
Oscar Nierstrasz

Software Design and Evolution
!
1. Introduction

Students’ To-Do List for every Semester

> JMCS students!
—Register for teaching units by October 10, 2014!

— http://mcs.unibnf.ch/admin!
—Register for exams by December 11, 2014 *!

— http://mcs.unibnf.ch/admin!
—Request reimbursement of travel expenses by January 31, 2015!

— http://www.unifr.ch/benefri!
!

> Hosted JMCS students (e.g. CS bachelor students etc.)!
—The same, and additionally:!
—Request for Academia access by September 30, 2014!

— http://mcs.unibnf.ch/node/535

2* For SDE only; for other MSc courses, by Jan 9, 2015

http://mcs.unibnf.ch/admin
http://mcs.unibnf.ch/admin
http://www.unifr.ch/benefri
http://mcs.unibnf.ch/node/535

> Overview!
> Laws of Software Evolution!
> Reflection and Metaprogramming!
> Smalltalk!
> Reverse and Reengineering

Roadmap

3

SDE

Lecturers Oscar Nierstrasz, Mircea Lungu

Assistants Nevena Milojković, Haidar Osman

Lectures IWI 001, Wednesdays @ 10h15-12h00

Exercises IWI 001, Wednesdays @ 12h00-13h00

WWW scg.unibe.ch/teaching/sde/

4

http://www.iam.unibe.ch/~scg/Teaching/OORPT/

> Overview!
> Laws of Software Evolution!
> Reflection and Metaprogramming!
> Smalltalk!
> Reverse and Reengineering

Roadmap

5

Goals of this course

Understanding:!
> how and why software evolves!
> reflection and metaprogramming !
> how to analyze evolving software!
> how to enable graceful software evolution

6

Course Schedule (tentative)
Week Date Lesson
1 17-Sep-14 Introduction to Software Design and Evolution
2 24-Sep-14 Smalltalk: A Reflective Language and System
3 1-Oct-14 Understanding Classes and Metaclasses
4 8-Oct-14 Reflection and Metaprogramming
5 15-Oct-14 Introduction to Reverse Engineering / Moose Lab
6 22-Oct-14 Metrics and Problem Detection
7 29-Oct-14 Architectural Extraction
8 5-Nov-14 Software Visualization / Roassal
9 12-Nov-14 Mining Software Repositories
10 19-Nov-14 Dynamic Analysis
11 26-Nov-14 Software Ecosystems
12 3-Dec-14 The View from Industry
13 10-Dec-14 Presentations
14 17-Dec-14 Final exam!

7

> Overview!
> Laws of Software Evolution!
> Reflection and Metaprogramming!
> Smalltalk!
> Reverse and Reengineering

Roadmap

8

What is a Legacy System ?

“legacy”!
! A sum of money, or a specified article, given to another by will;

anything handed down by an ancestor or predecessor.! !
— Oxford English Dictionary

⇒ so, further evolution and development may be prohibitively expensive

A legacy system is a
piece of software that:!

• you have inherited, and!
• is valuable to you

Typical problems with legacy systems:!
• original developers not available!
• outdated development methods used!
• extensive patches and modifications
have been made!

• missing or outdated documentation

9

Software Maintenance - Cost

requirement
design

coding
testing

delivery

x 1

x 5

x 10

x 20

x 200
Relative Maintenance Effort!

Between 50% and 75% of
global effort is spent on

“maintenance” !

Relative Cost!
of Fixing Mistakes

Solution ?!
• Better requirements engineering?!
• Better software methods & tools 

(database schemas, CASE-tools, objects,
components, …)?

10

Continuous Development

17.4% Corrective!
(fixing reported errors)

18.2% Adaptive!
(new platforms or OS)

60.3% Perfective!
(new functionality)

The bulk of the maintenance cost is due to new functionality!
⇒ even with better requirements, it is hard to predict new functions

data from [Lien78a]

4.1% Other

11

Lehman's Laws

A classic study by Lehman and Belady [Lehm85a] identified several
“laws” of system change.!
!

Continuing change!
> A program that is used in a real-world environment must change, or

become progressively less useful in that environment.!
!

Increasing complexity!
> As a program evolves, it becomes more complex, and extra resources

are needed to preserve and simplify its structure.

Those laws are still applicable…

12

What about Objects ?

Object-oriented legacy systems!
> = successful OO systems whose architecture and design no longer

responds to changing requirements!
!

Compared to traditional legacy systems!
> The symptoms and the source of the problems are the same!
> The technical details and solutions may differ!

!
OO techniques promise better!
> flexibility, !
> reusability, !
> maintainability!
> …

⇒ they do not come for free

13

What about Components ?

Components can be very brittle …!
After a while one inevitably resorts to glue :-)

14

(*) process-oriented structured methods, information engineering,!
data-oriented methods, prototyping, CASE-tools – not OO !

Contradiction ?! No!!
•modern methods make it easier to change  
... this capacity is used to enhance functionality!

Modern Methods & Tools ?

[Glas98a] quoting empirical study from Sasa Dekleva (1992)!
> Modern methods(*) lead to more reliable software!
> Modern methods lead to less frequent software repair!
> and ...!
> Modern methods lead to more total maintenance time

15

How to deal with Legacy ?

New or changing requirements will gradually degrade original design!
… unless extra development effort is spent to adapt the structure

New Functionality

Hack it in ?

• duplicated code!
• complex conditionals!
• abusive inheritance!
• large classes/methods

First …!
• refactor!
• restructure!
• reengineer

Take a loan on your software!
⇒ pay back via reengineering

Investment for the future!
⇒ paid back during maintenance

16

Common Symptoms

Lack of Knowledge!
> obsolete or no documentation!
> departure of the original

developers or users!
> disappearance of inside

knowledge about the system!
> limited understanding of entire

system!
! ⇒ missing tests

Process symptoms!
> too long to turn things over to

production!
> need for constant bug fixes!
> maintenance dependencies!
> difficulties separating products!
! ⇒ simple changes take too

long

Code symptoms!
• duplicated code!
• code smells!
! ⇒ big build times

17

Common Problems

Architectural Problems!
> insufficient documentation 

= non-existent or out-of-date!
> improper layering  

= too few or too many layers!
> lack of modularity  

= strong coupling!
> duplicated code  

= copy, paste & edit code!
> duplicated functionality  

= similar functionality 
 by separate teams

18

Refactoring opportunities!
> misuse of inheritance  

= code reuse vs
polymorphism!

> missing inheritance  
= duplication, case-
statements!

> misplaced operations  
= operations outside classes!

> violation of encapsulation 
= type-casting; C++ "friends"!

> class abuse 
= classes as namespaces

How to cope with evolution?

> Need to assess evolution!
> Need to analyze software and running systems!
> Need to adapt evolving software systems!
> Need to enable evolution, also at runtime

19

> Overview!
> Laws of Software Evolution!
> Reflection and Metaprogramming!
> Smalltalk!
> Reverse and Reengineering

Roadmap

20

What is a model?

This slide intentionally left blank

21

What is a meta-model?

This slide intentionally left blank

22

Example from databases

Model

System

Meta-model

Meta-meta-model Relational data model:!
Tables, attributes, tuples

Database schema:!
Student, Course, Enrolment …

Database tables of tuples:!
(andreas, muster, 07-123-123), …

«represented-by»

«instance-of»

«instance-of»

23

Real world:!
You, MMS, …

Metaprogramming

24

A metaprogram is a program that
manipulates a program (possibly itself)

Reflection

> “Reflection is the ability of a program to manipulate as data
something representing the state of the program during its
own execution. !
!

> Introspection is the ability for a program to observe and
therefore reason about its own state. !
!

> Intercession is the ability for a program to modify its own
execution state or alter its own interpretation or meaning.!
!
! Both aspects require a mechanism for encoding execution state

as data: this is called reification.” !
— Bobrow, Gabriel & White, “CLOS in Context”, 1993

25

Object

Reflection and Reification

Metamodel

Model

«instance of»

«reification»

«introspection»!
(“reflection”)

«intercession»!
(reflection)

«modification»

Object class
anObject

26

Causal connection

> “A system having itself as application domain and that is
causally connected with this domain can be qualified as a
reflective system”!

— Maes, OOPSLA 1987!
!

—A reflective system has an internal representation of itself.!
—A reflective system is able to act on itself with the ensurance that its

representation will be causally connected (up to date). !
—A reflective system has some static capacity of self-representation and

dynamic self-modification in constant synchronization

27

> Overview!
> Laws of Software Evolution!
> Reflection and Metaprogramming!
> Smalltalk!
> Reverse and Reengineering

Roadmap

28

Birds-eye view

Smalltalk is still today one of the few
fully reflective, fully dynamic, object-
oriented development
environments.

We will see how a simple, uniform
object model enables live, dynamic,
interactive software development.

29

What is Smalltalk?

> Pure OO language!
—Single inheritance!
—Dynamically typed!
!

> Language and environment!
—Guiding principle: “Everything is an Object”!
—Class browser, debugger, inspector, …!
—Mature class library and tools!
!

> Virtual machine!
—Objects exist in a persistent image [+ changes]!
—Incremental compilation

30

What is interesting about Smalltalk?

> Everything is an object!
> Everything happens by sending messages!
> All the source code is there all the time!
> You can't lose code!
> You can change everything!
> You can change things without restarting the system!
> The Debugger is your Friend

31

How does Smalltalk work?

Image

Changes
+

Virtual machine

Sources
+

32

33

instance-of

Object

Point

Object class

Point class

Class

ClassDescription

Behavior

100@100

Metaclass

Metaclass class

Class class

ClassDescription class

Behavior class

Metaclasses in 7 points

1. Every object is an instance of a class!
2. Every class inherits from Object!
3. Every class is an instance of a metaclass!
4. The metaclass hierarchy parallels the class hierarchy!
5. Every metaclass inherits from Class and Behavior!
6. Every metaclass is an instance of Metaclass!
7. The metaclass of Metaclass is an instance of Metaclass

Adapted from Goldberg & Robson, Smalltalk-80 — The Language
34

Why is Smalltalk interesting for Software
Evolution?

35

Modeling!
(fully OO)

Analysis!
(rapid prototyping)

Instrumentation!
(dynamic adaptation)

> Overview!
> Laws of Software Evolution!
> Reflection and Metaprogramming!
> Smalltalk!
> Reverse and Reengineering

Roadmap

36

Some Terminology

“Forward Engineering is the traditional process of moving from
high-level abstractions and logical, implementation-
independent designs to the physical implementation of a
system.”!

“Reverse Engineering is the process of analyzing a subject
system to identify the system’s components and their
interrelationships and create representations of the system in
another form or at a higher level of abstraction.”!

“Reengineering ... is the examination and alteration of a subject
system to reconstitute it in a new form and the subsequent
implementation of the new form.”!

!
! — Chikofsky and Cross [in Arnold, 1993]

37

Goals of Reverse Engineering

> Cope with complexity!
— need techniques to understand large, complex systems!

> Generate alternative views!
— automatically generate different ways to view systems!

> Recover lost information!
— extract what changes have been made and why!

> Detect side effects!
— help understand ramifications of changes!

> Synthesize higher abstractions!
— identify latent abstractions in software!

> Facilitate reuse!
— detect candidate reusable artifacts and components!
!

! — Chikofsky and Cross [in Arnold, 1993]

38

Reverse Engineering Techniques

> Redocumentation!
— pretty printers!
— diagram generators!
— cross-reference listing generators!
!

> Design recovery!
— software metrics!
— browsers, visualization tools!
— static analyzers!
— dynamic (trace) analyzers

39

Goals of Reengineering

> Unbundling!
— split a monolithic system into parts that can be separately marketed!

> Performance!
— “first do it, then do it right, then do it fast” — experience shows this is the

right sequence!!
> Port to other Platform!

— the architecture must distinguish the platform dependent modules!
> Design extraction!

— to improve maintainability, portability, etc.!
> Exploitation of New Technology!

— i.e., new language features, standards, libraries, etc.

40

Reengineering Techniques

> Restructuring!
—automatic conversion from unstructured to structured code!
—source code translation!

— Chikofsky and Cross !
> Data reengineering!

—integrating and centralizing multiple databases!
—unifying multiple, inconsistent representations!
—upgrading data models!

— Sommerville, ch 32 !
> Refactoring !

—renaming/moving methods/classes etc.

41

The Reengineering Life-Cycle

Requirements

Designs

Code

(0) requirement!
analysis

(1) model!
capture

(2) problem!
detection (3) problem!

resolution

(4) program transformation

• people centric!
• lightweight

42

Reverse engineering Patterns

Reverse engineering patterns encode expertise and trade-offs
in extracting design from source code, running systems and
people.!

!
—Even if design documents exist, they are typically out of sync with

reality.!
!
Example: Interview During Demo

43

Reengineering Patterns

Reengineering patterns encode expertise and trade-offs in
transforming legacy code to resolve problems that have
emerged.!

!
—These problems are typically not apparent in original design but are

due to architectural drift as requirements evolve!
!

Example: Move Behaviour Close to Data

44

A Map of Reengineering Patterns

Tests: Your Life Insurance

Detailed Model Capture

Initial Understanding

First Contact

Setting Direction

Migration Strategies

Detecting Duplicated Code

Redistribute
Responsibilities

Transform Conditionals to
Polymorphism

45

What you should know!

> Software “maintenance” is really continuous development !
> Real-world programs must change or become less useful

over time!
> What is the relationship between a model and its meta-

model?!
> What is the difference between reflection and reification?

Between introspection and intercession?!
> How does Smalltalk differ from Java?!
> How does reverse-engineering differ from reengineering?

46

Can you answer these questions?

> Why do successful software systems always require
more maintenance?!

> What is a model? A meta-model?!
> What kind of “reflection” does Java support?!
> In Smalltalk, how can you reflect on the VM?!
> How do static and dynamic analysis of software systems

differ?

47

http://creativecommons.org/licenses/by-sa/3.0/

Attribution-ShareAlike 3.0
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/

