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2. Smalltalk — a reflective language



Birds-eye view
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Less is More — simple syntax and semantics 
uniformly applied can lead to an expressive and 
flexible system, not an impoverished one.



Roadmap

> Smalltalk Basics"
> Demo: modeling Call Graphs
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Roadmap
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> Smalltalk Basics"
> Demo: modeling Call Graphs
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The origins of Smalltalk
Dynabook project (1968)

Alto — Xerox PARC (1973)

http://esug.org/data/HistoricalDocuments/Smalltalk80/SmalltalkHistory.pdf
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Don’t panic!

New Smalltalkers often think they need to understand 
all the details of a thing before they can use it."
"
Try to answer the question "
"
        “How does this work?” 
with "
          “I don’t care”.  
"
— Alan Knight. Smalltalk Guru



Two things to remember ...
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Everything is an object



Everything happens by 
sending messages



The Smalltalk object model

> Every object is an instance of one class !
—... which is also an object"
—Single inheritance"

> Dynamic binding!
—All variables are dynamically typed and bound "

> State is private to objects!
—“Protected” for subclasses"
—Encapsulation boundary is the object, not the class!"

> Methods are public!
—“private” methods by convention only
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Smalltalk Syntax

Every expression is a message send!
"

> Unary messages"
"

"

> Binary messages"
"
"

> Keyword messages
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5 factorial!
Transcript cr

3 + 4!
'hi', ' there'

Transcript show: 'hello world'!
2 raisedTo: 32!
'hello' at: 1 put: $y
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Precedence

2 raisedTo: 1 + 3 factorial

1 + 2 * 3!
1 + (2 * 3)

128

9  (!)!
7

First unary, then binary, then keyword:

Use parentheses to force order:

2 raisedTo: (1 + (3 factorial))Same as:
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Literals and constants

Strings & Characters 'hello'   $a

Numbers 1   3.14159

Symbols #yadayada

Arrays #(1 2 3)

Pseudo-variables self super

Constants true false



Blocks

14

1 to: 5 do: [:n | Transcript show: n; cr ]

Block argument

Block

CascadeKeyword message



Roadmap

> Smalltalk Basics"
> Demo: modeling Call Graphs
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Task: analyze call graph logs
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|java.lang.String:org.clapper…HTMLUtil.convertCharacterEntities:java.lang.String|
STATIC_METHOD|java.lang.String|org.clapper…convertHTMLEntities:47!
"
…!

Called method
Return type Formal argument types

Receiver class (or “static”)

Dynamic argument types
Call site (method + line #)

“Owner”



How to reconstruct the model from the log?
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CallGraph

Method

Call
Class

*

return 
type

*

static 
arguments
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calls
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Questions of interest

> How many calls are there?"
> How many methods are called?"
> How many classes are accessed?"
> Which methods are static?"
> Which methods are called most frequently?"
> What is the depth of the call graph?"
> Which methods are called by more than one caller? "
> Which methods are potentially polymorphic? (multiple 

receivers/implementations)"
> What are the polymorphic call sites? (methods called with 

different receiver/argument types)"
> …
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Pharo — a modern Smalltalk
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http://pharo.org/download

http://pharobyexample.org/



The Workspace and the Transcript
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The Workspace is a place 
to evaluate arbitrary 
Smalltalk expressions

The Transcript is a place to 
print diagnostic messages



Accessing a file from a Workspace
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We can open a FileStream object on the Calls.txt 
file and extract its contents using an Inspector

We should encapsulate this data in a ClassGraph object



Navigating to “implementors” or “senders”
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“Categories”
Classes

“Protocols” Methods

Source code



Creating a new class
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Object subclass: #CallGraph!
  instanceVariableNames: ''!
  classVariableNames: ''!
  category: 'CallGraph'

To create a new class, send a message 
to its superclass in the system browser

NB: Be sure to write a class comment!

NB: A symbol



Defining methods
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CallGraph>>from: aString!
  calls := Character cr split: aString

“Selector” (method name)

argument

method body

CallGraph>>calls!
  ^ calls An accessor method

NB: always put methods in a well-named “protocol”

Convention to 
indicate class name



How many calls are there in the call 
graph?
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| cg |!
cg := CallGraph new from: (FileStream fileNamed: 'Calls.txt') contents.!
cg calls size 2476

Let’s improve the instantiation interface



Factory methods and other “static” 
methods are defined on the class side
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CallGraph class>>fromFile: fileName!
  ^ self new from: (FileStream fileNamed: fileName) contents

(CallGraph fromFile: 'Calls.txt') calls size. 2476

Let’s turn this into a test!



Creating a simple test
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CallGraph class>>example!
  ^ self new from: ‘|java.lang.String:…’

CallGraphTest>>testNumberOfCalls!
  self assert: CallGraph example calls size equals: 5

TestCase subclass: #CallGraphTest!
  instanceVariableNames: ''!
  classVariableNames: ''!
  category: 'CallGraph'

a 5-line excerpt from Calls.txt



Monticello is a version control system 
for Smalltalk
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Smalltalkhub is a web site for sharing 
monticello projects
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GitFileTree provides git integration
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Modeling Calls, Methods and Classes
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CallGraph>>from: aString!
  calls := (Character cr split: aString)!
      collect: [ :each | self createCall: each ]

'hello' collect: [ :each | each uppercase ] 'HELLO'

We want to build up a Call object for each line of the log

Let’s look at Collections first …
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Collections

Resist the temptation to program your own collections!

Collection

ByteString

String

Symbol

Object

Set

Dictionary

IdentityDictionaryArray Text

Bag

SortedCollection

Heap

LinkedListArrayedCollection

Interval

SequenceableCollection

OrderedCollection
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Common messages

#(1 2 3 4) includes: 5!
#(1 2 3 4) size!
#(1 2 3 4) isEmpty!
#(1 2 3 4) contains: [:some | some < 0 ]!
#(1 2 3 4) do:!
  [:each | Transcript show: each ]!
#(1 2 3 4) with: #(5 6 7 8)!
  do: [:x : y | Transcript show: x+y; cr]!
#(1 2 3 4) select: [:each | each odd ]!
#(1 2 3 4) reject: [:each | each odd ]!
#(1 2 3 4) detect: [:each | each odd ]!
#(1 2 3 4) collect: [:each | each even ]!
#(1 2 3 4) inject: 0!
  into: [:sum :each | sum + each]

false!
4!
false!
false!
"
"
"
"
#(1 3)!
#(2 4)!
1!
{false.true.false.true}!
"
10



Conditionals
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> All control constructs in 
Smalltalk are 
implemented by message 
passing"
—No keywords"
—Open, extensible"
—Built up from Booleans and 

Blocks

(11 factorial + 1) isPrime ifTrue: [ 'yes' ] ifFalse: [  'no' ]!
! 'yes'

Object

ifTrue:ifFalse:
not
&

Boolean

ifTrue:ifFalse:
not
&

True

ifTrue:ifFalse:
not
&

False



Creating Calls, Methods and Classes
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CallGraph>>createCall: callString!
  | fields callee |!
  fields := $| split: callString.!
  self assert: fields size = 5.!
  self assert: (fields at: 1) size = 0.!
  callee := self getMethod: (fields at: 2).!
  ^ Call new callee: callee!
  "TODO -- handle the remaining fields!"

temporary (local) variables

a comment

assertions (not tests)

CallGraph>>initialize!
  super initialize.!
  methods := Dictionary new

CallGraph>>getMethod: signature!
  | fields methodName |!
  fields := $: split: signature.!
  methodName := fields at: 2.!
  ^ methods at: signature!
    ifAbsentPut: [ JMethod new name: methodName ]

cache the methods!

CallGraph>> methods!
  ^ methods



The debugger is your friend!
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(CallGraph fromFile: 'Calls.txt') methods size.



Using the debugger
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The debugger reveals the 
false assumption that each 
log line is a complete entry



Duck Typing

38

CallGraph>>from: aString!
! calls := ((Character cr split: aString)!
! ! select: #notEmpty)!
! ! collect: [ :each | self createCall: each ]

CallGraph>>from: aString!
! calls := ((Character cr split: aString)!
! ! select: [:each | each notEmpty])!
! ! collect: [ :each | self createCall: each ]

Behaves like:

since symbols also understand value:



Number of methods
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(CallGraph fromFile: 'Calls.txt') methods size. 168

CallGraphTest>>testNumberOfMethods!
  self assert: CallGraph example methods size equals: 5



To do …

> Model classes (introduce JClass class)"
> Model argument and return types of methods"
> Track which methods are static"
> Determine which methods are polymorphic

40



Queries
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(CallGraph fromFile: 'Calls.txt') methods size. 168

(CallGraph fromFile: 'Calls.txt') classes size. 209

((CallGraph fromFile: 'Calls.txt') methods!
! select: [ :m | m calls size > 1 ]) size. 141

((CallGraph fromFile: 'Calls.txt') methods!
! select: #isPolymorphic) size. 10



What you should know!

> What’s the difference between a method, a selector and a 
message?"

> What are categories and protocols? What are they for?"
> How do you create a new class in Smalltalk?"
> What’s the difference between CallGraph and 
CallGraph class?"

> What are “class side” methods for?"
> How is a block like a lambda?"
> What’s the difference between a string and a symbol?
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Can you answer these questions?

> Can a class access the fields of one of its instances?"
> Can you name something that is not an object in 

Smalltalk?"
> What happens to existing instances of a class if you add 

new fields at run time?"
> What will happen if you change the implementation of 

core classes (like Booleans or Strings)?"
> What’s the difference between self and super?
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