Software Design and Evolution, December 7, 2011

Wednesday, December 7, 11

Software is Data...

> Data that you analyze
> Data that you measure

> Data that evolves and
can be mined

> Executable data
> ... big data

Wednesday, December 7, 11

Roadmap

=

Software Ecosystems

Reverse Engineering Software Ecosystems
Dependency Analysis

API| Evolution

And more...

vV V. V V V

Wednesday, December 7, 11

Main Materials

Recovering Inter-Project Dependencies in Software Ecosystems, Lungu & Robbes, 2010
Automated Dependency Resolution for Open Source Software, Ossher et al., 2010

A Study of Ripple Effects in Software Ecosystems, Robbes & Lungu, 2011

Mining Framework Usage Changes from Instantiation code, Schaeffer et al. 2008

vV V V V V

File Cloning in Open Source Systems: The Good, The Bad and The Ugly, Ossher et al. 2011

Wednesday, December 7, 11

Roadmap

=

Software Ecosystems

Reverse Engineering Software Ecosystems
Dependency Analysis

API| Evolution

And more...

vV V. V V V

Wednesday, December 7, 11

Ecosystem

Architecture

Design
Code

Wednesday, December 7, 11

The ecosystems is an abstraction level for
software that is above the architecture

Ecosystem
/ Design \
/ Code \

Wednesday, December 7, 11

Definition

> A software ecosystem is a
collection of software systems ' Reverse Engineering

which are developed and which Software Ecosystems
co-evolve together in the same

environment.

[Lungu ’09]

Wednesday, December 7, 11

An environment can be many things

Wednesday, December 7, 11

An environment can be many things

> An open source community

Wednesday, December 7, 11

An environment can be many things

> An open source community
— Apache Software Foundation, The Gnome Project

Wednesday, December 7, 11

An environment can be many things

> An open source community
— Apache Software Foundation, The Gnome Project
> A company

Wednesday, December 7, 11

An environment can be many things

> An open source community

— Apache Software Foundation, The Gnome Project
> A company

— <your large company here>

Wednesday, December 7, 11

An environment can be many things

> An open source community

— Apache Software Foundation, The Gnome Project
> A company

— <your large company here>
> An academic institution

Wednesday, December 7, 11

An environment can be many things

> An open source community

— Apache Software Foundation, The Gnome Project
> A company

— <your large company here>
> An academic institution

— The SCG Research Group

Wednesday, December 7, 11

An environment can be many things

> An open source community

— Apache Software Foundation, The Gnome Project
> A company

— <your large company here>
> An academic institution

— The SCG Research Group

> A programming language

Wednesday, December 7, 11

An environment can be many things

> An open source community
— Apache Software Foundation, The Gnome Project
> A company
— <your large company here>
> An academic institution
— The SCG Research Group
> A programming language
— All the software written in Perl, Smalltalk, etc.

Wednesday, December 7, 11

An environment can be many things

> An open source community
— Apache Software Foundation, The Gnome Project
> A company
— <your large company here>
> An academic institution
— The SCG Research Group
> A programming language
— All the software written in Perl, Smalltalk, etc.
> A technology/platform

Wednesday, December 7, 11

An environment can be many things

> An open source community
— Apache Software Foundation, The Gnome Project
> A company
— <your large company here>
> An academic institution
— The SCG Research Group
> A programming language
— All the software written in Perl, Smalltalk, etc.
> A technology/platform
— Eclipse

Wednesday, December 7, 11

An Example: The Evolution of Ghome

Wednesday, December 7, 11

An Example: The Evolution of Ghome

998 999 Y600

[Introduction }

Wednesday, December 7, 11

An Example: The Evolution of Ghome

998 999 Y600

[Introduction }[Growth }

Wednesday, December 7, 11

An Example: The Evolution of Ghome

NEWITE

Wednesday, December 7, 11

An Example: The Evolution of Ghome

NEWITE

[Introduction }[Growth }[Maturity }

Wednesday, December 7, 11

Size Evolution - Ghome

gtkhtml
gnome-applets
gedit

nautilus

evolution-data-server
epiphany

ekiga

evolution

gnome-utils
gnome-desktiop
gnome-icon-theme
gnome-control-center
gdm

A,
g
> >
e < —
s e -

. —— - .
- | III I I
T J—— gy
. ——— o i

P g -~ e ——
... -w

i i o
- - - ——

'{%}7'11'.'!{ 1.1\'“. .',"a'l"llz'tnx')"lh'ﬁli.' %5‘1’.’!”%5(!!33‘IMHWT%EW'W (1] ”””266}7mm'2b0“ 'g.'l

31045

15522

7761

Wednesday, December 7, 11

Super-Repositories

Wednesday, December 7, 11

Super-Repositories

> A super-repository is the collection of all the versioning control
repositories for the systems that are part of an ecosystem

Wednesday, December 7, 11

Super-Repositories

> A super-repository is the collection of all the versioning control
repositories for the systems that are part of an ecosystem

Wednesday, December 7, 11

Super-Repositories

> A super-repository is the collection of all the versioning control
repositories for the systems that are part of an ecosystem

> Related with a software ecosystem

Wednesday, December 7, 11

Super-Repositories
> A super-repository is the collection of all the versioning control
repositories for the systems that are part of an ecosystem

> Related with a software ecosystem
— 1-to-1

Wednesday, December 7, 11

Super-Repositories

> A super-repository is the collection of all the versioning control
repositories for the systems that are part of an ecosystem

> Related with a software ecosystem
— 1-to-1
— 1-to-many

Wednesday, December 7, 11

Super-Repositories

> A super-repository is the collection of all the versioning control
repositories for the systems that are part of an ecosystem

> Related with a software ecosystem
— 1-to-1
— 1-to-many

Wednesday, December 7, 11

Super-Repositories

> A super-repository is the collection of all the versioning control
repositories for the systems that are part of an ecosystem

> Related with a software ecosystem
— 1-to-1

— 1-to-many

> Two types

Wednesday, December 7, 11

Super-Repositories

> A super-repository is the collection of all the versioning control
repositories for the systems that are part of an ecosystem

> Related with a software ecosystem
— 1-to-1
— 1-to-many

> Two types
— Language-based

Wednesday, December 7, 11

Super-Repositories

> A super-repository is the collection of all the versioning control
repositories for the systems that are part of an ecosystem

> Related with a software ecosystem
— 1-to-1
— 1-to-many

> Two types

— Language-based
— SqueakSource, RubyForge, CPAN

Wednesday, December 7, 11

Super-Repositories

> A super-repository is the collection of all the versioning control
repositories for the systems that are part of an ecosystem

> Related with a software ecosystem
— 1-to-1
— 1-to-many

> Two types

— Language-based
— SqueakSource, RubyForge, CPAN
— Language-Agnostic

Wednesday, December 7, 11

Super-Repositories

> A super-repository is the collection of all the versioning control
repositories for the systems that are part of an ecosystem

> Related with a software ecosystem
— 1-to-1
— 1-to-many

> Two types
— Language-based
— SqueakSource, RubyForge, CPAN
— Language-Agnostic
— @GitHub, SourceForge, <your company'’s folder with svn repos>

Wednesday, December 7, 11

Similar Concepts

Wednesday, December 7, 11

Similar Concepts

> Product families
— Several systems that are very similar
— Core architecture with variations

Wednesday, December 7, 11

Similar Concepts

> Product families
— Several systems that are very similar
— Core architecture with variations

> Business ecosystems

— a set of businesses functioning as a unit and interacting with a
shared market for software and services (Szyperski, 2003)

— not interesting for us

Wednesday, December 7, 11

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software
http://en.wiktionary.org/wiki/service
http://en.wiktionary.org/wiki/service

Similar Concepts

> Product families
— Several systems that are very similar
— Core architecture with variations

> Business ecosystems

— a set of businesses functioning as a unit and interacting with a
shared market for software and services (Szyperski, 2003)

— not interesting for us
> Individual systems ...
—if we look at the code level it might be the same thing

—two “p”’s are different

— properties
— problems

Wednesday, December 7, 11

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software
http://en.wiktionary.org/wiki/service
http://en.wiktionary.org/wiki/service

Roadmap

Software Ecosystems

Reverse Engineering Software Ecosystems
Dependency Analysis

API Evolution

And more...

vV V. V V V

Wednesday, December 7, 11

RevEngE: An approach to understanding
an ecosystem

> Lungu 09

> Goal: Understanding the
ecosystem as a whole and
the component systems in
context

Wednesday, December 7, 11

Approach

> (@Goal: Recover ecosystem viewpoints

> An ecosystem viewpoint - is a perspective on an ecosystem
that presents a specific aspect of the ecosystem in order to
support one or more concerns about the ecosystem.

Wednesday, December 7, 11

Ecosystem Viewpoints

Wednesday, December 7, 11

Ecosystem Viewpoints

-

Developer
Timelines

e N [B\
Activity Size
Evolution Evolution

N VAN Y,

e , p\
Project
Dependency
X Map y
e , p\

g .) Project

Project Dependenc
Architecture P . y
X y Matrix

.

\

J

g Developer
Activity

History

\

4)

Developer
Collaboration

- J

s A
Developer

Expertise
\ J

Wednesday, December 7, 11

Ecosystem Viewpoints

Systems

Activity Size
Evolution Evolution

Project
Dependency
Map

Project
Dependency
Matrix

Project
Architecture

-

Developer
Timelines

o

\

J

g Developer
Activity

History

\

4)

Developer
Collaboration

-)

4)

Developer
Expertise

-)

Wednesday, December 7, 11

Ecosystem Viewpoints

Systems

Activity Size
Evolution Evolution

Project
Dependency
Map

Project
Dependency
Matrix

Project
Architecture

Developers

Developer
Timelines

Developer
Collaboration

Developer
Activity
History

Developer
Expertise

Wednesday, December 7, 11

Ecosystem Viewpoints

Systems Developers

Size
Evolution

Activity
Evolution

Holistic

(ecosystem is Project

the subject) Dependency
Map

Developer
Timelines

Developer
Collaboration

Project
Dependency
Matrix

Developer
Activity
History

Project
Architecture

Developer
Expertise

Wednesday, December 7, 11

Ecosystem Viewpoints

Holistic

(ecosystem is
the subject)

Focused

(ecosystem is
the context)

Systems

Activity Size
Evolution Evolution

Project
Dependency
Map

Project
Dependency
Matrix

Project
Architecture

Developers

Developer
Timelines

Developer
Collaboration

Developer
Activity
History

Developer
Expertise

Wednesday, December 7, 11

Developer Collaboration Viewpoint

vogel marco
: | bunge
beruss | | mooser damas buchli
walence)
‘ wysseier | | fpluquet
wampfiar rothlisberger ‘ smichael
aknight
———| seederger
buehier bergel cambeos 9 |r
» voINescy
_\ Lo renggli
A\ > }
ichhast \
e \ o -
\ / Jecenssy bulckaen
! :
stetler lanza | ezt
oscar | \'v\
| \ . wemel
! T —
} balint
frey
rk— | Gucasse greevy 3
o wuyts hatssener ||
junker
. lienharg " |
— ratiu
jchand - iocher J (R
huget robbes |
loewis ungu verjus arevalo kobel mbany 2y

SCG 2007

Marco aknight| |chronos| |PackageBot
_| Adriaan Eric
georges
COrges
Temry Cees
tom
Christiaan [t

Soops 2007

Wednesday, December 7, 11

Inter-Project Dependencies Viewpoint

SCG 2007

Wednesday, December 7, 11

System Architecture in an Ecosystem
Context

MooseSmalitalkImporters
MooseFAMIXModel
\
,,1&
- "ar ‘i
MooseF AMIXExtensions \
\
\
"\
\
MooscGenencSourcelmportes
MooscCore
MooseConformutyStrategies
MooseUl soseHism
MooseU lExtensions foos MooscHismo
LANModel

Moose 2007

Wednesday, December 7, 11

System Architecture in an Ecosystem
Context

!, —
LS 3
MooseSmalltalkImporters

MooseFAMIXModel

/
/
/

s/

MooseF AMIXExtensions /

/ A

V4

MooseCore

MooseGenencSourcelmportes

MooseConformityStrategies

o —
'

|

MooseUIExtensions MooseUl MooseHismo

LANModel

Moose 2007

Wednesday, December 7, 11

System Architecture in an Ecosystem

Context

MooseFAMIXModel

MooseFAMIXExtensions \

MooseCore

MooseConformutyStrategies

g MooseU!
MooseUExtensions foosel

LANModel

Moose 2007

MooseSmalitalkImporters

MooscGenencSourcelmportes

MooscHismo

Wednesday, December 7, 11

System Architecture in an Ecosystem
Context

!, —
LS 3
MooseSmalltalkImporters

MooseFAMIXModel

/
/
/

s/

MooseF AMIXExtensions /

/ A

V4

MooseCore

MooseGenencSourcelmportes

MooseConformityStrategies

o —
'

|

MooseUIExtensions MooseUl MooseHismo

LANModel

Moose 2007

Wednesday, December 7, 11

Open Questions

> How do you extract dependencies if they are not explicit?
> |f they are explicit, how do you extract the details?

> (Can the ecosystem provide information useful for choosing between
two alternative libraries?

Wednesday, December 7, 11

Roadmap

=

Software Ecosystems

Reverse Engineering Software Ecosystems
Dependency Analysis

API| Evolution

And more...

vV V. V V V

Wednesday, December 7, 11

Recovering inter-project dependencies
in Software Ecosystems

> Lungu & Robbes, 2010

> Goal

— Evaluate techniques for : NV
automatic dependency : SEER
resolution g ML

> Context
—dynamic language analysis

— unreliable declared
dependencies

Wednesday, December 7, 11

The Ecco Meta-Model

> A meta-model for
software ecosystems
— lightweight
—required entities
— uniquely provided entities

Ecosystem

Projects: Set

Dependency
Extraction Strategy

Dependencies: Set

/

Project

Calls: Set
Defines: Set

Requires:Set = Calls -
Defines

Dependency

Client: Project
Provider: Project
Elements: Set

Figure 1: The Ecco metamodel

Wednesday, December 7, 11

Strategies for dependency detection

based on Ecco

> Case Study: The Squeak 3.10
Universe

— Declared dependencies used
as oracle

— Qver 200 projects

> Approaches based on Class
names are simple and
performant

> False positives: 12/17 were
actually true positives.

— You can't trust declared
dependencies.

Precision| Recall| F-Measure
Unique Method
Invocations 0.19) 0.59 0.29
Unique Class
References 0.80| 0.71 0.75
Weighted
Dependencies 0.85| 0.70 0.77
Combined
Method and Class 0.85| 0.70 0.77
References

Wednesday, December 7, 11

Strategies for dependency detection

based on Ecco

> Case Study: The Squeak 3.10
Universe

— Declared dependencies used
as oracle

— Qver 200 projects

> Approaches based on Class
names are simple and
performant

> False positives: 12/17 were
actually true positives.

— You can't trust declared
dependencies.

Precision| Recall| F-Measure
Unique Method
Invocations 0.19) 0.59 0.29
Unique Class
References 0.80| 0.71 0.75
Weighted
Dependencies 0.85| 0.70 0.77
Combined
Method and Class 0.85| 0.70 0.77
References

Lack of perfect recall is due to the
incompleteness of the ecosystem

Wednesday, December 7, 11

Automated Dependency Resolution for
Open Source Software

> Ossher et al. 2010

> Goal

— automatically resolve the
dependencies so projects can
be compiled

> Steps of the approach
1. Build artifact repository
2. Detect missing types
3. Resolution algorithm

Wednesday, December 7, 11

Build Artifact Repository

> Case Study: Apache
Maven

— Specifies component
dependencies

> |ndex of defined entities
for every project
— classes, interfaces
— packages
— enums

> Observation: Large
amounts of duplication

General Stats Count

Jar Files 10,725

Non-Empty Jar Files 9,707

Jar Files With Source 5,368

Class Files 771,458

Entity Breakdown Count Unique Count
Packages 78,950 43,199
Classes 774,937 433,237
Enums 6,877 4662
Interfaces 143,754 78,945
Annotations 6,848 2,627
Fields 3,323,417 1,777,234

Wednesday, December 7, 11

Detecting Missing Types

> Restricted to I package example:
— import statements 3 import foo.Single;
— missina FQN 4 import bar.x;
g 5 import baz.Baz.x*;
6
7 public class Example {
> FAMIX models stub 8 public Single a;
‘e . 9 public OnDemand b;
entltles — entltles that 10 public foo.OnDemand G
were not found while ot

parsing
~ FAMIXInvocation#isStub

Wednesday, December 7, 11

Resolution Algorithm

repeat

- always pick the
candidate that provides

> Starts with a list of FQN the most missing types
reported by the parser - discount the

> Uses a greedy apprOaCh artifacts provided by

the selected candidates

until a solution is found or
there are no more candidates

Wednesday, December 7, 11

Case Study

SOURCERER MANAGED REPOSITORY GENERAL STATISTICS

General Stats Count Non-Empty Disk Space
Projects 18,922 13,241 257.8GB
> Sourcerer DB Project Jar Files 47,864 40,388 18.5GB
Maven Jar Files 55,135 51,293 21.5GB
Latest Maven Jars 10,725 9,707 4.1GB
> 20% of the projects do
not need external
Condition Unique (%) Cumulative (%)
COmponentS No External Artifacts 2,608 (20%) 2,608 (20%)
o) : Project Included Artifacts 2,578 (19%) 5,186 (39%)
> 19/ © Can_ be COmF_)”ed_ Resolution Algorithm 3,904 (29%) 9,090 (69%)
with the included jar fileS Remainder 4,151 31%) 13,241 (100%)

> 61% do not compile

Wednesday, December 7, 11

You can’t always trust declared
dependencies

Wednesday, December 7, 11

You can’t always trust declared
dependencies

> An ecosystem can’t be parsed with traditional RE tools

Wednesday, December 7, 11

You can’t always trust declared
dependencies

> An ecosystem can’t be parsed with traditional RE tools
—too large

Wednesday, December 7, 11

You can’t always trust declared
dependencies

> An ecosystem can’t be parsed with traditional RE tools
—too large
— some projects don’t compile

Wednesday, December 7, 11

You can’t always trust declared
dependencies

> An ecosystem can’t be parsed with traditional RE tools
—too large
— some projects don’t compile

> One needs to recover the big picture from the fragments

Wednesday, December 7, 11

You can’t always trust declared
dependencies

> An ecosystem can’t be parsed with traditional RE tools
—too large
— some projects don’t compile
> One needs to recover the big picture from the fragments
> The larger the index, the better the results

Wednesday, December 7, 11

You can’t always trust declared
dependencies

> An ecosystem can’t be parsed with traditional RE tools
—too large
— some projects don’t compile
> One needs to recover the big picture from the fragments
> The larger the index, the better the results

Wednesday, December 7, 11

You can’t always trust declared
dependencies

> An ecosystem can’t be parsed with traditional RE tools
—too large
— some projects don’t compile
> One needs to recover the big picture from the fragments
> The larger the index, the better the results

> Duplication between projects introduces noise

Wednesday, December 7, 11

You can’t always trust declared
dependencies

> An ecosystem can’t be parsed with traditional RE tools
—too large
— some projects don’t compile
> One needs to recover the big picture from the fragments
> The larger the index, the better the results

> Duplication between projects introduces noise
— How often does duplication happen?

Wednesday, December 7, 11

You can’t always trust declared
dependencies

> An ecosystem can’t be parsed with traditional RE tools
—too large
— some projects don’t compile
> One needs to recover the big picture from the fragments
> The larger the index, the better the results

> Duplication between projects introduces noise
— How often does duplication happen?
— How to scale duplication analysis to large ecosystems?

Wednesday, December 7, 11

Roadmap

=

Software Ecosystems

Reverse Engineering Software Ecosystems
Dependency Analysis

API Evolution

And more...

vV V. V V V

Wednesday, December 7, 11

Ripple Effects in Software Ecosystems

> Robbes & Lungu, 11

> Problems

— How do you detect ripple
effects?

— How often do ripple effects
happen?
— How bad is it when they do?

> Context

— The study of Dig which
shows that 90% of breaking
changes are refactorings

Wednesday, December 7, 11

When you don’t know your clients...

Seaside User: | noticed that the Seaside
2.6 dialog classes listed below are not in
Seaside 2.8a1.390. [...] | am wondering if
these classes have been dropped, have
not been ported to 2.8 or does their
functionality exists elsewhere?

Seaside Developer: They have been
dropped. A mail went out to this list if
anybody still used them and nobody
replied. [...] Personally | don’t know of
any application that uses these dialogs.

Wednesday, December 7, 11

Ripple Effects

July 2009: Method packagedIn is deprecated and
the suggested replacement is parentPackage

> Aripple effect is a change
to a software system’s
APl which propagates to
other systems

> Example: the renaming of
packagedIn

oooooooooooooooo

« 3]
..................
Jul Aug Sept Oct N D
new . add 3 rippl
1] S
remo
old 3 oth

Wednesday, December 7, 11

July 2009: Method packagedIn Is deprecated and
the suggested replacement is parentPackage

v

Famix-Core

I

(=] =]

Moose-ModelTest

Famix-LANTests

MooseKGB-TestFamix3

Wednesday, December 7, 11

Moose-ModelTest

. L

— o

Famix-LANTests

/_.u-.\
n'-—_u_g_n o} o | oo o E} o
MooseKGB-TestFamix3
_--ﬂ—lp—ﬂ—l-—ﬂ OO—Eo—4—E 0—0 o— ﬂﬂ—@—ﬂ—ﬂﬂ
-ﬂ}-\‘nl'

Famix-Extensions

41

“4EEI=@=——@—=@—=—=J4 -

DSMCore

e [L
“wirm o = oo -

Wednesday, December 7, 11

The Ecco-Evol Meta-Model

> Lightweight
> Extensible

> At the project level it models
only the differences between
versions

System
History

Added

Removed

Version n

~— QA . —
C c -
e o Q
@ @ P
[0) [0) %
> > >
Version |

Provided Required

Wednesday, December 7, 11

Results from Analyzing SqueakSource

Wednesday, December 7, 11

Results from Analyzing SqueakSource

1. Ripples can have a very large impact on the ecosystem (in terms of projects or
developers that are impacted by the change).

Wednesday, December 7, 11

Results from Analyzing SqueakSource

1. Ripples can have a very large impact on the ecosystem (in terms of projects or
developers that are impacted by the change).

2. Ripples can appear long after the original change is introduced (more than three
months).

Wednesday, December 7, 11

Results from Analyzing SqueakSource

1. Ripples can have a very large impact on the ecosystem (in terms of projects or
developers that are impacted by the change).

2. Ripples can appear long after the original change is introduced (more than three
months).

3. Parts of the system can remain in an inconsistent state for a long time (the
changes do not propagate at once in the entire dependent system).

Wednesday, December 7, 11

Results from Analyzing SqueakSource

1. Ripples can have a very large impact on the ecosystem (in terms of projects or
developers that are impacted by the change).

2. Ripples can appear long after the original change is introduced (more than three
months).

3. Parts of the system can remain in an inconsistent state for a long time (the
changes do not propagate at once in the entire dependent system).

4. Ripples can be active over very long periods of time in which various projects
adapt to the new API.

Wednesday, December 7, 11

Results from Analyzing SqueakSource

1. Ripples can have a very large impact on the ecosystem (in terms of projects or
developers that are impacted by the change).

2. Ripples can appear long after the original change is introduced (more than three
months).

3. Parts of the system can remain in an inconsistent state for a long time (the
changes do not propagate at once in the entire dependent system).

4. Ripples can be active over very long periods of time in which various projects
adapt to the new API.

Wednesday, December 7, 11

Results from Analyzing SqueakSource

1. Ripples can have a very large impact on the ecosystem (in terms of projects or
developers that are impacted by the change).

2. Ripples can appear long after the original change is introduced (more than three
months).

3. Parts of the system can remain in an inconsistent state for a long time (the
changes do not propagate at once in the entire dependent system).

4. Ripples can be active over very long periods of time in which various projects
adapt to the new API.

6. Replacements for a deprecated method can be revealed through ecosystem analysis
for replacements performed for that method.

Wednesday, December 7, 11

Results from Analyzing SqueakSource

1. Ripples can have a very large impact on the ecosystem (in terms of projects or
developers that are impacted by the change).

2. Ripples can appear long after the original change is introduced (more than three
months).

3. Parts of the system can remain in an inconsistent state for a long time (the
changes do not propagate at once in the entire dependent system).

4. Ripples can be active over very long periods of time in which various projects
adapt to the new API.

6. Replacements for a deprecated method can be revealed through ecosystem analysis
for replacements performed for that method.

7. Often systems remain dependent on deprecated methods. Some are dead and
some remain dependent on older versions of the required system.

Wednesday, December 7, 11

Results from Analyzing SqueakSource

1. Ripples can have a very large impact on the ecosystem (in terms of projects or
developers that are impacted by the change).

2. Ripples can appear long after the original change is introduced (more than three
months).

3. Parts of the system can remain in an inconsistent state for a long time (the
changes do not propagate at once in the entire dependent system).

4. Ripples can be active over very long periods of time in which various projects
adapt to the new API.

6. Replacements for a deprecated method can be revealed through ecosystem analysis
for replacements performed for that method.

7. Often systems remain dependent on deprecated methods. Some are dead and
some remain dependent on older versions of the required system.

8. Developers defensively deprecate a large number of methods that are never used
outside their project.

Wednesday, December 7, 11

Mining Framework Usage Changes from
Instantiation Code

> Schaeffer et al., '08

> Goal

— Suggest changes to support
evolution based on the changes of
the early adopters

> Context
— Ripple effects break the clients

— Other approaches look at the
evolution of the framework itself
[Dagenais & Robillard]

Wednesday, December 7, 11

Overview

> Framework Instantiations
= other systems that use Example rule:

the framework
Calls to method
> Extract rules that show P:"?L"'f:c":: ¢t)wn0"
how to adapt to framework are 1o o
Ut to method
evolution Plugin.stop()
> Steps

1. Fact Extraction
2. Creating Transactions
3. Extracting Rules

Wednesday, December 7, 11

Fact Extraction

> Facts are groupFacts for a given class “T”
— Extends: FT
— Implements: FT
— Overrides: FT.m()
— Instantiates: FT
— Calls: FT.m()
— Accesses: FT.

> T inherits facts from superclasses

Wednesday, December 7, 11

Creating Transactions

> Straightforward approach:

— one transaction per instantiation
class

> Actual approach:

1. partitioning the usage based on
contexts
— class declaration
— each method

— allows a more focused
analysis

— facts extracted from m1 in
v1 are not relevant to facts
In N2 In v2

— example: c1.a() -> F4.z()

}

O O N O bW -

=
o

class C1 extends F1 {
void a() { F3.x(); }
void b() { F3.x(); }
void c() { F3.y(Q); }

class C2 extends F2 {
void a() { F3.y(Q; }
void b() { F5.a();

}

WD N b W

class C1 extends F6 {
void a() { F4.z(); }
void b() { F4.z(); }
void c¢() { F3.y(Q);

F2.a(); }

class C2 extends F2 {
s] wvoid a() { F3.yQ; }

10| wvoid b() { F5.a2();

11 F5.b0); 1} 11 F5.520); }
12| } 12| }
Version 1 Version 2
Class (Line) | Context | Facts V1 | Facts V2
C1 (1) C1 extends:F1 | extends:F6
| C1 (2) Cl.a() calls:F3.x() | calls:F4.z()
C1 (3) Cl.b() calls:F3.x() | calls:F4.z()
C1 (4/5) Cl.c() calls:F3.y() | calls:F3.y()
calls:F2.a()
C2 (8) C2 extends:F2 | extends:F2
C2 (9) C2.a() calls:F3.y() | calls:F3.y()
C2 (10/11) C2.b() calls:F5.a() | calls:F5.a2()
calls:F5.b() | calls:F3.b2()

Table 1: Extracted facts

Wednesday, December 7, 11

Actual Approach (cont’d)

2. Taking change patterns
Into consideration

3. Removing unchanged
usages

Pattern | Antecedent | Consequence

1 extends extends
extends implements
implements extends
implements implements

2 overrides overrides

3 calls calls
calls accesses
accesses accesses
accesses calls

4 instantiates instantiates

5 instantiates calls
calls instantiates

Table 2: Five categories of change patterns

Wednesday, December 7, 11

Pattern Extraction

> Minimum confidence
— how often the two items appear together
> Minimum support
— how often if the antecedent is in also the consequence is in

> (Consider only patterns that have one antecedent and one
consequence

Wednesday, December 7, 11

Evaluation

> 3/4 changes caused by
refactorings

> 1/4 changes not caused
by refactorings

> 39 false positives

Experiment

Eclipse Ul

Struts

JHotDraw

Total

YR | CC | FP | FN Precision
67 | 34| 16 13 86,3 %
47 19 | 11 20 85,7% |
79 9 | 12 2 88,0 %

193 62 | 39 35 86,7 %

Change rule

Vi:accesses:IWorkbenchActionConstants.REBUILD_PROJECT — V2:accesses:IDEActionFactory.REBUILD_PROJECT

Vi:calls:RequestUtils.retrieveUserLocale(PageContext,String) — V2:calls:TagUtils.getUserLocale(PageContext,String)

Vi:calls:MDI_DrawApplication.getDrawingTitle() — V2:calls:Drawing.getTitle()

Vi:overrides:AbstractUIPlugin.shutdown() — V2:overrides:AbstractUIPlugin.stop(BundleContext)

Vi:extends:StatusTextEditor — V2:extends:AbstractDecoratedTextEditor

o e | cof nof =3k

ImageRegistry.get (String) — IconAndMessageDialog.getWarningImage ()

Wednesday, December 7, 11

Discussion

> Assumptions
— Users of the framework that have adapted should already exist

— Transactions can be built for program elements that exist in both
the versions

— Usage changes are limited to one antecedent one consequence
> Threats to validity
— External validity = do the results generalize?

— Internal validity = is the analysis correct?
- e.g. evaluator bias

Wednesday, December 7, 11

Roadmap

=

Software Ecosystems

Reverse Engineering Software Ecosystems
Dependency Analysis

API| Evolution

And more...

vV V. V V V

Wednesday, December 7, 11

Clone Detection

> Problems
— Licensing information
— Origin analysis

> Types of clones

— Type 1: identical code fragments with the exception of whitespace
and comments

— Type 2: syntactically identical fragments except for variations in
identifiers, literals, whitespace, and comments

— Type 3: copied fragments with further modifications such as
changed, added, or removed statements, in addition to variations in
identifiers, literals, whitespace, and comments.

Wednesday, December 7, 11

Clone Detection

> (Ossher et al. 2011
— Analyze large corpus of Java systems from Sourcerer DB
— Evaluate different techniques for detecting clones

Exact copies: computing the hash

Name equivalence: comparing FQNs
Name fingerprints: comparing names of the structural entities inside a class
Combined: combining the previous approaches

Cloning Detection Method

Exact Copies = Name Equivalence

Name Fingerprints Combined

Directory Matching

Total Files 1,860,024 1,860,024 1,860,024 1,860,024 1,860,024
HIGH Confidence Cloned Files 96,664 225,095 259,486 196,424 281,184
HIGH Confidence Cloning Percentage 5.20% 12.10% 13.95% 10.56% 15.12%
MEDIUM Confidence Cloned Files 96,664 262,603 278,698 301,319 309,156
MEDIUM Confidence Cloning Percentage 5.20% 14.12% 14.98% 16.20% 16.62%
LOW Confidence Cloned Files 96,664 273,551 411,932 326,230 319,952
LOW Confidence Cloning Percentage 5.20% 14.70% 22.15% 17.54% 17.20%
TABLE IV

FILE CLONING RATES FOR EACH DETECTION METHOD

Wednesday, December 7, 11

Developer needs Iin the ecosystem

> Begel et al. 10

> Survey information needs in

Microsoft

1. Find the relevant engineers for a
feature

2. Find an expert on a given feature

3. Find all the resources related to a
given feature, API, product

4. Find why a recent change was
made

5. Being notified that a recent change
affects an engineer’s work

6. Finding who might be affected by a
given change to code/API

> Codebook - social network

Wednesday, December 7, 11

Mining Trends in Library Usage

> Mileva et al., 2009

> Assumption: Popularity of N i Y
libraries might be a good
indicator of their quality el

> Case Study J—

— Apache Ecosystem (250 o TT—— LA—— |

. Jan 2007 Apr 2007 Jul 2007 Oct 2007 Jan 2008 Apr 2008 Jul 2008 Oct 2008
projects)

— Maven-based dependencies

Wednesday, December 7, 11

Mining Trends in Library Usage (contd.)

Table 2: Switching back to older library versions for
the period January 2007-January 2009

. . . Library # usages # switched back %

> Assumpthn: SW|tCh|ng junit 3.8.1 1501 0 0%
_ junit 3.8.2 293 1 <1%

back from a library e - L_iox

]] log4.! 1.2.8 269 3 230
version might be a good logdi 125 7 i 5%
indicator of quality it I 110
derby 10.1 147 0 0%

derby 10.2 31 0 0%

Wednesday, December 7, 11

Learning how programmers use
language features

> Callau et al. 11

Instance creation

Class creation

> Study the usage of 0.t e
. . ij. field read
reflection in i
Squeaksource Class removal
Superclass update

— safe vs. unsafe usages s
—dynamic features are not Smallalk reading
Smalltalk writin

used often Smallk alsin

—dynamic features are used
In specific kinds of projects

Wednesday, December 7, 11

What you should know!

> What is an ecosystem

> What is the relationship between an ecosystem and a
super-repository

> What are ripple effects

> What are some of the problems associated with analyzing
a software ecosystem

> The Ecco-Evol meta-model

54

Wednesday, December 7, 11

Can you answer these questions?

> Discuss an approach for detecting inter-project
dependencies in a software ecosystem. What are some
of the problems and limitations?

> How can the information in an ecosystem support a
client’s migration from one version of a library to another
one?

> What’s the difference between the Ecco-Evol and
FAMIX?

> Can you describe an approach for mining library usage
from the ecosystem?

> What would be your approach to detecting clones in a
large software ecosystem?

55

Wednesday, December 7, 11

Further Reading

> Recommending Adaptive Changes for Framework Evolution, Dagenais & Robillard, 2008
> Reverse Engineering Software Ecosystems, Lungu, 2009

> (Godebook: Discovering and Exploiting Relationships in Software Repositories, Begel et al.
2010

> How Developers Use the Dynamic Features of Programming Languages, Calau et al. 2011
> Mining Trends in Library Usage, Mileva et al. 2009

> http://scg.unibe.ch/scgbib?query=sde-ecosystems

56

Wednesday, December 7, 11

http://scg.unibe.ch/scgbib?_k=XYPjE-Bp&query=sde-ecosystems&sortBy=year
http://scg.unibe.ch/scgbib?_k=XYPjE-Bp&query=sde-ecosystems&sortBy=year

@creative
commons

COMMO N S D E E D

Attribution-ShareAlike 2.5
You are free:
to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work

Under the following conditions:
@ Attribution. You must attribute the work in the manner specified by the author or

. licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this work.
Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/

Wednesday, December 7, 11

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

