
Date

Mircea Lungu

Introduction to Reverse Engineering
(based on the Object Oriented Reengineering Patterns)

Selected material courtesy Oscar Nierstrasz

Wednesday, November 2, 11



Wednesday, November 2, 11



Wednesday, November 2, 11



Wednesday, November 2, 11



Wednesday, November 2, 11



The Reengineering Life-Cycle

(0) req. analysis
(1) model capture
issues
• scale
• speed
• accuracy
• politics

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection

(3) problem
resolution

(4) program transformation

Wednesday, November 2, 11



Roadmap

Tests: Your Life Insurance!

Detailed Model Capture!

Initial Understanding!

First Contact!

Setting Direction!

Migration Strategies!

Detecting Duplicated Code!

Redistribute 
Responsibilities!

Transform Conditionals 
to Polymorphism!

Reengineering

Wednesday, November 2, 11



Roadmap

Tests: Your Life Insurance!

Detailed Model Capture!

Initial Understanding!

First Contact!

Setting Direction!

Migration Strategies!

Detecting Duplicated Code!

Redistribute 
Responsibilities!

Transform Conditionals 
to Polymorphism!

Reengineering

Wednesday, November 2, 11



Setting Direction: Forces

Conflicting interests (technical, economic, political)
Complication: presence or absence of original developers
Which problems to tackle?
— Interesting vs important problems?
— Wrap, refactor or rewrite?

Wednesday, November 2, 11



Setting Direction: Patterns

Agree on Maxims

Set direction

Appoint a
Navigator

Speak to the
Round Table

Maintain
direction

Coordinate
direction

Most Valuable First

Where to start

Fix Problems,
Not Symptoms

If It Ain't Broke
Don't Fix It

What not to doWhat to do

Keep it Simple

How to do it

Principles & Guidelines for
Software project 

management
especially relevant for 
reengineering projects

Wednesday, November 2, 11



Most Valuable First

Problem: Which problems should you focus on first?
Solution: Work on aspects that are most valuable to your 

customer

> Aim for early results
> Difficulties and hints:

— What measurable goal to aim for?
— “Valuable” might be a rat’s nest
— Play the planning game

Wednesday, November 2, 11



Roadmap

Tests: Your Life Insurance!

Detailed Model Capture!

Initial Understanding!

First Contact!

Setting Direction!

Migration Strategies!

Detecting Duplicated Code!

Redistribute 
Responsibilities!

Transform Conditionals 
to Polymorphism!

Reengineering

Wednesday, November 2, 11



First Contact: Forces

Legacy systems are large and complex
— Split the system into manageable pieces
Time is scarce
— Apply lightweight techniques to assess feasibility and risks
First impressions are dangerous

Wednesday, November 2, 11



First Contact: Patterns

System experts

Chat with the
Maintainers

Interview
during Demo

Talk with
developers

Talk with
end users

Talk about it

Verify what
you hear

feasibility assessment
(one week time)

Software System

Read All the Code
in One Hour

Do a Mock
Installation

Read it Compile it

Skim the
Documentation

Read 
about it

Wednesday, November 2, 11



Chat with the Maintainers

Problem: What are the history and politics of the legacy system?
Solution: Discuss the problems with the system maintainers.

> Documentation will mislead you (various reasons)
> Stakeholders will mislead you (various reasons)
> The maintainers know both the technical and political history 

Wednesday, November 2, 11



Chat with the Maintainers

Questions to ask:
> Easiest/hardest bug to fix in recent months?
> How are change requests made and evaluated?
> How did the development/maintenance team evolve during the 

project?
> How good is the code? The documentation?

The major problems of our work are no so much technological as sociological.
— DeMarco and Lister, Peopleware ‘99

Wednesday, November 2, 11



Roadmap

Tests: Your Life Insurance!

Detailed Model Capture!

Initial Understanding!

First Contact!

Setting Direction!

Migration Strategies!

Detecting Duplicated Code!

Redistribute 
Responsibilities!

Transform Conditionals 
to Polymorphism!

Reengineering

Wednesday, November 2, 11



Initial Understanding: Forces

Understanding entails iteration
— Plan iteration and feedback loops
Knowledge must be shared
— “Put the map on the wall”
Teams need to communicate
— “Use their language”

Wednesday, November 2, 11



Initial Understanding: Patterns

understand ⇒
higher-level model

Top down

Speculate about Design

Recover 
design

Analyze the 
Persistent Data

Study the 
Exceptional Entities

Recover 
database

Bottom up

Identify 
problems

Wednesday, November 2, 11



Speculate about Design

Problem: How do you recover design from code?
Solution: Develop hypotheses and check them

> Develop a plausible class diagram and iteratively check and refine 
your design against the actual code.

Variants:
> Speculate about Design Patterns
> Speculate about Architecture

Wednesday, November 2, 11



Study the Exceptional Entities

Problem: How can you quickly identify design problems?

Solution: Measure software entities and study the anomalous ones

> Combine metrics with structure to get an overview
> Browse the code to get insight into the anomalies

Wednesday, November 2, 11



Visualizing Metrics

(x,y)
width

height colour

Use simple metrics 
and layout 
algorithms

Visualizes up to 
5 metrics per 
node

Wednesday, November 2, 11



Wednesday, November 2, 11



Visualizing Exceptional Relationships

Wednesday, November 2, 11



Roadmap

Tests: Your Life Insurance!

Detailed Model Capture!

Initial Understanding!

First Contact!

Setting Direction!

Migration Strategies!

Detecting Duplicated Code!

Redistribute 
Responsibilities!

Transform Conditionals 
to Polymorphism!

Reengineering

Wednesday, November 2, 11



Detailed Model Capture: Forces

Details matter
— Pay attention to the details! 
There is usually a lot of data!
— How to filter what does not matter?
Design evolves
— Important issues are reflected in changes to the code!
Source code analysis has limitations
— Study dynamic behaviour to extract detailed design

Wednesday, November 2, 11



Detailed Model Capture

Expose the design
& make sure it stays exposed

Tie Code and Questions

Refactor to Understand
Keep track of

your understanding

Expose design

Step through the Execution

Expose collaborations

• Use Your Tools
• Look for Key Methods
• Look for Constructor Calls
• Look for Template/Hook Methods
• Look for Super Calls

Look for the Contracts
Expose contracts

Learn from the Past

Expose evolution

Write Tests
to Understand

Wednesday, November 2, 11



Refactor to Understand

Problem: How do you decipher cryptic code?
Solution: Refactor it till it makes sense

> Goal (for now) is to understand, not to reengineer
> Work with a copy of the code
> Refactoring requires an adequate test base

— If this is missing, Write Tests to Understand

Hints:
— Rename attributes to convey roles
— Rename methods and classes to reveal intent
— Remove duplicated code
— Replace condition branches by methods

http://objectmentor.com/resources/articles/Naming.pdf

Wednesday, November 2, 11

http://objectmentor.com/resources/articles/Naming.pdf
http://objectmentor.com/resources/articles/Naming.pdf


Look for the Contracts

Problem: How to understand a class?
Solution: Look for common programming idioms

> Look for “key methods”
— Intention-revealing names
— Key parameter types
— Recurring parameter types represent temporary associations

> Look for constructor calls
> Look for Template/Hook methods
> Look for super calls
> Use your tools!

Wednesday, November 2, 11



Learn from the Past

Problem: How did the system get the way it is?
Solution: Compare versions to discover where code was removed

> Removed functionality is a sign of design evolution
> Use or develop appropriate tools
> Look for signs of:

— Unstable design — repeated growth and refactoring
— Mature design — growth, refactoring and stability

Wednesday, November 2, 11



Step Through the Execution

Problem: How do you uncover the run-time architecture?
Solution: Execute scenarios of known use cases and step through the 

code with a debugger

> Tests can also be used as scenario generators
— If tests are missing Write Tests to Understand

> Difficulties
— OO source code exposes a class hierarchy, not the run-time object 

collaborations
— Collaborations are spread throughout the code
— Polymorphism may hide which classes are instantiated

> Focused use of a debugger can expose collaborations

Wednesday, November 2, 11



Tests: Your Life Insurance!

Detailed Model Capture!

Initial Understanding!

First Contact!

Setting Direction!

Migration Strategies!

Detecting Duplicated Code!

Redistribute 
Responsibilities!

Transform Conditionals 
to Polymorphism!

Reengineering

Source Code is Data!

Wednesday, November 2, 11



What you should know!

> What is the difference between reengineering, reverse 
engineering, and forward engineering.

> Be able to ennumerate and talk about several of the 
reengineering patterns.

> Source code is also data!

33

Wednesday, November 2, 11



http://creativecommons.org/licenses/by-sa/2.5/

Attribution-ShareAlike 2.5
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or 
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the 
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Wednesday, November 2, 11

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

