
SMA: Software Modeling and Analysis
A2020

Prof. Dr. Oscar Nierstrasz
Pascal Gadient, Pooja Rani

Solution
Assignment 12 — 02.12.2020 – v1.0
Fuzz Testing

Please submit this exercise by email to pascal.gadient@inf.unibe.ch before 09. December 2020, 10:15am.

Exercise 1: General questions (6 pts)

a) Explain the term fuzz testing. Answer:

Fuzz testing is an approach to test software automatically by feeding randomized or pattern-based
inputs to a target application. The application under test might crash depending on the generated
input. Such crashes are indicators for code bugs and might cause a vulnerability.

b) Explain the term smart fuzzer. Answer:

Smart fuzzers are armed with knowledge about the expected input format. For instance, a smart
fuzzer knows exactly the structure of a protocol like http or a file format like jpg. As a result, they
can produce valid input with a higher certainty. Moreover, they may simply fuzz parts of the input
to discover crashes in the target program.

c) What is the role of symbolic execution engines in white box fuzzers? Answer:

Unlike traditional dumb fuzzers, symbolic execution tools accurately capture the computation of
each value. In symbolic execution engines, Satisfiability Modulo Theories (SMT) solvers help
to extract data from the source code that afterwards fosters the creation of fuzzed input that can
trigger more complex branches, eventually leading to a better code coverage.

d) Explain one limitation of symbolic execution? Answer:

On paper, symbolic execution can discover inputs for any feasible path in a program but this ability
makes it fairly slow compared to mutation-based fuzzers and impractical in real-world scenarios.
Another limitation can be the fact that loops or recursions create an infinite execution tree.

e) Name three concolic execution engines. Answer:

Savior, Qsym, and Driller.

f) How does concolic execution extend symbolic execution? Answer:

The main distinction is that concolic execution expands symbolic values with concrete values
(therefore the term concolic was used). The concrete values in the starting point of a program
provide a clue for the search heuristics concerning which paths to practice first.

page 1 of 4

mailto:pascal.gadient@inf.unibe.ch

SMA: Software Modeling and Analysis
A2020

Prof. Dr. Oscar Nierstrasz
Pascal Gadient, Pooja Rani

Exercise 2: AFL tool (1 pt)

Answer which of the statements below are correct with respect to the AFL fuzzer. You do not need to
justify or elaborate your answer. Answer:

�3 AFL is a grey box fuzzer.

�3 AFL instruments the source code of the target program to measure code coverage.

�3 AFL also supports the QEMU mode when the source code is unavailable.

� AFL released in 2016 and became an international standard in fuzz testing.

page 2 of 4

SMA: Software Modeling and Analysis
A2020

Prof. Dr. Oscar Nierstrasz
Pascal Gadient, Pooja Rani

Exercise 3: Fuzzing in practice (3 pts)

Preparation: For this exercise, we work with a Debian-based operating system, because all required tools
are already available from its package management system. We already prepared a virtual machine (VM)
for you with all the necessary tools and our compiled VulnerableApp that can be run with VirtualBox.

Please perform the following steps:

1. Download and install the latest version of VirtualBox from here (you can find the relevant down-
loads for popular operating systems labeled as “platform packages”).

2. Download the pre-configured virtual machine (VM) from here.

3. When you start VirtualBox for the first time, it asks whether it should download an extension
package. If you download and install the extension pack you will have better hardware support in
the VMs, e.g., USB3, etc.

4. Import the downloaded VM into VirtualBox (click on the “File” menu, then select “Import Appli-
ance”).

5. In the upcoming assistant you do not have to change any options except specifying the previously
downloaded file for the import.

6. After the import succeeded, you can select the “Lubuntu” VM in the list and click on the large
“Start” button to start the VM.

7. You do not need this information for this exercise, but anyway: the user name is “Playground” and
the password is “1234”.

Your tasks:

a) Create a text file that only contains the term Fuzztesting. Next, parametrize the zzuf fuzzer
with a seed value of 2 and a ratio of 0.01, and pass the content of your text file (e.g., test.txt) to it.

What is the resulting command string, and what is the output message? (2 pts) Answer:

A resulting command string could be
zzuf -s 2 -r 0.01 cat test.txt
and it prints the term “BuzztesTing” to the console.

b) Run the VulnerableApp program from the terminal and enter a single character within the
range a-z or A-Z. Then press the return key on your keyboard to confirm your input. The pro-
gram should return the ASCII code of the character you entered. Now, we want to explore whether
the application crashes from arbitrary input generated by the zzuf fuzzer. Such crashes could be
buffer overflows that frequently enable remote code execution. For that, we are interested in ob-
serving which seeds cause the program to crash. As starting point for the fuzzer’s input generation
we use a text file that only contains the character a. As before, we provide that text file as input for
the fuzzer and then we pipe the output of zzuf into the VulnerableApp. You can achieve piping in
Linux shells with the vertical bar, e.g., ls | wc forwards the console output of ls to the input of

page 3 of 4

https://www.virtualbox.org/wiki/Downloads
https://drive.google.com/file/d/19Cc-R9RhlbQMF38PLlkYsrILgom9C3SM/view?usp=sharing

SMA: Software Modeling and Analysis
A2020

Prof. Dr. Oscar Nierstrasz
Pascal Gadient, Pooja Rani

wc (wc will count the words returned by ls). However, this time we use a different seed (starting
from 20, only integer numbers) and ratio parameter (0.5).

Your task is to find seed values between 20 and 30 where zzuf leads to a crash in VulnerableApp.
(1 pt) Answer:

#!/bin/bash
for i in {20..30}
do

zzuf -s $i -r 0.5 cat char.txt | ./VulnerableApp
done

There exist several seeds that cause the application to crash, e.g., 2, 3, 4, 5, 6, 8, 10, 12, 13,
15, 16, 18, 19, 21, 24, 25, 26, 27, 28, 29, 31, etc.

Exercise 4: Exam preparation (3 pts BONUS)

Please start reviewing the content of this course and ask questions, if any, by mail. The questions will be
discussed during next practical session which will be a Q&A session for the final exam. Deadline for
questions: upcoming Monday, 07/12/2020, 23:59 (midnight). Answer:

Please have a look at the Q&A summary on the SCG webpage.

page 4 of 4

http://scg.unibe.ch/download/lectures/sma-exercises/SMA_Q&A_Slides.pdf

