
Software Design and Evolution, December 7, 2011

Mircea Lungu

Software Ecosystem Analysis

Wednesday, December 7, 11



Software is Data...

> Data that you analyze
> Data that you measure
> Data that evolves and 

can be mined 
> Executable data
> ... big data
> Data that you visualize

Wednesday, December 7, 11



Roadmap

> Software Ecosystems
> Reverse Engineering Software Ecosystems
> Dependency Analysis
> API Evolution
> And more...

Wednesday, December 7, 11



Main Materials

> Recovering Inter-Project Dependencies in Software Ecosystems, Lungu & Robbes, 2010
> Automated Dependency Resolution for Open Source Software, Ossher et al., 2010
> A Study of Ripple Effects in Software Ecosystems, Robbes & Lungu, 2011
> Mining Framework Usage Changes from Instantiation code, Schaeffer et al. 2008
> File Cloning in Open Source Systems: The Good, The Bad and The Ugly, Ossher et al. 2011

4

Wednesday, December 7, 11



Roadmap

> Software Ecosystems
> Reverse Engineering Software Ecosystems
> Dependency Analysis
> API Evolution
> And more...

Wednesday, December 7, 11



Architecture

Design

Code

Ecosystem
New

Wednesday, December 7, 11



Architecture

Design

Code

Ecosystem
New

The ecosystems is an abstraction level for 
software that is above the architecture

Wednesday, December 7, 11



Definition

> A software ecosystem is a 
collection of software systems 
which are developed and which 
co-evolve together in the same 
environment.

[Lungu ’09]

Wednesday, December 7, 11



An environment can be many things

Wednesday, December 7, 11



An environment can be many things

> An open source community

Wednesday, December 7, 11



An environment can be many things

> An open source community
—Apache Software Foundation, The Gnome Project

Wednesday, December 7, 11



An environment can be many things

> An open source community
—Apache Software Foundation, The Gnome Project

> A company

Wednesday, December 7, 11



An environment can be many things

> An open source community
—Apache Software Foundation, The Gnome Project

> A company
— <your large company here>

Wednesday, December 7, 11



An environment can be many things

> An open source community
—Apache Software Foundation, The Gnome Project

> A company
— <your large company here>

> An academic institution

Wednesday, December 7, 11



An environment can be many things

> An open source community
—Apache Software Foundation, The Gnome Project

> A company
— <your large company here>

> An academic institution
—The SCG Research Group

Wednesday, December 7, 11



An environment can be many things

> An open source community
—Apache Software Foundation, The Gnome Project

> A company
— <your large company here>

> An academic institution
—The SCG Research Group

> A programming language

Wednesday, December 7, 11



An environment can be many things

> An open source community
—Apache Software Foundation, The Gnome Project

> A company
— <your large company here>

> An academic institution
—The SCG Research Group

> A programming language
—All the software written in Perl, Smalltalk, etc.

Wednesday, December 7, 11



An environment can be many things

> An open source community
—Apache Software Foundation, The Gnome Project

> A company
— <your large company here>

> An academic institution
—The SCG Research Group

> A programming language
—All the software written in Perl, Smalltalk, etc.

> A technology/platform

Wednesday, December 7, 11



An environment can be many things

> An open source community
—Apache Software Foundation, The Gnome Project

> A company
— <your large company here>

> An academic institution
—The SCG Research Group

> A programming language
—All the software written in Perl, Smalltalk, etc.

> A technology/platform
—Eclipse

Wednesday, December 7, 11



An Example: The Evolution of Gnome

Wednesday, December 7, 11



An Example: The Evolution of Gnome

Introduction

Wednesday, December 7, 11



An Example: The Evolution of Gnome

Introduction Growth

Wednesday, December 7, 11



An Example: The Evolution of Gnome

Introduction Growth

Nautilus

Evolution

Wednesday, December 7, 11



An Example: The Evolution of Gnome

Introduction Growth

Nautilus

Evolution

Maturity

Wednesday, December 7, 11



Size Evolution - Gnome

Wednesday, December 7, 11



Super-Repositories

Wednesday, December 7, 11



Super-Repositories

> A super-repository is the collection of all the versioning control 
repositories for the systems that are part of an ecosystem

Wednesday, December 7, 11



Super-Repositories

> A super-repository is the collection of all the versioning control 
repositories for the systems that are part of an ecosystem

Wednesday, December 7, 11



Super-Repositories

> A super-repository is the collection of all the versioning control 
repositories for the systems that are part of an ecosystem

> Related with a software ecosystem

Wednesday, December 7, 11



Super-Repositories

> A super-repository is the collection of all the versioning control 
repositories for the systems that are part of an ecosystem

> Related with a software ecosystem
—1-to-1

Wednesday, December 7, 11



Super-Repositories

> A super-repository is the collection of all the versioning control 
repositories for the systems that are part of an ecosystem

> Related with a software ecosystem
—1-to-1
—1-to-many

Wednesday, December 7, 11



Super-Repositories

> A super-repository is the collection of all the versioning control 
repositories for the systems that are part of an ecosystem

> Related with a software ecosystem
—1-to-1
—1-to-many

Wednesday, December 7, 11



Super-Repositories

> A super-repository is the collection of all the versioning control 
repositories for the systems that are part of an ecosystem

> Related with a software ecosystem
—1-to-1
—1-to-many

> Two types

Wednesday, December 7, 11



Super-Repositories

> A super-repository is the collection of all the versioning control 
repositories for the systems that are part of an ecosystem

> Related with a software ecosystem
—1-to-1
—1-to-many

> Two types
—Language-based

Wednesday, December 7, 11



Super-Repositories

> A super-repository is the collection of all the versioning control 
repositories for the systems that are part of an ecosystem

> Related with a software ecosystem
—1-to-1
—1-to-many

> Two types
—Language-based

– SqueakSource, RubyForge, CPAN

Wednesday, December 7, 11



Super-Repositories

> A super-repository is the collection of all the versioning control 
repositories for the systems that are part of an ecosystem

> Related with a software ecosystem
—1-to-1
—1-to-many

> Two types
—Language-based

– SqueakSource, RubyForge, CPAN
—Language-Agnostic

Wednesday, December 7, 11



Super-Repositories

> A super-repository is the collection of all the versioning control 
repositories for the systems that are part of an ecosystem

> Related with a software ecosystem
—1-to-1
—1-to-many

> Two types
—Language-based

– SqueakSource, RubyForge, CPAN
—Language-Agnostic

– GitHub, SourceForge, <your company’s folder with svn repos>

Wednesday, December 7, 11



Similar Concepts

Wednesday, December 7, 11



Similar Concepts

> Product families 
—Several systems that are very similar
—Core architecture with variations

Wednesday, December 7, 11



Similar Concepts

> Product families 
—Several systems that are very similar
—Core architecture with variations

> Business ecosystems
—a set of businesses functioning as a unit and interacting with a 

shared market for software and services (Szyperski, 2003)
—not interesting for us

Wednesday, December 7, 11

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software
http://en.wiktionary.org/wiki/service
http://en.wiktionary.org/wiki/service


Similar Concepts

> Product families 
—Several systems that are very similar
—Core architecture with variations

> Business ecosystems
—a set of businesses functioning as a unit and interacting with a 

shared market for software and services (Szyperski, 2003)
—not interesting for us

> Individual systems ...
—if we look at the code level it might be the same thing
—two “p”’s are different

– properties
– problems

Wednesday, December 7, 11

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software
http://en.wiktionary.org/wiki/service
http://en.wiktionary.org/wiki/service


Roadmap

> Software Ecosystems
> Reverse Engineering Software Ecosystems
> Dependency Analysis
> API Evolution
> And more...

Wednesday, December 7, 11



> Lungu ’09

> Goal: Understanding the 
ecosystem as a whole and 
the component systems in 
context

RevEngE: An approach to understanding 
an ecosystem

Wednesday, December 7, 11



Approach

> Goal: Recover ecosystem viewpoints

> An ecosystem viewpoint - is a perspective on an ecosystem 
that presents a specific aspect of the ecosystem in order to 
support one or more concerns about the ecosystem.

Wednesday, December 7, 11



Ecosystem Viewpoints

Wednesday, December 7, 11



Ecosystem Viewpoints

Size 
Evolution

Activity 
Evolution

Developer 
Timelines

Project 
Architecture

Project 
Dependency 

Matrix

Developer 
Collaboration

Developer 
Expertise

Developer 
Activity 
History

Project 
Dependency 

Map

Wednesday, December 7, 11



Ecosystem Viewpoints

Systems

Size 
Evolution

Activity 
Evolution

Developer 
Timelines

Project 
Architecture

Project 
Dependency 

Matrix

Developer 
Collaboration

Developer 
Expertise

Developer 
Activity 
History

Project 
Dependency 

Map

Wednesday, December 7, 11



Ecosystem Viewpoints

DevelopersSystems

Size 
Evolution

Activity 
Evolution

Developer 
Timelines

Project 
Architecture

Project 
Dependency 

Matrix

Developer 
Collaboration

Developer 
Expertise

Developer 
Activity 
History

Project 
Dependency 

Map

Wednesday, December 7, 11



Ecosystem Viewpoints

Holistic 
(ecosystem is 
the subject)

DevelopersSystems

Size 
Evolution

Activity 
Evolution

Developer 
Timelines

Project 
Architecture

Project 
Dependency 

Matrix

Developer 
Collaboration

Developer 
Expertise

Developer 
Activity 
History

Project 
Dependency 

Map

Wednesday, December 7, 11



Ecosystem Viewpoints

Holistic 
(ecosystem is 
the subject)

Focused 
(ecosystem is 
the context)

DevelopersSystems

Size 
Evolution

Activity 
Evolution

Developer 
Timelines

Project 
Architecture

Project 
Dependency 

Matrix

Developer 
Collaboration

Developer 
Expertise

Developer 
Activity 
History

Project 
Dependency 

Map

Wednesday, December 7, 11



Developer Collaboration Viewpoint

SCG 2007 Soops 2007

Wednesday, December 7, 11



Inter-Project Dependencies Viewpoint

(a) (b)

(c)

SCG 2007

Wednesday, December 7, 11



System Architecture in an Ecosystem 
Context

Moose 2007
Wednesday, December 7, 11



System Architecture in an Ecosystem 
Context

Moose 2007
Wednesday, December 7, 11



System Architecture in an Ecosystem 
Context

Moose 2007
Wednesday, December 7, 11



System Architecture in an Ecosystem 
Context

Moose 2007
Wednesday, December 7, 11



Open Questions

> How do you extract dependencies if they are not explicit?
> If they are explicit, how do you extract the details?

> Can the ecosystem provide information useful for choosing between 
two alternative libraries?

Wednesday, December 7, 11



Roadmap

> Software Ecosystems
> Reverse Engineering Software Ecosystems
> Dependency Analysis
> API Evolution
> And more...

Wednesday, December 7, 11



Recovering inter-project dependencies 
in Software Ecosystems

> Lungu & Robbes, 2010

> Goal
– Evaluate techniques for 

automatic dependency 
resolution

> Context
—dynamic language analysis
—unreliable declared 

dependencies

Wednesday, December 7, 11



The Ecco Meta-Model

> A meta-model for 
software ecosystems
—lightweight
—required entities
—uniquely provided entities

Wednesday, December 7, 11



Strategies for dependency detection 
based on Ecco

Precision Recall F-Measure
Unique Method 

Invocations
Unique Class 

References
Weighted 

Dependencies
Combined 

Method and Class 
References

0.19 0.59 0.29

0.80 0.71 0.75

0.85 0.70 0.77

0.85 0.70 0.77

> Case Study: The Squeak 3.10 
Universe

– Declared dependencies used 
as oracle

– Over 200 projects

> Approaches based on Class 
names are simple and 
performant

> False positives: 12/17 were 
actually true positives. 

– You can’t trust declared 
dependencies.

Wednesday, December 7, 11



Strategies for dependency detection 
based on Ecco

Precision Recall F-Measure
Unique Method 

Invocations
Unique Class 

References
Weighted 

Dependencies
Combined 

Method and Class 
References

0.19 0.59 0.29

0.80 0.71 0.75

0.85 0.70 0.77

0.85 0.70 0.77

> Case Study: The Squeak 3.10 
Universe

– Declared dependencies used 
as oracle

– Over 200 projects

> Approaches based on Class 
names are simple and 
performant

> False positives: 12/17 were 
actually true positives. 

– You can’t trust declared 
dependencies.

Lack of perfect recall is due to the 
incompleteness of the ecosystem

Wednesday, December 7, 11



Automated Dependency Resolution for 
Open Source Software

> Ossher et al. 2010

> Goal 
– automatically resolve the 

dependencies so projects can 
be compiled

> Steps of the approach
1. Build artifact repository
2. Detect missing types
3. Resolution algorithm

Wednesday, December 7, 11



> Case Study: Apache 
Maven
—Specifies component 

dependencies

> Index of defined entities 
for every project
—classes, interfaces
—packages
—enums

> Observation: Large 
amounts of duplication

Build Artifact Repository

Wednesday, December 7, 11



Detecting Missing Types

> Restricted to 
—import statements
—missing FQN

> FAMIX models stub 
entities = entities that 
were not found while 
parsing

– FAMIXInvocation#isStub

Wednesday, December 7, 11



Resolution Algorithm

> Starts with a list of FQN 
reported by the parser

> Uses a greedy approach

repeat
- always pick the 
candidate that provides 
the most missing types
- discount the 
artifacts provided by 
the selected candidates

until a solution is found or 
there are no more candidates

Wednesday, December 7, 11



Case Study

> Sourcerer DB

> 20% of the projects do 
not need external 
components

> 19% can be compiled 
with the included jar files

> 61% do not compile

Wednesday, December 7, 11



You can’t always trust declared 
dependencies

Wednesday, December 7, 11



You can’t always trust declared 
dependencies

> An ecosystem can’t be parsed with traditional RE tools

Wednesday, December 7, 11



You can’t always trust declared 
dependencies

> An ecosystem can’t be parsed with traditional RE tools
—too large

Wednesday, December 7, 11



You can’t always trust declared 
dependencies

> An ecosystem can’t be parsed with traditional RE tools
—too large
—some projects don’t compile

Wednesday, December 7, 11



You can’t always trust declared 
dependencies

> An ecosystem can’t be parsed with traditional RE tools
—too large
—some projects don’t compile

> One needs to recover the big picture from the fragments

Wednesday, December 7, 11



You can’t always trust declared 
dependencies

> An ecosystem can’t be parsed with traditional RE tools
—too large
—some projects don’t compile

> One needs to recover the big picture from the fragments
> The larger the index, the better the results

Wednesday, December 7, 11



You can’t always trust declared 
dependencies

> An ecosystem can’t be parsed with traditional RE tools
—too large
—some projects don’t compile

> One needs to recover the big picture from the fragments
> The larger the index, the better the results

Wednesday, December 7, 11



You can’t always trust declared 
dependencies

> An ecosystem can’t be parsed with traditional RE tools
—too large
—some projects don’t compile

> One needs to recover the big picture from the fragments
> The larger the index, the better the results

> Duplication between projects introduces noise

Wednesday, December 7, 11



You can’t always trust declared 
dependencies

> An ecosystem can’t be parsed with traditional RE tools
—too large
—some projects don’t compile

> One needs to recover the big picture from the fragments
> The larger the index, the better the results

> Duplication between projects introduces noise
—How often does duplication happen?

Wednesday, December 7, 11



You can’t always trust declared 
dependencies

> An ecosystem can’t be parsed with traditional RE tools
—too large
—some projects don’t compile

> One needs to recover the big picture from the fragments
> The larger the index, the better the results

> Duplication between projects introduces noise
—How often does duplication happen?
—How to scale duplication analysis to large ecosystems?

Wednesday, December 7, 11



Roadmap

> Software Ecosystems
> Reverse Engineering Software Ecosystems
> Dependency Analysis
> API Evolution
> And more...

Wednesday, December 7, 11



> Robbes & Lungu, ’11

> Problems
– How do you detect ripple 

effects?
– How often do ripple effects 

happen? 
– How bad is it when they do?

> Context
—The study of Dig which 

shows that 90% of breaking 
changes are refactorings

Ripple Effects in Software Ecosystems

Wednesday, December 7, 11



When you don’t know your clients...

Seaside User: I noticed that the Seaside 
2.6 dialog classes listed below are not in 
Seaside 2.8a1.390. [...] I am wondering if 
these classes have been dropped, have 
not been ported to 2.8 or does their 
functionality exists elsewhere?

Seaside Developer: They have been 
dropped. A mail went out to this list if 
anybody still used them and nobody 
replied. [...] Personally I don’t know of 
any application that uses these dialogs.

Wednesday, December 7, 11



July 2009: Method packagedIn is deprecated and 
the suggested replacement is parentPackage

a

d

c

b

DecNovOctSeptAugJul

remove

add

old 

new ripple
revert

other

Ripple Effects

> A ripple effect is a change 
to a software system’s 
API which propagates to 
other systems

> Example: the renaming of 
packagedIn

Wednesday, December 7, 11



July 2009: Method packagedIn is deprecated and 
the suggested replacement is parentPackage

a

d

c

b

DecNovOctSeptAugJul

remove

add

old 

new ripple
revert

other

Wednesday, December 7, 11



July 2009: Method packagedIn is deprecated and 
the suggested replacement is parentPackage

a

d

c

b

DecNovOctSeptAugJul

remove

add

old 

new ripple
revert

other

Wednesday, December 7, 11



The Ecco-Evol Meta-Model

> Lightweight
> Extensible
> At the project level it models 

only the differences between 
versions

Added

Removed 

RequiredProvided

...System 
History

Ve
rs

io
n 

1

Ve
rs

io
n 

2

Ve
rs

io
n 

i

Ve
rs

io
n 

n

...

Version i

Wednesday, December 7, 11



Results from Analyzing SqueakSource

Wednesday, December 7, 11



Results from Analyzing SqueakSource

1. Ripples can have a very large impact on the ecosystem (in terms of projects or 
developers that are impacted by the change).

Wednesday, December 7, 11



Results from Analyzing SqueakSource

1. Ripples can have a very large impact on the ecosystem (in terms of projects or 
developers that are impacted by the change).

2. Ripples can appear long after the original change is introduced (more than three 
months).

Wednesday, December 7, 11



Results from Analyzing SqueakSource

1. Ripples can have a very large impact on the ecosystem (in terms of projects or 
developers that are impacted by the change).

2. Ripples can appear long after the original change is introduced (more than three 
months).

3. Parts of the system can remain in an inconsistent state for a long time (the 
changes do not propagate at once in the entire dependent system).

Wednesday, December 7, 11



Results from Analyzing SqueakSource

1. Ripples can have a very large impact on the ecosystem (in terms of projects or 
developers that are impacted by the change).

2. Ripples can appear long after the original change is introduced (more than three 
months).

3. Parts of the system can remain in an inconsistent state for a long time (the 
changes do not propagate at once in the entire dependent system).

4. Ripples can be active over very long periods of time in which various projects 
adapt to the new API.

Wednesday, December 7, 11



Results from Analyzing SqueakSource

1. Ripples can have a very large impact on the ecosystem (in terms of projects or 
developers that are impacted by the change).

2. Ripples can appear long after the original change is introduced (more than three 
months).

3. Parts of the system can remain in an inconsistent state for a long time (the 
changes do not propagate at once in the entire dependent system).

4. Ripples can be active over very long periods of time in which various projects 
adapt to the new API.

Wednesday, December 7, 11



Results from Analyzing SqueakSource

1. Ripples can have a very large impact on the ecosystem (in terms of projects or 
developers that are impacted by the change).

2. Ripples can appear long after the original change is introduced (more than three 
months).

3. Parts of the system can remain in an inconsistent state for a long time (the 
changes do not propagate at once in the entire dependent system).

4. Ripples can be active over very long periods of time in which various projects 
adapt to the new API.

6. Replacements for a deprecated method can be revealed through ecosystem analysis 
for replacements performed for that method.

Wednesday, December 7, 11



Results from Analyzing SqueakSource

1. Ripples can have a very large impact on the ecosystem (in terms of projects or 
developers that are impacted by the change).

2. Ripples can appear long after the original change is introduced (more than three 
months).

3. Parts of the system can remain in an inconsistent state for a long time (the 
changes do not propagate at once in the entire dependent system).

4. Ripples can be active over very long periods of time in which various projects 
adapt to the new API.

6. Replacements for a deprecated method can be revealed through ecosystem analysis 
for replacements performed for that method.

7. Often systems remain dependent on deprecated methods. Some are dead and 
some remain dependent on older versions of the required system.

Wednesday, December 7, 11



Results from Analyzing SqueakSource

1. Ripples can have a very large impact on the ecosystem (in terms of projects or 
developers that are impacted by the change).

2. Ripples can appear long after the original change is introduced (more than three 
months).

3. Parts of the system can remain in an inconsistent state for a long time (the 
changes do not propagate at once in the entire dependent system).

4. Ripples can be active over very long periods of time in which various projects 
adapt to the new API.

6. Replacements for a deprecated method can be revealed through ecosystem analysis 
for replacements performed for that method.

7. Often systems remain dependent on deprecated methods. Some are dead and 
some remain dependent on older versions of the required system.

8. Developers defensively deprecate a large number of methods that are never used 
outside their project.

Wednesday, December 7, 11



Mining Framework Usage Changes from 
Instantiation Code

> Schaeffer et al., ’08

> Goal
– Suggest changes to support 

evolution based on the changes of 
the early adopters

> Context
—Ripple effects break the clients
—Other approaches look at the 

evolution of the framework itself 
[Dagenais & Robillard]

Wednesday, December 7, 11



Overview

> Framework Instantiations 
= other systems that use 
the framework

> Extract rules that show 
how to adapt to framework 
evolution

> Steps
1. Fact Extraction
2. Creating Transactions
3. Extracting Rules

Calls to method 
Plugin.shutdown() 
are replaced to calls 
to method 
Plugin.stop()

Example rule: 

Wednesday, December 7, 11



Fact Extraction

> Facts are groupFacts for a given class “T” 
—Extends: FT
—Implements: FT
—Overrides: FT.m()
—Instantiates: FT
—Calls: FT.m()
—Accesses: FT.

> T inherits facts from superclasses

Wednesday, December 7, 11



Creating Transactions

> Straightforward approach: 
— one transaction per instantiation 

class

> Actual approach: 
1. partitioning the usage based on 

contexts
– class declaration
– each method
– allows a more focused 

analysis
– facts extracted from m1 in 

v1 are not relevant to facts 
in n2 in v2

– example: c1.a() -> F4.z()

Wednesday, December 7, 11



Actual Approach (cont’d)

2.Taking change patterns 
into consideration

3.Removing unchanged 
usages

Wednesday, December 7, 11



Pattern Extraction

> Minimum confidence
—how often the two items appear together

> Minimum support
—how often if the antecedent is in also the consequence is in 

> Consider only patterns that have one antecedent and one 
consequence

Wednesday, December 7, 11



Evaluation

> 3/4 changes caused by 
refactorings

> 1/4 changes not caused 
by refactorings

> 39 false positives

Wednesday, December 7, 11



Discussion

> Assumptions
—Users of the framework that have adapted should already exist
—Transactions can be built for program elements that exist in both 

the versions
—Usage changes are limited to one antecedent one consequence

> Threats to validity
—External validity = do the results generalize?
—Internal validity = is the analysis correct?

– e.g. evaluator bias

Wednesday, December 7, 11



Roadmap

> Software Ecosystems
> Reverse Engineering Software Ecosystems
> Dependency Analysis
> API Evolution
> And more...

Wednesday, December 7, 11



Clone Detection

> Problems
—Licensing information
—Origin analysis

> Types of clones
—Type 1: identical code fragments with the exception of whitespace 

and comments 
—Type 2: syntactically identical fragments except for variations in 

identifiers, literals, whitespace, and comments
—Type 3: copied fragments with further modifications such as 

changed, added, or removed statements, in addition to variations in 
identifiers, literals, whitespace, and comments.

Wednesday, December 7, 11



Clone Detection

> Ossher et al. 2011
—Analyze large corpus of Java systems from Sourcerer DB
—Evaluate different techniques for detecting clones 

– Exact copies: computing the hash
– Name equivalence: comparing FQNs
– Name fingerprints: comparing names of the structural entities inside a class
– Combined: combining the previous approaches

Wednesday, December 7, 11



Developer needs in the ecosystem

> Begel et al. ’10
> Survey information needs in 

Microsoft
1. Find the relevant engineers for a 

feature
2. Find an expert on a given feature
3. Find all the resources related to a 

given feature, API, product
4. Find why a recent change was 

made
5. Being notified that a recent change 

affects an engineer’s work
6. Finding who might be affected by a 

given change to code/API

> Codebook - social network

Wednesday, December 7, 11



Mining Trends in Library Usage

> Mileva et al., 2009

> Assumption: Popularity of 
libraries might be a good 
indicator of their quality

> Case Study
—Apache Ecosystem (250 

projects)
—Maven-based dependencies

Wednesday, December 7, 11



Mining Trends in Library Usage (contd.)

> Assumption: Switching 
back from a library 
version might be a good 
indicator of quality

Wednesday, December 7, 11



Learning how programmers use 
language features

> Callau et al. ’11

> Study the usage of 
reflection in 
SqueakSource
—safe vs. unsafe usages
—dynamic features are not 

used often
—dynamic features are used 

in specific kinds of projects

Wednesday, December 7, 11



What you should know!

> What is an ecosystem
> What is the relationship between an ecosystem and a 

super-repository
> What are ripple effects
> What are some of the problems associated with analyzing 

a software ecosystem
> The Ecco-Evol meta-model

54

Wednesday, December 7, 11



Can you answer these questions?

> Discuss an approach for detecting inter-project 
dependencies in a software ecosystem. What are some 
of the problems and limitations?

> How can the information in an ecosystem support a 
client’s migration from one version of a library to another 
one? 

> What’s the difference between the Ecco-Evol and 
FAMIX?

> Can you describe an approach for mining library usage 
from the ecosystem?

> What would be your approach to detecting clones in a 
large software ecosystem?

55

Wednesday, December 7, 11



Further Reading

> Recommending Adaptive Changes for Framework Evolution, Dagenais & Robillard, 2008
> Reverse Engineering Software Ecosystems, Lungu, 2009
> Codebook: Discovering and Exploiting Relationships in Software Repositories, Begel et al. 

2010
> How Developers Use the Dynamic Features of Programming Languages, Calau et al. 2011
> Mining Trends in Library Usage, Mileva et al. 2009

> http://scg.unibe.ch/scgbib?query=sde-ecosystems

56

Wednesday, December 7, 11

http://scg.unibe.ch/scgbib?_k=XYPjE-Bp&query=sde-ecosystems&sortBy=year
http://scg.unibe.ch/scgbib?_k=XYPjE-Bp&query=sde-ecosystems&sortBy=year


http://creativecommons.org/licenses/by-sa/2.5/

Attribution-ShareAlike 2.5
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or 
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the 
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

Wednesday, December 7, 11

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

