
Programming Languages
2018

Prof. O. Nierstrasz
Nevena Lazarević, Mohammadreza Hazhirpasand, Manuel Leuenberger

Solution Types and Polymorphism

Instructions:

Solutions of the exercises are to be delivered before Thursday, the 22th of March at 10:15AM.
Solutions should be placed in a separate folder with the name “Assignment04”.
Please submit answers to all the exercises in one text file.

Exercise 1 (3 points)

Infer types of the functions factors, isPerfect and insert and say whether they are monomor-
phic or polymorphic functions. Justify your answer.

• mod :: Int -> Int -> Int
factors n = [x | x <- [1..n-1], mod n x == 0 ]
isPerfect n = sum (factors n) == n

• insert n [] = [n]
insert 0 n l = n:l
insert i n (x:xs) = x : insert (i-1) n xs

Answer:

factors :: Int -> [Int]
since both n and x are arguments of the function mod which accepts only the Int arguments

isPerfect :: Int -> Bool
since n is an argument of the function factors which accepts only the Int arguments,
and == :: Eq a => a -> a -> Bool

Both functions are monomorphic.
-----------------------------------------------------------------------
insert :: Int -> a -> [a] -> [a]
since
insert n l = [n] => insert :: a->b->c->[b]
insert 0 n l = n:l => insert :: Int->b->[b]->[b]
The insert function is polymorphic.

Exercise 2 (3 points)

Infer the type of the following function and explain each of the steps.
f1 f x

| f x < 0 = []
| otherwise = x : (f1 f (f x))

page 1 April 12, 2018



Programming Languages
2018

Prof. O. Nierstrasz
Nevena Lazarević, Mohammadreza Hazhirpasand, Manuel Leuenberger

Answer:

f1 ::
a -> b -> c since f1 takes two arguments and returns something
a -> b -> [d] since c is of type list
(e -> g) -> b -> [d] since f takes one argument
(Ord h => e -> h) -> b -> [d] since > :: Ord a => a -> a -> Bool
(Ord h => b -> h) -> b -> [d] since f takes x as an argument
(Ord b => b -> b) -> b -> [d] since f takes f x as an argument
(Ord b => b -> b) -> b -> [b] since the result of f1 is the list whose head is x

The result is:
:t f1
f :: (Ord a => a -> a) -> a -> [a]

Optional Haskell exercise (2 points)

Write a function deleteRepetitions l which deletes all consecutive repetitions of elements in
the list l. For example, deleteRepetitions [4, 5, 5, 2, 11, 11, 11, 2, 2] would
return as the result [4, 5, 2, 11, 2]. No built-in function for working with lists may be used.
Only pattern matching is allowed.

Answer:

deleteRepetitions [] = []
deleteRepetitions (head:[]) = [head]
deleteRepetitions (first:second:tail) =

if first == second
then deleteRepetitions (second:tail)
else first : deleteRepetitions (second:tail)

page 2 April 12, 2018


