
Oscar Nierstrasz

2. Smalltalk — a reflective language

Birds-eye view

2

Less is More — simple syntax and semantics
uniformly applied can lead to an expressive and
flexible system, not an impoverished one.

Roadmap

> Smalltalk Basics"
> Demo: modeling Call Graphs

3

Roadmap

4

> Smalltalk Basics"
> Demo: modeling Call Graphs

5

The origins of Smalltalk
Dynabook project (1968)

Alto — Xerox PARC (1973)

http://esug.org/data/HistoricalDocuments/Smalltalk80/SmalltalkHistory.pdf

6

Don’t panic!

New Smalltalkers often think they need to understand
all the details of a thing before they can use it."
"
Try to answer the question "
"
 “How does this work?”
with "
 “I don’t care”.
"
— Alan Knight. Smalltalk Guru

Two things to remember ...

7

Everything is an object

Everything happens by
sending messages

The Smalltalk object model

> Every object is an instance of one class !
—... which is also an object"
—Single inheritance"

> Dynamic binding!
—All variables are dynamically typed and bound "

> State is private to objects!
—“Protected” for subclasses"
—Encapsulation boundary is the object, not the class!"

> Methods are public!
—“private” methods by convention only

10

Smalltalk Syntax

Every expression is a message send!
"

> Unary messages"
"

"

> Binary messages"
"
"

> Keyword messages

11

5 factorial!
Transcript cr

3 + 4!
'hi', ' there'

Transcript show: 'hello world'!
2 raisedTo: 32!
'hello' at: 1 put: $y

12

Precedence

2 raisedTo: 1 + 3 factorial

1 + 2 * 3!
1 + (2 * 3)

128

9 (!)!
7

First unary, then binary, then keyword:

Use parentheses to force order:

2 raisedTo: (1 + (3 factorial))Same as:

13

Literals and constants

Strings & Characters 'hello' $a

Numbers 1 3.14159

Symbols #yadayada

Arrays #(1 2 3)

Pseudo-variables self super

Constants true false

Blocks

14

1 to: 5 do: [:n | Transcript show: n; cr]

Block argument

Block

CascadeKeyword message

Roadmap

> Smalltalk Basics"
> Demo: modeling Call Graphs

15

Task: analyze call graph logs

16

|java.lang.String:org.clapper…HTMLUtil.convertCharacterEntities:java.lang.String|
STATIC_METHOD|java.lang.String|org.clapper…convertHTMLEntities:47!
"
…!

Called method
Return type Formal argument types

Receiver class (or “static”)

Dynamic argument types
Call site (method + line #)

“Owner”

How to reconstruct the model from the log?

17

CallGraph

Method

Call
Class

*

return
type

*

static
arguments

owner
1 1

caller

*callee

calls

dynamic
arguments

11

*

*

receiver

*

Questions of interest

> How many calls are there?"
> How many methods are called?"
> How many classes are accessed?"
> Which methods are static?"
> Which methods are called most frequently?"
> What is the depth of the call graph?"
> Which methods are called by more than one caller? "
> Which methods are potentially polymorphic? (multiple

receivers/implementations)"
> What are the polymorphic call sites? (methods called with

different receiver/argument types)"
> …

18

Pharo — a modern Smalltalk

19

http://pharo.org/download

http://pharobyexample.org/

The Workspace and the Transcript

20

The Workspace is a place
to evaluate arbitrary
Smalltalk expressions

The Transcript is a place to
print diagnostic messages

Accessing a file from a Workspace

21

We can open a FileStream object on the Calls.txt
file and extract its contents using an Inspector

We should encapsulate this data in a ClassGraph object

Navigating to “implementors” or “senders”

22

“Categories”
Classes

“Protocols” Methods

Source code

Creating a new class

23

Object subclass: #CallGraph!
 instanceVariableNames: ''!
 classVariableNames: ''!
 category: 'CallGraph'

To create a new class, send a message
to its superclass in the system browser

NB: Be sure to write a class comment!

NB: A symbol

Defining methods

24

CallGraph>>from: aString!
 calls := Character cr split: aString

“Selector” (method name)

argument

method body

CallGraph>>calls!
 ^ calls An accessor method

NB: always put methods in a well-named “protocol”

Convention to
indicate class name

How many calls are there in the call
graph?

25

| cg |!
cg := CallGraph new from: (FileStream fileNamed: 'Calls.txt') contents.!
cg calls size 2476

Let’s improve the instantiation interface

Factory methods and other “static”
methods are defined on the class side

26

CallGraph class>>fromFile: fileName!
 ^ self new from: (FileStream fileNamed: fileName) contents

(CallGraph fromFile: 'Calls.txt') calls size. 2476

Let’s turn this into a test!

Creating a simple test

27

CallGraph class>>example!
 ^ self new from: ‘|java.lang.String:…’

CallGraphTest>>testNumberOfCalls!
 self assert: CallGraph example calls size equals: 5

TestCase subclass: #CallGraphTest!
 instanceVariableNames: ''!
 classVariableNames: ''!
 category: 'CallGraph'

a 5-line excerpt from Calls.txt

Monticello is a version control system
for Smalltalk

28

Smalltalkhub is a web site for sharing
monticello projects

29

GitFileTree provides git integration

30

Modeling Calls, Methods and Classes

31

CallGraph>>from: aString!
 calls := (Character cr split: aString)!
 collect: [:each | self createCall: each]

'hello' collect: [:each | each uppercase] 'HELLO'

We want to build up a Call object for each line of the log

Let’s look at Collections first …

32

Collections

Resist the temptation to program your own collections!

Collection

ByteString

String

Symbol

Object

Set

Dictionary

IdentityDictionaryArray Text

Bag

SortedCollection

Heap

LinkedListArrayedCollection

Interval

SequenceableCollection

OrderedCollection

33

Common messages

#(1 2 3 4) includes: 5!
#(1 2 3 4) size!
#(1 2 3 4) isEmpty!
#(1 2 3 4) contains: [:some | some < 0]!
#(1 2 3 4) do:!
 [:each | Transcript show: each]!
#(1 2 3 4) with: #(5 6 7 8)!
 do: [:x : y | Transcript show: x+y; cr]!
#(1 2 3 4) select: [:each | each odd]!
#(1 2 3 4) reject: [:each | each odd]!
#(1 2 3 4) detect: [:each | each odd]!
#(1 2 3 4) collect: [:each | each even]!
#(1 2 3 4) inject: 0!
 into: [:sum :each | sum + each]

false!
4!
false!
false!
"
"
"
"
#(1 3)!
#(2 4)!
1!
{false.true.false.true}!
"
10

Conditionals

34

> All control constructs in
Smalltalk are
implemented by message
passing"
—No keywords"
—Open, extensible"
—Built up from Booleans and

Blocks

(11 factorial + 1) isPrime ifTrue: ['yes'] ifFalse: ['no']!
! 'yes'

Object

ifTrue:ifFalse:
not
&

Boolean

ifTrue:ifFalse:
not
&

True

ifTrue:ifFalse:
not
&

False

Creating Calls, Methods and Classes

35

CallGraph>>createCall: callString!
 | fields callee |!
 fields := $| split: callString.!
 self assert: fields size = 5.!
 self assert: (fields at: 1) size = 0.!
 callee := self getMethod: (fields at: 2).!
 ^ Call new callee: callee!
 "TODO -- handle the remaining fields!"

temporary (local) variables

a comment

assertions (not tests)

CallGraph>>initialize!
 super initialize.!
 methods := Dictionary new

CallGraph>>getMethod: signature!
 | fields methodName |!
 fields := $: split: signature.!
 methodName := fields at: 2.!
 ^ methods at: signature!
 ifAbsentPut: [JMethod new name: methodName]

cache the methods!

CallGraph>> methods!
 ^ methods

The debugger is your friend!

36

(CallGraph fromFile: 'Calls.txt') methods size.

Using the debugger

37

The debugger reveals the
false assumption that each
log line is a complete entry

Duck Typing

38

CallGraph>>from: aString!
! calls := ((Character cr split: aString)!
! ! select: #notEmpty)!
! ! collect: [:each | self createCall: each]

CallGraph>>from: aString!
! calls := ((Character cr split: aString)!
! ! select: [:each | each notEmpty])!
! ! collect: [:each | self createCall: each]

Behaves like:

since symbols also understand value:

Number of methods

39

(CallGraph fromFile: 'Calls.txt') methods size. 168

CallGraphTest>>testNumberOfMethods!
 self assert: CallGraph example methods size equals: 5

To do …

> Model classes (introduce JClass class)"
> Model argument and return types of methods"
> Track which methods are static"
> Determine which methods are polymorphic

40

Queries

41

(CallGraph fromFile: 'Calls.txt') methods size. 168

(CallGraph fromFile: 'Calls.txt') classes size. 209

((CallGraph fromFile: 'Calls.txt') methods!
! select: [:m | m calls size > 1]) size. 141

((CallGraph fromFile: 'Calls.txt') methods!
! select: #isPolymorphic) size. 10

What you should know!

> What’s the difference between a method, a selector and a
message?"

> What are categories and protocols? What are they for?"
> How do you create a new class in Smalltalk?"
> What’s the difference between CallGraph and
CallGraph class?"

> What are “class side” methods for?"
> How is a block like a lambda?"
> What’s the difference between a string and a symbol?

42

Can you answer these questions?

> Can a class access the fields of one of its instances?"
> Can you name something that is not an object in

Smalltalk?"
> What happens to existing instances of a class if you add

new fields at run time?"
> What will happen if you change the implementation of

core classes (like Booleans or Strings)?"
> What’s the difference between self and super?

43

http://creativecommons.org/licenses/by-sa/3.0/

Attribution-ShareAlike 3.0
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/

