
remem ber
constant
define
display smalltalk
draw
text
break

Pygmalion was an early
system to let programmers
interactively “demonstrate”
how to compute a function.
Pygmalion would then infer
the actual algorithm.

David Canfield Smith, “Pygmalion: a creative
programming environment,” Ph.D. thesis,
Stanford University, Stanford, CA, USA, 1975.

Pygmalion introduced both the use of icons and the notion of
programming by demonstration.

Here we want to “teach the computer” how to compute a factorial. We
first create an icon for the function with a crude graphic. We then teach

the Pygmalion how to compute the example 6 ! We introduce the test
6=1, which evaluates to false. We then instantiate a * function and say

that we

want to compute 6 * (6-1)! (So we need a box for 6-1 and a

box for 5!) Now Pygmalion computes until 1t hits 1=1 which 1s true.

Pygma
Pygmal

10n asks us what to do 1n this case, which 1s to refurn I. Finally
10n blocks at the multiplication. We drag 1! into 2 * and now

Pygma

10n knows everything and computes 6! = 720.

Dozens of PBE systems have been implemented over the years ...

Allen

Cypher, et al. (Eds.), Watch what I do: programming by

demonstration, MIT Press, Cambridge, MA, USA, 1993.

http://acypher.com/wwid/

ARK — The Alternate Reality Kit

 an Alternase Reality

Ark was a 2D
environment for creating
Interactive simulations
implemented in
Smalltalk-80

Randall B. Smith, “Experiences with the alternate reality kit: an example of the tension
between literalism and magic,” 1987. http://dx.doi.org/10.1145/30851.30861

http://dx.doi.org/10.1145/30851.30861
http://dx.doi.org/10.1145/30851.30861

In ARK, objects could be created and manipulated 1n an
environment where various physical “laws” are at work. Since
then, various such physical simulation environments have been
developed mainly as teaching tools for children.

ThingLab — graphical constraints

L] ThinglLab Browser
PointOnline = [J=-=====eeeeee | eeccccceeae- TextDemo
Printer picture insert TextLabel
Rectangle structure delete TextThing
Resistor values constrain Thermometer
SmallFixedBridge |---——------- merge ThingLabLine
TemperatureConverter move ThingSlider
TextConnector edit Times
TextDepgo |} | mmmm———— TwoLeadedObject
TextLabel Twoleters
TextThing UnarvFunction
Thermometer UpDown
ThingLabLine Variable
ThingSlider VariableHeightText
— 200
— 200 L — 100
— 150 \
" ° e | — 30
— 1 =0
— 30 | =-s0
g~ O T 32.0
| —-s0 d;- L

ThingLab is a
graphical constraint
satisfaction system
iImplemented In
Smalltalk.

Alan Borning, Thinglab — constraint-oriented simulation laboratory, Ph.D. thesis, Stanford University,
Stanford, CA, USA, 1979. www.2share.com/thinglab/ThingLab%20-%20index.html

10

http://www.2share.com/thinglab/ThingLab%20-%20index.html
http://www.2share.com/thinglab/ThingLab%20-%20index.html

Thinglab 1s another simulation environment, where the
computational paradigm 1s that of constraint satisfaction.

In this example, two bar widgets are connected using (bi-
directional)) constraints that convert between Celsius and
Fahrenheit temperatures. If you adjust the temperature in either
widget, the other one will automatically adjust.

For details, see the ACM TOPLAS paper:

http://citeseerx.ist.psu.edu/viewdoc/download?do1=10.1.1.90.2858&rep=rep 1 &type=pdf

Fabrik — bidirectional dataflow

With Fabrik, you could build computations and GUIs using
bidirectional dataflow instead of constraints.

FtoC

973 32

Dan Ingalls, “Fabrik: A Visual Programming Environment,” Proceedings OOPSLA '88, ACM
SIGPLAN Notices, vol. 23, November 1988, pp. 176-190. http://dx.doi.org/10.1145/62084.62100

http://dx.doi.org/10.1145/62084.62100
http://dx.doi.org/10.1145/62084.62100

Fabrik adopted a components-and-connectors approach to
general purpose visual programming. Instead of using constraints,
Fabrik was based on dataflow. The Fahrenheit-Celsius converter
uses two slider components connected with a bi-directional
dataflow component that performs the calculation.

Architectural Description Languages

Architectural Description
Languages (ADLs) model
systems in terms of
» components that offer
services,
» connectors that bind
services, and
- architectural constraints
that must be respected.
As a conseqguence, certain
system properties are
obtained.

www.cs.cmu.edu/~acme/docs/language_overview.html

Mary Shaw and David Garlan, Software Architecture:
Perspectives on an Emerging Discipline, Prentice-Hall, 1996.

12

http://www.cs.cmu.edu/~acme/docs/language_overview.html
http://www.cs.cmu.edu/~acme/docs/language_overview.html

ADLs express (software) architectural constraints structurally 1n
terms of components and connectors. The constraints are intended
to guarantee certain desirable properties. For example, 1n a
layered design, the components are layers, and the connectors are
the mono-directional APIs offered by a given layer to the layer
above. The constraint 1s that a layer may only address the layer
below. The property guaranteed 1s that changes within a layer do
not affect other layers; changes to an API only affect the layer
above.

Although ADLs are often expressed as visual languages, only
some are visual programming languages. Generally these are
components and connectors builders.

Components and Connectors

Miscellaneous

Executs List

‘BEd t_Visa \
wn 2] [T4G
shelltool — showDoc

224 Tomigration Office
Sl Papaia City
il PAPAIA

Sat Feb 17 18:13:41 1990

EEYEE was reguested by .

This request was evaluated by

S fiDecizion: request ENyugekis
i#iflnate: Sat Feb 17 18:15:46 1990

IThat’s all folks.
IThank You for Your Cooperation
Don‘t worry, be happy.

Vista — a Visual Scripting Language

Many ADLSs provide a
components and
connectors graphical
tool interface:

« ConicDraw
(Imperial College)

- Vista (U Geneva)

» Wright (CMU)

- ACME (CMU/USC)

Vicki de Mey, PhD thesis, U Geneva, 1994 ' 13

Most components-and-connectors tools allow you to connect
input and output ports of components to build an application.

The semantics of connections vary — sometimes it 1s dataflow,
but more generally a connection stands for binding required and
provided services.

Some tools allow composite components to be built from parts.

The screenshot 1s from Vista, a tool developed at the University
of Geneva 1n the early 90s. The underlying components were
Unix programs.

Prograph — dataflow graphs

SN concurrent sort 1:1 =@ E[E=EE
Prograph is a visual, object- R <

oriented dataflow language.

A product during the 1990s.
Now reborn as Andescotia
“Marten” for Mac OSX.
(www.andescotia.com)

These sorts could be

executed concurrently e
but updating the database |
is dependent on the sorts |
completing execution. i

%pdate databas'e:I/A

S LLLLLLLL LSS A A A A AL LSS S A A A s

5
o
e

www.mactech.com/articles/mactech/Vol.10/10.11/PrographCPXTutorial/ ’
14

http://www.mactech.com/articles/mactech/Vol.10/10.11/PrographCPXTutorial/
http://www.mactech.com/articles/mactech/Vol.10/10.11/PrographCPXTutorial/

A Prograph program 1s a directed graph of connected datatlow
components.

Paragraph supports composite components, iteration with failure
handling, and various other control constructs.

There are 10 basic data types (Boolean, integer, list, object ...)
and 307 (!) primitives.

Research started 1n 1982 as part of a course at Acadia University
on functional and dataflow languages.

A prototype was developed 1983-1985, then work started on a
commercial tool.

The tool was called Prograph from 1990-1995. A new company
Pictorius then formed.

https://en.wikipedia.org/wiki/Prograph

Yahoo Pipes — mashup dataflow

Mashup internet resources by composing pipes and filters

®0o0 NetNewsWire Lite (292 unread)
®e00o Pipes: editing 'PhD comix' 5 : = 4
| > ¢ | | = 8°http!//pipes.vahoo.com/pipes/pipe.edit © Bl Q- Google =L Sites Drawer Mark AT As i Post - Weblog Nex
LibraryThing r... owned by scg ™ | | PHD Comics headlines
] ADD v Be B 4 H v cene v - ~ RSS . 07 _ . . 04/11/08 PHD comic: 'Celebratory Dance'
‘ Apdhe Lrss)v olbsev DAV Setacly Ly Sl I Sl LLils esugbs sbe I | M Sarit-cfp 2006 Archive - }
0. | B saritotobs Now..er 2006 Archive 04/09/08 PHD comic: ‘Needs work'
lpes PhD comix Pipe Saved Run pipem = ch L ;006 et 04/07/08 PHD comic: 'And it only took 1000 strips'
= DDSESnEnS Ltz 04/04/08 PHD comic: 'Campus architecture'
Layout Expand All Collapse All Back to My Pipes New Save Save a copy Propeﬂle rec.humor.funny 04/04/08 Cecilia's Blog: 'R.I.P., venus flytrap'
Pearls Before Swine
» Sources @
» User inputs @ Dilbert
w Operators @ Estliver.com 04/04/08 Cecilia's Blog: 'R.L.P., venus flytrap'
(COUI"II 1}) © URL E The Joy of Tech (rss feed) (1) | o= o e e e e e e e e e e e e e e e e
(Fmel' _U.J) orF Q PHD Comics Goodbye, venus flytrap. Thanks for all the flies you killed last summer. I'm
http:/iwww.phdcomics.com/gradfe xked.com (1) sorry I couldn't keep you alive through your second winter.
(Location Extractor -») P @ This 1 Broken
(Loop)
) ESUG
(Regex) () Room 101
(Rename 1,'-'] Tudor Girba's blog (1) |
(Reverse)| Filter HE= ® 00 NetNewsWire Lite (295 unread)
(Sort o) items that match of the following :
(Sp"t 'UI")) Rules Subscribe Ref ites Drawer Mark All d Pos
Sub-element a7 . = 2 . L| LibraryThing r... owned by scg [™__| * | PhD comix headlines
(:) © item.y:title » [Contains 1+] Cecilia's Blog _ . T T T TS
(Tail) P Ml Sarit-cfp 2006 Archive e 04/09/08 PHD comic: 'Needs work'
(Tmncate 'U") IM Sarit-jobs No...er 2006 ATrCh'Ve e 04/07/08 PHD comic: 'And it only took 1000 strips'
(Unlon -L}J) Choose-news 2006 Archive e 04/04/08 PHD comic: 'Campus architecture'
(| rec.humor.funny
Unigque ar
EW ::Se : % [PipeOuput | @ pearis Before Swine
e rvice ar - °
@ pibert W =
» Url :
» String % EatLiver.com Piled Higher & Deeper by Jorge Cham
The Joy of Tech (rss feed) (1)
b Date Debugger: Fetch Feed (5 item &2 PHD Comics
» Location v 2 PhD comix (3) unit
» Number Time taken: 0.020288s Refresh - Posbiind —{ ceLesrrTory
/ 04/11/08 PHD comic: 'Celebratory Dance' 3| xked.com (1) passed| DANCE!
Favorites » 04/09/08 PHED comic: 'Needs work' © This Is Broken
» My pipes) 04/07/08 PHD comic: 'And it only took 1000 strips') ESUG
» Deprecated » 04/04/08 Cecilia's Blog: 'R.I.P., venus flytrap' () Room 101
 04/04/08 PHD comic: 'Campus architecture Tudor Girba's blog (1)
- IAM Marcus Denker News -
y " \ - “t A
Bl Adrian Kuhn's newsfeed) Source: & PhD comix - 2008-04-12 18:39 |y
A& Talking Meta L2 —)<|»>

+ %F~ 295 unread [l http:/ fwww.phdcomics.com/comics.php?f=1002

Dashed+

.

/)

Yahoo pipes used the components-and-connectors paradigm to
allow users to visually compose mashups.

This data flow script filters out the blog articles from the PhD
comics feed and only shows the comics.

https://en.wikipedia.org/wiki/Yahoo! Pipes

EToys — Tile-Based Programming

00 Squeakland.image

, : A
! |[©@ [|RestartButton|restart mouseDown E X

Pill showlit

Pill tell all siblings & showlIt
score's[numericvalue «] 10]
Playfield include: Pacman

Program Pacmans|bx €39 185

Pacman's|Cy €| 5)17 Score 1
- : : A “
simulations) 0 Fem v QD] 6 g¥oce noag,
O i
Test Pacman's color sees Elcolor O
. : O | o E=
Pacman's| x decrease by|Pacman's lastincX b | (]
Yes i e . : O
Pacman's|, y decrease by|Pacman's lasttincY] oo O o oo
" - O O . .
“tl IeS,, Test Pacman's obtrudes - O g v ol O walk ticking IE X
—_— Pacman's|; x decrease by|Pacman's lastincX i o O O Test |Monster3's/Eicolor sees|Eicolor
Pacman's|s y decrease by|Pacman's lasttincY - e -
vy 8 . O DD o DD oo Yes Monster3 turn by 90 _* random 3 3
No Pacman's ?;Iastlncx |Joystick's leftRight) -
0
Pacman's i;x increase by|Joystick's leftRight »
No - ,
Pacman's | lasttincY <|Joystick's upDown Test Monster3's obtrudes
Pacman's|sy increase by|Joystick's upDown) Yes Monster3 turn by ©90 & * random & 3
No
~ ™
! @ [|pill31|beEaten ticking Izl X Test Monster3's overlaps Pacman
Test Pill31's overlaps Pacman - Yes Graveyard include: Pacman
Pill31 hide No
Yes T
Score'sl; numericValue (-lScore's numericValue &+ S 1 4b Test Monster3's BMicolor sees|micolor
No Yes Monster3 turn by $90 é* random (;4
No
Monster3 forward by éS >
o .
-

Navigator

EToys uses the tile-based programming paradigm. Graphical

elements are controlled

by scripts that are composed of jigsaw-

like tiles that can only be combined 1n a fixed manner. The only
text you type are the names of objects, scripts and variables.

Everything else 1s done

by dragging and dropping tiles.

Scripts manipulate graphical objects (Morphs) which can interact
with each other and with the user and the environment.

EToys can be downloac
More on this later.

ed from Squeakl .and.

https://en.wikipedia.org/wiki/Etoys (programming language)

http://www.squeakland.org

OSX Automator — Workflow-based scripting

" Copy Unread Mail to iPod Notes.workflow

C e) Variables VQ Name

| v 3 Ask for Confirmation (%)
v | Jlj Library \ V%, Activate Fonts
fi%, Calendar | & Add Attach...ront Message m‘ Copy Unread Maik to {Pod Notes
L, Contacts f-? Add Chart to Slide You should have ydfu: iPod connected to ydui corhputerToéfBre ruhning this workflow. You i
?;S Developer q; Add File To Slide can enable the “"Eject iPod” action to eject your iPod after the workflow is complete.

& Files & Folders %% Add Grid to PDF Files

W Fonts € Add Movie to iDVD Menu
Cancel OK
N Internet T4 Add Photos to Album -

& Mail K3 Add Slide to...Presentation Results Options Description 7
u (3 Movies " Add Songs to iPod - 4
A u to m ato r I S B music 8 Add Songs to Playlist v & Get New Mail (%)
[J PDFs % Add Thumb...o Image Files
" . 4 Photos V. Add to Font Library For: | All Accounts S
a b u I |t— I n too I Q Presentations | & Apply Color...le to Images - —
% Text @ Apply Quart... Image Files Results Options Description

. Utilities @M Apoly Quart... Documents

fO r SC rl ptl n g _:' Other 7 Apoly SQL v & Find Messages in Mail o

|&] Most Relevant ¥4 Ask for Confirmation Finds Fiessaes
: ind: s
[#] Most Used ¥ Ask for Finder Items 9 ~

| : Whose:
| Recently Added (°) Ask for Movies
COI I II I IOI l & Ask for Photos | Read Status b [is %] | False M+
| -.4_‘ _—

B Ask For Servers

ti n S S Q Ask for Songs | Results Options Description
EI(: () Ei / Ask for Text =3 [0

&% Browse Movies " | v & Combine Mail Messages @
“WO rkf I OWS” . @ Geét Text from webpage , Results Options Description
'+ New iPod Note (%}

This action extracts the text from a webpage. For best
results, use pages that are marked “Printer Friendly.”

Save as: note
Input: URLs

E Use current date as name
Result: Text

Results Options Description
Version: 1.2

Copyright: Copyright © 2004-2007 Apple Inc.

[¥ EjectiPod Q)

Naked Objects — visual domain objects

Instead of coding all
4 tiers by hand ...

. generate both “
persistence layer
and Ul automatically

from domain objects. 0 Q 0 v . QJ

0°0° Q.

0

a 4 Clams I Employee AR
1 281 Mar - S3es esll, Longon - Bloyys
Expense Claims 1 & 159 Mar - 53 ¢all, London :::?? " Sven Boggs
~ 4 141 Mar - Sales call, London Emall Adaress scascanni@oakedoblecisog
< &4 2310 Fen - Sales ¥ip, London Currenty. ¥ GBP
Employnes 44, July 07 - 2visils 10 Oublin Normal Approver. & Ditk Baron
Claim [P 4
= 5, 281h Mar - Sales call, London D3t Incurad Description Amount Project Coce Status
ls 1 2Expenss ltems | N Tan |29-Ma-2007 | Euston- Mayfair |£250 2 001 Marseting [N New - Corrgis
o T 1 Meat | 250322007 |Lunchwithcliant |£31.90 001 Mareeting |\ New- Comgie
}* 1 Real = Tasi |78-Wae-2007 Maffalr- City £11.00 001 Marketing |\ New - Comgle

——®1an L

4 Craata New Expanse Itam
15th Mar -
815t Mar- ¢ Copr An Bxsang Expense Hem.

Cogry Al Expense Bems From Another Claim...
:
www.nakedobjects.org '

Appeave Hems
Query lems .,
Regect Bems...

NAKED OBJECT
Redarn To Cismant... R
Resorded Actions »

Perspective: Claims 2 classes) Perspe Create New Claim From This..

powered by

http://www.nakedobjects.org
http://www.nakedobjects.org

“Naked Objects” 1s both an architectural pattern and an open
source project.

See also Pawson s PhD thesis.

Naked Objects 1s often contrasted to MVC, but actually closer in
spirit to the original 1dea. (See Reenskaug’s preface to the thesis.)

https://en.wikipedia.org/wiki/Naked objects

http://downloads.nakedobjects.net/resources/Pawson%20thesis.pdf

Subtext —example-centric schematic tables

Root Functions Fibonacci Root Functions fib test fib___
Primitives Figure 5 I Primitives . ~ [o . ~ = : o e —
. 0 e 2@ Funct Eloure:> in +3|0|@@|(=2 J in ~1|9|@|()
Functions | |Fibonacci — _ uncuons I - onacc 5 e
Objects Damage L Oojects Damage 1 [+ fib
|+ Fibonacci
— fio 1 in-2 (2
in-2 — »
fibtest |[2/(#!]||3fib 1 fib
* Fibonacci —
2
¥ z
out of1]¢

attack o|(€ Attack (Magic)| Melee DOI N G
surprise (¢ Bool | TI(F
defense (e Int)

Computation

power 5 4

Semantics:
function graph

2]

effectiveness

I~ defensel[<0)|=1)

Jonathan Edwards, “No ifs, ands, or buts:

uncovering the simplicity of conditionals,” OOPSLA | poostense) Presentation:
2007. http://dx.doi.org/10.1145/1297027.1297075 ot < o | T | spanning tree
DECIDING
Logic
http://subtextual.org/' Semantics: Boolean Algebra

Presentation: partitioned columns

19

http://dx.doi.org/10.1145/1297027.1297075
http://dx.doi.org/10.1145/1297027.1297075
http://subtextual.org/
http://subtextual.org/

Subtext encodes program logic as visual tables whose columns
represent logical alternatives, and rows represent computational
elements. Interestingly, the same tables can represent both
conventional control structures (1f-then-else) as well as
polymorphic dispatch. (Logical choices can represent subclasses.)

Some affinity to spreadsheets 1s claimed.
The tool 1s example-centric — as you edit, the tables compute.

There 1s a very nice video demonstration on the web site. No
public download available however.

https://en.wikipedia.org/wiki/Subtext (programming language)

AGG — graph transformation rules

DO O AGG V1.6.2.2
] . File Edit Mode Transform Parser Analyzer Preferences Help
AGG is arule [c@H o hhakc CEeXHHNKL B &
! | &/ RIEIEE (e Rlinlie | - RIRIEGAIFE - MRS | (e M ol)
based Vlsual Craég)s ; NoResult ' Recurse of fact & >
v 'GU) fact N
language o =
. HEL - - \
Supportlng an v CRecurse Result] ’ Fact
HEE NoResult arg=n-1

algebraic approach A o
to graph .

e
LARRS
@M

Graph of fact =0
. b}
transformation.
arg=6
\ Fact
arg=>5
Step is done. Checking applicability of rules is done. [JResult

http://tfs.cs.tu-berlin.de/agg/ ' R —

20

http://tfs.cs.tu-berlin.de/agg/
http://tfs.cs.tu-berlin.de/agg/

AGG (Attributed Graph Grammar System) 1s an evolution of graph
grammars. Basically you specify rules that transform parts of graphs to

new graphs. A key application 1s as a tool to support UML metamodel
transformations.

This demo 1s 1n the example repo and 1s inspired by Pygmalion. The graph
starts with a factorial node that has an argument attribute set. The rules

will transform this to a final Result node.

Here we see the graph after one step of the Recurse rule having been

applied. This rule transforms a Fact node to add a new subnode to
compute the recursive factorial. There are two negative application

conditions (NACs: no result or recursive factorial exists already), and one
attribute condition (AC: n>1).

There 1s a canned video available of the demo:
http://scg.unibe.ch/download/Demos/Videos/AGG-demo.mp4

A number of similar graph transformation tools exist.

https://www.cs.le.ac.uk/people/rh122/gratra/applications.html

Roadmap

> Terminology
> A Quick Tour
> A Taxonomy of Taxonomies
> EToys (demo and evaluation)

Meyers, 1986 — a 23 partition

Not Programming by Example

Not VP

VP

Programming by Example

Batch Interactive Batch Interactive
4.1 4.1 44 45
All Conventional LISP, APL, etc.
Languages: [/O pairs® Tinker
Pascal, Fortran, Not VP (Shaw 75] [Lieberman 82]
etc.
42 4.3 46 4.7
Grail Graphical Program Editor AutoProgrammer*
(Ellis 69] (Sutherland 66] (Biermann 76b]
AMBIT/G/L PIGS (Bauer 78] traces™ Pygmalion
{Christensen 68,71] [Pong 83] VP (Smith 77]
Query by Example Pict Graphical Thinglab
(Zloof 77, 81] [Glinert 84] (Borning 86]
FORMAL PROGRAPH SmallStar
(Shu 851 (Pietrzykowski 83,84) (Halbert 81 84]
GAL State Transition UIMS Rehearsal World
[Albizuri-Romero 84] [Jacob 85) [Gould 84]
Figure 1.

Classification of programming systems by whether they are visu-
al or not, whether they have Programming by Example or not,
and whether they are interactive or batch. The small numbers
refer to the section in which the group is discussed. Starred sys-
tems (*) have inferencing, and non-starred PBE systems use Pro-
gramming With Example.

22

This rather old taxonomy includes many things that are not VPLs,

and does not really offer any detailed insight into the design space
of VPLs.

Basically the lower right quadrants are the real VPLs
(VP+Interactive).

Chang/Shu, 1987 — a 3 dimensional scale

High

Language level

Low

A Visual extent

High

Low

Specific

-~ Scope
General

Figure 1. A three-dimensional framework to characterize and compare visual languages.

Shi-Kuo Chang, “Visual languages: a tutorial

and survey,” IEEE Software, 1987

http://dx.doi.org/10.1109/MS.1987.229792

In Shu’s excellent introduction and sur-
vey of visual languages, she proposes a
three-dimensional framework to character-
ize and compare visual languages. To
evaluate if the visual language approach is
adequate for an intended application with
a certain type of user, three questions
should be asked:

(1) Is it adequate for visualization?

(2) Is it adequate for representing
processes?

(3) Is it adequate for representing
objects?

Programming by rehearsal. The
Programming-by-Rehearsal system’ is a
visual programming environment imple-
mented in Smalltalk-80 on the Xerox Lisp
Machine. It provides a powerful metaphor
for visual programming. A rehearsal worl-

is created by (1) an**’

the display, a

is and enjoyable;

N @ troupe in

This system is high in visual con-
tent, but low in level and scope because
only icons on the screen can be manipu-
lated. However, the program design proces

gram can be created in less than 30 minutes.

23

http://dx.doi.org/10.1109/MS.1987.229792
http://dx.doi.org/10.1109/MS.1987.229792

This survey of visual languages focuses on visualization, not
programming.

A CLASSIFICATION SYSTEM FOR VPLs

Burnett, 1994 — an empirical classification for
research papers

289

Table 1. The Visual Programming Language classification system,

VPL: Visual Programming Languages
VPL-1. Environments and Tools for VPLs

VPL-1I. Language Classifications
A. Paradigms

Concurrent languages
Constraint-based languages
Data-flow languages
Form-based and spreadsheed-based
languages
Functional languages
Imperative languages
Logic languages
Multi- -paradigm languages
Object-oriented languages
Programming-by-demonstration
languages

11. Rule-based languages
B. Visual representations

1. Diagrammatic languages

2. Iconic languages

3. Languages based on static pictorial

sequences

-Fskﬂs\).—‘

5250 PO TN N

VPL-TIL. Language Features
A. Abstraction

1. Data abstraction

2. Procedural abstraction

Control flow

Dara types and structures

. Documentartion

Event handling

Exception handling

mmoOw

VPL-1V. Language Implementation Issues

A. Computational approaches (e.g.

demand-driven, data-driven)

B. Efficiency

C. Parsing

D. Translators (interpreters and compilers)
VPL-V. Language Purpose

A. General-purpose languages

B. Databasc languages

C. Image-processing languages

D. Scientific visualization languages

E. User-interface generation languages
VPL-VI. Theory ot VPLs

A. Formal definition of VPLs
B. Icon theory
C. Language design issues
1. Cogniuive and user-interface design

issues (e.g. usability studies,
graphical perception)
Effective use of screen real cstate
Liveness
Scope
. Type checking and type theory

Visual representation issues (e.g.
static representarion, animation)

?w*yw

24

This paper offers a taxonomy for classifying research papers, not
VPLs. VPL-II focuses on language paradigms.

The classification has been empirically tested on a set of research
papers.

Time for a new taxonomy?

1. What are the visual elements?
> Icons, graphs, tables, forms ...
> How much text? Purely visual, or mixed?

2. What paradigm is used?

> PBE, constraints, dataflow, tile composition, components and
connectors, graph transformation ...

3. What is the application domain?

> Simulation, games, animations, modeling, component composition,
algorithms ...

4. What is the target audience”?
> Beginner? Domain specialist?

25

Astonishingly there exists no proper, up-to-date survey of VPLs
today.

The dimensions listed here reflect the results of a seminar project
that surveyed over 100 past and present VPLs.

This 1s not a full-fledged taxonomy, but just a sketch of some of
the design dimensions for VPLs. Clearly the dimensions are not
orthogonal, and there can be many overlaps between the various
criteria identified.

Roadmap

> Terminology

> A Quick Tour

> A Taxonomy of Taxonomies

> EToys (demo and evaluation)

EToys references

> Allen-Conn and Rose, Powerful Ideas in the Classroom,
Viewpoints Research Institute, Inc., 2003.
— www.squeakland.org/sgmedia/books/order.html

> Gaelli, Composing Simple Games with EToys
— www.emergent.de/etoys.html

> Gaelli, et al., Idioms for Composing Games with EToys,
C5 2006

— scg.unibe.ch/archive/papers/Gael06aC5.pdf

27

http://www.squeakland.org/sqmedia/books/order.html
http://www.emergent.de/etoys.html
http://scg.unibe.ch/archive/papers/Gael06aC5.pdf
http://www.squeakland.org/sqmedia/books/order.html
http://www.emergent.de/etoys.html
http://scg.unibe.ch/archive/papers/Gael06aC5.pdf

EToys In a nutshell

> “The GUI is the model”

— No MVC — “morphs” are graphical objects with behaviour
— Prototype-based — morphic framework ported to Squeak from Self

> Tile-based programming
— The only thing you type are names: Scripts, Objects and Variables
— The rest is composed via drag and drop of tiles.

> Toolbox of existing objects
— Numerous pre-packaged morphs are available with special behaviour

> Build your own
— You can compose your own morphs from the tookit
— Or you can program new kinds of Morphs in Smalltalk

28

Squeakland — Squeak for Educators

® 00 Welcome to Squeakland
L<|> | " C | l Ed| "jhttp / /www.squeakland.org/ A'Q~ Google |+ |

S ueakland ecome t
q&(’ - SN ue@olrgelpay and lea rnwthuf'
o 4 N Squeakland’s
= ‘ version of Squeak

P o ' o) C § Yoo supports a plugin to
lrosl.fhool‘ ST SR T . 52,1} run Squeak

&\ “projects” directly in
your browser.

gl t I ﬂ ::.'
s 14 bOO S ueak mEd a¥
%Ma [T __

29

Squeak Projects

0.0 Squeakland.image

X Worldaw
Oprevious project
Ojump to project...
Bsave project on file..,
load project from file...

Squeak projects
can be used to

Sean't undo
restore display (1)

Bo?en' : X1 open... D
jwmdows... browser (b)
package-pane browser
save the state of chenger) B e
@nelp... file list

€))appearance... g A p I’Oj eCt

= transceript (1)
a set of objects
3y ,A,SObjects (o) message names (W)
o simple change sorter
A@new morph... dual change sorter
authoring tools... http proxy editor

: . Language Editor
playfield options... [ancuage Editor for...

flaps... Package List)
. SqueakMap Pag Creates a new morphic Hy Cool Project
_ PIOREISE web browser project
-c}print PS to file... morphic¢ project
debug...
Bsave
[save as...

| save as new version
@save and quit

@quit

(i.e, not just
source code).

“Publish” a project (i.e., as a file
that can be loaded from Squeak
or from a browser plugin)

Navigator

NEW < PREV' NEXT > PUBLISH IT! FIND Escape Browser /| (]) | @l can’t undo QUIT

30

The eToys demos are available here:
git clone git@scg.unibe.ch:lectures-pa-examples

The demos are all canned projects that can be loaded 1nto the
Squeakland eToys 1mage.

Morphic objects in Squeak

N.00 Squeakland.image

Object catalog B cipnaotc find categories (§ A morph with “handles”
(Collaborative) (Connectors) (Demo)

(Games) (Graphics) (Kedama) (Multimedia)

(Navigation) (Presentation) (Scripting) 'i’:‘::' @ @ @ .

NED e O

Arrow Button Curve Curvy Arrow

©
@

O - . @ ©
®

Ellipse Gradient Gradient (slanted)

AN N & &> [

Image Line Paint Polygon Rectangle

[] Text g

RoundRect Text Trash

Curve

A flap with various supplies

‘supplies
mee % IO © B Text 5 [] ([] 3> & P E== -

Object Catalog All Scripts Trash Grab Patch Lasso Sticky Pad Text Sound Rectangle RoundRect Star Curve Polygon Button NextPage

<) 4:32:40 pm random § 180 (_J

PreviousPage Slider Joystick Book Clock Random Playfield Ellipse Holder

Navigator

31

Morphic 1s the graphical framework originally developed by
Randall Smith and John Maloney for Self, a prototype-based
language 1nspired by Smalltalk.

Morphic was ported to Squeak and served as the foundation for
eloys.

A morphic object can be selected with an “option-click™ to reveal
its “morphic handles. These consist of a graphical menu of
operators that allow you to rotate 1t, clone 1t, debug 1t, and so on.

The “object catalog” and the “supplies flap” provide a number of
pre-defined morphic objects.

The canonical car demo — step 1: paint a car

N.00 Squeakland.image

@

alphatetic find ?

Bagsic I::_'-;—D::I I::Ew:xll::ﬂtq:nr-:ﬂr-.-'e::[[}Zn:nm'le-:Tw:wr:;] \::I'emw:[]

II a mv:—:::\ II raphic I [Ir-jﬂ m<| (:I'.'TlllTimErji-ﬁ;]

[Navigation) |Presentation) [Scripting)

IST« quw_le.:«.l:::\ I:‘:Te:‘:ri] I::T nzll:: |]::U:ef 1.112:[

y |Press me)

Arrow Button Curve Curvy Arrow

|

Ellipse Gradient Gradient (slanted)

[]

Image Line Paint Polygon Rectangle
| Text
RoundRect Text Trash

Navigator

This 1s the canonical eToys demo. We draw a simple graphic of a
car, and script 1t so 1t races around a drawing of a race track.

A canned video 1s also available from the SCG web site.

http://scg.unibe.ch/download/Demos/Videos/eToys-car-demo.mp4

Morphic “handles”

Morphic handles are
used to manipulate and
script graphical objects

—— Click on the name to change it|

Collapse - Hides your object.

Copy - Makes a copy of your object.
Menu - Contains useful tools for objects.
Move - Lets you move your object.

Pick Up - Lifts your object out of its container.

2@®0@0°

Repaint - Lets you repaint your object.

1::@:}

Resize - Lets you resize your object.

Rotate - Lets you rotate your object.

Tile - Brings up a tile with your object’s name.

Trash - Moves your object to the trash.

|i|

Viewer - Opens a viewer for your object.

33

EToys — scripting objects by composing tiles

Open an object’s @ Squeak Scripting

Viewer to See the Remove viewer from screen

Remove pane

CO m m ands |t Search for methods

Previous/Next category

u nde rStandS) E:cv cn(z;nnnl]and once

Drag from here to get an
assignment phrase

Script Control Buttons
ey

| S o @ @ @) -
Commands can be L oinme J /

When the \Evlili\/\nl g:: z:gtz
dragged OUt tO fOrm script runs Run paused
. . Test for yes scripts once
tiles, which can be ormo”
, cript menu
composed to script

new commands

Pause ticking
scripts

34

Step 2: make the car move

Click to run this command|

O: ;‘;script5|
! Car scriptl

normal,

! Car emptyScript

AN

o ;‘;basic'
! [Z] car make sound croak
! [Z] car forward by =5

' (] carturnby © 5

Car's x - - 601
Car's y - S 582
Car's heading - —%

AN

35

Step 3: drag out commands to compose a script

p
' 'O [] |car|script3

Car forward by - 10

Carturnby 55
-

normal | [
Car clear all pen trails
Car's penDown € _ true
-
" ™
! '@ [|car|script2 ticking) |- | |X

36

Step 4: paint a racing track

(! |§] O scriptz (paused) El |>:<q

Kest
Yes

No
Car forward by % 10

Carturnby =55

We now add a conditional
to make the car turn if it
veers off the track

37

Step 5: script the behaviour

r! @] O scriptz (ticking El]):(r

Car forward by © 10}

Test Car's color sees Blcolor

Yes Carturn by 5205
No

Test Car's color sees color

Yes Car turn by - -20)
No

38

The car always moves forward. If 1t sees green, 1t should turn
right. If 1t sees white, it should turn left. In this way 1t should
always stay on the track.

(In practice you will have to fiddle with the parameters to keep it
from going too fast, running off the track, and not being able to
I€COVET.)

tep 6: publish!

0006

Squeakland.image

(1 o O [Gar] seriptz

Car forward by 5105

Test Car's color sees Eicolor

Yes Car turn by ;20 »
No

Test Car's color sees color

Yes Car turn by $-20)
No

= Hy Cool Project
Please select a folder

Squeakland

39

Demo: State Machines as EToys

Open the Connectors Object Catalog

Clone a “Pin”
— Rename it to State

— Define “turnOn” and “turnOff” scripts to set
the colour

— Add an “enabled” variable and “enable”
and “disable” scripts

Connect two States

Define the “click” script

— Adapt “turnOn” and “turnOff” to enable/
disable successors

Make buttons for On and Off states and
curvy connectors

Put the buttons in a Button Bar

X alphabetic find categories '

(Basic) (Collaborative) (Connectors) (Demo)

(Games) (Graphics) (Kedama) (Multimedia)

(Navigation) (Presentation) E.Scripting)

o Y

Arrow Editor Attachment Adjuster Broom

Button Flap ButtonBar Connector

- —

Connector Button ConnectorArrow

Connectors Flap Curvy Connector

— e
Curvy ConnectorArrow Maker Button Pin

Random Connectors Schematic Connector
N
O [] Text
Text Ellipse Text Rectangle Text2

Title

Title

5] ole

([0 [0 [state]click

"
mouseDown El b4

Test State's enabled

Yes
State turnOn

State tellAllPredecessors: - turnOff

No State make sound - croak

p
ol O turnOn
State's color <« Ecolor

State tellAllSuccessors:
b

- enable

normal E' x\

r! o O turnOff

State's color &« color

State tellAllSuccessors:
b

- disable

-
.
normal X

[+ o) O [state] enable

State's enabled € _ true
b~

[0 [0 [state] disable

State's enabled € _ false
-

40

In this demo we develop a factory for constructing finite state
machines as graphs consisting of connected nodes. Each graph
should contain one black node representing the current state. You
may click on any white node that 1s connected by a transition (an
arrow) following the black node. This triggers a state change and
causes that node to turn black. Clicking on an 1llegal node (1.e.
not following the current state) will just generate an error noise.

A canned video 1s also available for this demo.

http://scg.unibe.ch/download/Demos/Videos/eToys-stateMachine-demo.mp4

EToys idioms — Visible Factory

Dining Philosophers

grab right fork grab left fork
Visible Factory: <0<l '
Store the prototype ’°’ o fork
of an object in o
some place which rapletion y done grab right fork
makes sense to O @\ | . o
the end user. one done ®_>| grab /eftlfork

grab righxfork

fork
fork o
done done #

rab left fork
J o grab right fork
O (0) © (0)
< 1 —>| |
. grab left fork =
grab right fork fork <>

http://scg.unibe.ch/download/petitpetri/ '

41

http://scg.unibe.ch/download/petitpetri/
http://scg.unibe.ch/download/petitpetri/

This demo 1s a Petr1 net simulator used 1n a M Sc course on
Concurrent Programming.

http://scg.unibe.ch/teaching/cp

http://scg.unibe.ch/download/petitpetri/

Like the state machine demo, it uses the 1diom of a “visible
factory” to generate the elements of a Petr1 net. This idiom and
others are documented 1n the paper, “Idioms for Composing
Games with EToys”.

http://scg.unibe.ch/archive/papers/Gael06aC3s.pdf

EToys idioms — Connected Neighbours

!]é O changeCoIorlfNeighbor (normal IEI \x\

Connected Neighbours: L = il
encode neighbourhood Tert [Cllys cotor| § = mcotor
relationships between objects by =
letting them overlap.

No Cell9's color €« Mlcolor

No

! [6\ | down (mouseDown| El \x
Playfield2's currentCell € Cell9

Playfield2 tellAllContents: %changeColorlfNeighbor Example .. L i g h tS O u t

The table layout of the “Lights Out”
xRS @ Playfield is adjusted so that diagonally
tring o o adjacent Cells do not overlap!

bring to front
embed into
fill style
border style...

drop shadow
E_ O no layout

halo actions... O proportional layout
O resist being deleted E table layout
E resist being picked up change lavout inset...

O be locked ¢hild lavout | 4
@ provide clipping TSRO O reverss table cells

O direction handles O clip to cell size
E accept drops O rutber band cells
O round corners hange cell inset...

Vi YYVY VY

copy & print... 4 change min cell size...
siblings... 14 change max cell size...
export... » list direction »
stacks and cards... 4 wrap direction >
extras... » cell positioning >
debug.... . 4 list centering > CR
penTrails within... wrap centering > v
playfield options... list spacing 4
cell spacing 14

42

EToys idioms — Visual Cursor

Visual Cursor: Store a
selected element of a
playfield in a “cursor”.

Playfield and Holder objects 4‘

have a “cursor” which keeps —
] ol O moveNumber (mousedown [3] (X

traCk Of (th e | nd ex Of) the Test A1415Puzzle’s playerAtCursor § ~= Cell9

C u rre n t I y Se I e Cted O bj eCt th at . - ::Sl'9:1::::::;::::::::::r::»aryi:::::rs::l|9‘s playerAtCursor

th ey CO ntai n . . Al415Puzzle's | cursor € Cell9's elementNumber

Example: The 15 Puzzle’s cursor keeps track of the current
empty Cell. Each Cell keeps track of its current number. If a
move is legal, the number is transferred to the empty cell, and
the clicked cell becomes the puzzle’s currently empty cell.

43

EToys idioms — Intelligent Environment

Intelligent Environment:
Encode otherwise implicit
behavior of an object into
another object of the
environment.

Example: The winning condition
for TicTacToe is computed with
the help of StoneCounter objects
for each row, column and
diagonal.

/

@ \‘E_j'[

StoneCounte;'?

-
' O [:| StoneCounter7| countStones normal X

Test StoneCounter7's overlaps TicTacToe's lastStoneSet

Yes StoneCounter7's StoneCounter?'s counter + TicTacToe's lastStoneSet winSum « &

No

Test StoneCounter7's counter _ isDivisibleBy: _ 3

Test StoneCounter7's counter _ ~= 0L

No

TicTacToe's|winner €«|TicTacToe's lastStoneSet

StoneCounter7's |borderColor <|Mlcolor

s StartButton show

Holder'sl . cursor increase by| — % |

Text's|characters (-lWinner:

44

EToys critique

The Good
> Unified GUI and model
> Tile composition

> Rich toolkit (holders,
connectors ...)

> Prototype-based (encourages
exploration)

> Variables typed by example

> Generates Smalltalk behind
the scenes

> Highly expressive (e.g., not
limited to animation)

The Bad

> Hard to extend with Smalltalk

> Limited event set

> No matrices

> Projects are stuck in Squeak 3.0
> No arithmetic expressions

> No debugger

> Command menu structure is strange
(e.g., “misc”)
> Scripts can’t “return” a value

The Ugly
> Etoys code pervades Squeak

www.emergent.de/pub/smalltalk/squeak/projects/EtoysLecture.pr 45

http://www.emergent.de/pub/smalltalk/squeak/projects/EtoysLecture.pr
http://www.emergent.de/pub/smalltalk/squeak/projects/EtoysLecture.pr

Scratch

More professional
appearance than
Etoys, but less
expressive.
(Communication
by broadcasting;
no connectors.)

Control
Sensing
Numbers

Variables

switch to costume costume

next costume

say G for secs
2oy (22

think I for €3 secs
think 09

change color |effect by €5
set color |effect to ()

clear graphic effects

change size by i)
set size to () 2%

size

show

hide

go to front

go back P layers

| when ‘e‘:;-:' clicked

set pen color to

set pen size to

when I receive T’.hange color |

change pen color by [pick random §§ to £}

6 SimplePaint [5]

re)

o
B

mouse x: -137
mouse v -38

Scratch was developed at the MIT Media Lab and 1s widely used
to teach children how to program.

As with eToys, programmers compose scripts from pre-packaged
tiles to animate graphical objects. Although the GUI 1s more
appealing than that of eToys, Scratch 1s strictly less powerful due
to 1ts underlying computational model of broadcasting events. It
1s not possible, for example to implement the Petri net interpreter
in Scratch.

What you should know!

~ How would you define Visual Programming Languages?
~ s Excel a VPL?

~ What are the key paradigms of VPLs?

~ What is the relationship between ADLs and VPLs?

~> What role do types play in VPLs?

~> What are typical ways of classifying VPL?

>~ What are the capabllities and limits of EToys?

Can you answer these questions?

~ Why has Smalltalk been used to implement many VPLs?
~ Do Naked Objects violate the principles of MVC?
~ What are practical applications of graph transformations?

~ Why do so many VPLs seem to be based on dataflow?
~ Why are all mainstream programming languages textual?

@creative
commons

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if

changes were made. You may do so in any reasonable manner, but not in any way that

@ suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.orqg/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

