
Software Design and Evolution, November 26, 2014

Mircea Lungu
Software Ecosystems

Ecosystems

A Thousand Years in Bali
Stephen Lansing

a set of inter-connected, independently developed, co-
evolving software systems.

A software ecosystem is*

Generators of ecosystems

The PyPI Dependency Graph

Generators of ecosystems

The 30MLOC of PL/1 Code in a Bank…

http://scg.unibe.ch/archive/papers/Aesc13a-PL1Ecosystem.pdf

Architecture

Design

Code

Inter-connected Systems /
Ecosystem

New

Software Engineering Abstraction Levels

Are software systems in an ecosystem
co-evolving???

Let us investigate
API deprecation!

http://scg.unibe.ch/scgbib?_k=aBIsqlal&query=Robb12a&display=abstract

Contributors:
Projects:
Classes:

Commits:
LOC:

{ 2.300
2.500

95.000
110.000

600.000.000

8 years

http://scg.unibe.ch/scgbib?_k=aBIsqlal&query=Robb12a&display=abstract

RQ2: Magnitude of ripple effects triggered by API deprecation?

reacting projects
●

●

●

●

●

●

●

●

●

0
2
0

4
0

6
0

8
0

(i) reacting projects

●

●

●

●

●

●

●

●
●

●

●

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

(ii) reacting packages

⤷ the impact can be large

⤷ deprecations regularly impact the ecosystem

Why is my code broken
today when it worked

yesterday?

True Story

Opportunities

Standing on the shoulders of giants

Good programmers know what to write;
great ones know what to rewrite and reuse.

(ES Raymond, The Cathedral and The Bazaar)

http://mir.lu/shared/catbaz

The Network Effect

The value of an ecosystem increases with the
number of systems it contains

The Evolution of Gnome

Introduction Growth

Nautilus

Evolution

Maturity

Better Tool and Developer Support

Mining Trends in Library Usage

JavaDoc MSDN Nautilius

–Jakob Nielsen
“Alphabetical ordering must die.”

Geo-locating Knowledge Transfer in StackOverflow
Schenk, Lungu. SSE 2013

Overthrowing the Tyranny of Alphabetical Order in Documentation
Spasojević, Lungu, Nierstrasz, ICSME 2014

Usage of java.lang.Thread API in
the Java Ecosystem

https://github.com/caracciolo/pangea/blob/master/demo/thread-stats.st

data mining
downstream

usage patterns

Overthrowing the Tyranny of Alphabetical Order in Documentation
Spasojevič, Lungu, Nierstrasz, ICSME 2014

JavaDoc

Nautilius

Challenges

Scale
Makes everything slower

Things that are affected:
build times, testing times, understanding,. etc.

The industry-average productivity for a software
product is about 10 to 50 of lines of delivered
code per person per day (including all non-coding
overhead).

Chapter 20.5

Trust
Not upset that you lied to me.

Upset that from now on I can't believe you.

“When systems depended on underlying systems,
and those depended on things still older... it became

impossible to know all the systems could do”

The Law of Leaky Abstractions

“All non-trivial abstractions,
to some degree, are leaky”.

J. Spolsky

Designing a Run-Time Ecosystem…

How to encourage interaction
while minimizing the required trust?

https://developer.chrome.com/extensions/content_scripts
http://developer.android.com/guide/components/intents-filters.html

https://developer.chrome.com/extensions/content_scripts
http://developer.android.com/guide/components/intents-filters.html

Interdependence
Is a mixed blessing

Controlling the upstream propagation

Projects need to isolate themselves
from the evolution of the others

run-time compile-time

Dependency Hell

3. Large Number
of Dependencies

1. Conflicting
dependencies

2. Long chains
of dependencies

More Downsides of Inter-dependency…

Upstream evolution can be used as a strategy

Co-evolution can take a lot of effort. Must plan
for co-evolution and put time aside.

(The Importance of Slack)

Awareness
Gets more difficult

Keeping up with the upstream is challenging

Survey of Information Needs in Microsoft

Find the relevant engineers for a feature
Find an expert on a given feature
Find all the resources related to a given feature, API, product
Find why a recent change was made
Being notified that a recent change affects an engineer’s work
Finding who might be affected by a given change to code/API

Survey of Information Needs in Open Source

http://scg.unibe.ch/scgbib?query=Haen14a

http://scg.unibe.ch/scgbib?query=Haen14a

Developer Information Needs in Software Ecosystems
Haenni, Lungu, Schwarz, Nierstrasz, WEA 2014

Participants: 75

Open JDK, Processing.js, jQuery,
SciPy, NumPy, Pharo, Squeak,
Seaside, Drupal, Core-audio,

Apache Hadoop, Apache
Cassandra, Google WebToolkit,

Ubuntu, Soot and Zend Framework

Technologies

Developer Information Needs in Software Ecosystems
Haenni, Lungu, Schwarz, Nierstrasz, WEA 2014

needs

practices

Upstream

I'm interested in

… the usability of my API
… which API methods are called
… unused methods and functionalities
… how the library is being used

Downstream
I'm interested in

… the impact of changes.
… the estimated time to adapt to a new version …

… notifications about changes…

* I keep up to date with my upstream projects …

Upstream

I'm interested in

… the usability of my API
… which API methods are called
… unused methods and functionalities
… how the library is being used

Complete list in the paper…

What you should know!

> What is an ecosystem and why talk about it
> Opportunities associated with ecosystems
> Challenges that appear in live ecosystems

45

Can you answer these questions?

> What is dependency hell? What are some solutions?
> How would you mine library usage from the ecosystem?
> How would you approach detecting clones in a large

ecosystem?
> What are the challenges for a developer working in an

ecosystem?
> What are the benefits of software ecosystems?

46

Further Reading

Mandatory Reading
> The Cathedral and the Bazaar, Erik S. Raymond

Optional
> The Law of Leaky Abstractions, Joel Spolsky
> Mining Trends in Library Usage, Mileva et al. 2009
> Codebook: Discovering and Exploiting Relationships in Software Repositories, Begel et al.

2010

47

http://creativecommons.org/licenses/by-sa/2.5/

Attribution-ShareAlike 2.5
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/

