
Oscar Nierstrasz

Software Modeling and Analysis

Introduction

Reports

Analyze

Instrument

Run-time data

Extract Software model

Documentation

Process data

Programs

Roadmap

> Overview
> Laws of Software Evolution
> Reverse and Reengineering
> Software Modeling
> Software Analysis

2

SMA

Lecturers Oscar Nierstrasz

Assistants Pascal Gadient, Pooja Rani

Lectures IWI 001, Wednesdays @ 10h15-12h00

Exercises IWI 001, Wednesdays @ 12h00-13h00

WWW scg.unibe.ch/teaching/sma

3

http://scg.unibe.ch/teaching/sma

Covid-19 Logistics

> Due to Covid-19, this class will largely be held remotely
—Please sign up on Piazza so we can communicate with you
—Details: scg.unibe.ch/teaching/sma

> Lectures will generally be pre-recorded (or live via Zoom)
—If pre-recorded, please view the lecture before the regular class
—An interactive Q&A zoom session will then take place at the

scheduled lecture hour (Wednesdays at 10h15)
—Zoom link and Google doc for questions will be communicated by

Piazza

4

http://scg.unibe.ch/teaching/sma
http://scg.unibe.ch/teaching/sma

This is a note (a hidden slide). You will find some of these
scattered around the PDF versions of the slides.

NB: some links to copyrighted materials are only accessible
within the unibe.ch domain.

Roadmap

> Overview
> Laws of Software Evolution
> Reverse and Reengineering
> Software Modeling
> Software Analysis

6

Goals of this course

You will learn how to:
> recognize the problems of legacy software
> use reflection and metaprogramming techniques
> extract software models from source code and other

artifacts
> apply software metrics to detect quality problems
> visualize software to support program comprehension
> apply basic static and dynamic analysis techniques

7

Real software systems continuously evolve over time. As they
evolve, they become harder to understand and maintain. In this
course we will explore techniques to model complex software
systems and analyze them to support program comprehension and
reengineering tasks.
Most lectures will combine theoretical background and practical
application of tools and techniques. A portion of this course will
make heavy use of Smalltalk, a live programming environment
that supports advanced reflection metaprogramming techniques.
Some material is based on two open-source textbooks: Pharo by
Example, and Object-Oriented Reengineering Patterns.

http://pharobyexample.org
http://scg.unibe.ch/download/oorp/

Course Schedule

Week Date Lesson
1 16-Sep-20 Introduction to Software Modeling and Analysis
2 23-Sep-20 Smalltalk: A Reflective Language and System
3 30-Sep-20 Understanding Classes and Metaclasses
4 7-Oct-20 Reflection and Metaprogramming
5 14-Oct-20 Moldable Software Exploration (Tudor Girba)
6 21-Oct-20 Software visualization (Leonel Merino)
7 28-Oct-20 Software Metrics and Problem Detection; Moose (Andrei Chiş)
8 4-Nov-20 Code and Test Smells (Fabio Palomba)
9 11-Nov-20 Static Program Analysis / Soot (ON / Manuel Leuenberger)
10 18-Nov-20 Comment analysis (Pooja Rani)
11 25-Nov-20 Dynamic Analysis (Nataliia Stulova)
12 2-Dec-20 Fuzz Testing (Reza Hazhirpasand)
13 9-Dec-20 Socio-technical Aspects in Software Systems (Alberto Bacchelli)
14 16-Dec-20 Final exam (NB: Room E8-001)

8

Roadmap

> Overview
> Laws of Software Evolution
> Reverse and Reengineering
> Software Modeling
> Software Analysis

9

Lehman's Laws

A classic study by Lehman and Belady [Lehm85a] identified several
“laws” of system change.

Continuing change
> A program that is used in a real-world environment must change, or

become progressively less useful in that environment.

Increasing complexity
> As a program evolves, it becomes more complex, and extra resources

are needed to preserve and simplify its structure.

Those laws are still applicable…

10

Lehman and Belady studied numerous industrial software
systems and identified seven “laws” of software evolution. The
two listed here are especially relevant in a reengineering context.
Although the studies were carried out in the early 80s, the laws
are still relevant today.

http://scgresources.unibe.ch/Literature/Books/Lehm85aProgramEvolution.pdf

Software Maintenance vs. Cost

requirement
design

coding
testing

delivery

x 1

x 5

x 10

x 20

x 200

Relative Maintenance Effort
Between 50% and 75% of

global effort is spent on
“maintenance” !

Relative Cost
of Fixing Mistakes

Solution ?
• Better requirements engineering?
• Better software methods & tools 

(database schemas, CASE-tools, objects,
components, …)?

11

Studies have shown that more than half of total software budgets
are devoted to “software maintenance”. Furthermore, there are
many claims that the cost of fixing errors in software projects
goes up over time. This suggests that one should try to catch
errors as early as possible, and perhaps one should invest more
effort into “getting requirements right”. The latter concludion is a
fallacy, however, if we recall that Lehman's laws tell us that
requirements will always change.
The real conclusion should be that we should search for ways to
reduce the cost of change in the long-term.

“Maintenance” = Continuous Development

17.4% Corrective
(fixing reported errors)

18.2% Adaptive
(new platforms or OS)

60.3% Perfective
(new functionality)

The bulk of the maintenance cost
is due to new functionality

⇒ even with better requirements,
it is hard to predict new functions

data from [Lien78a]

4.1% Other

12

If we take a closer look at what “maintenance” is, we see that it is
mostly “continuous development”, not just bug fixing.
Modern development methods like “agile development”
acknowledge this point and strive to reduce the cost of changing a
deployed system.

What is a Legacy System ?

⇒ so, further evolution and development may be prohibitively expensive

A legacy system is a
piece of software that:

• you have inherited, and
• is valuable to you

Typical problems with legacy systems:
• original developers not available
• outdated development methods used
• extensive patches and modifications
have been made

• missing or outdated documentation

13

“legacy”
A sum of money, or a specified article, given to
another by will; anything handed down by an
ancestor or predecessor.

— Oxford English Dictionary

Very rarely do we have the luxury of developing a “greenfield”
software project. We are almost always confronted with “legacy”
software.
But what does this term mean? Although it is often equated with
“outdated” and “bad” software, the reality is somewhat different.
The term “legacy” applied to software means that it is (1)
inherited, and (2) has real business value. If it did not have value,
we could just discard it. But because it has value, it needs to be
maintained. Why does this pose a problem? ...

Common Symptoms

14

Lack of Knowledge
> obsolete or no documentation
> departure of the original developers

or users
> disappearance of inside knowledge

about the system
> limited understanding of entire

system
⇒ missing tests Code symptoms

• duplicated code
• code smells

⇒ big build times

Process symptoms
> too long to turn things over to

production
> need for constant bug fixes
> maintenance dependencies
> difficulties separating products

⇒ simple changes take too
long

Common Problems

15

Architectural Problems
> insufficient documentation 

= non-existent or out-of-date
> improper layering  

= too few or too many layers
> lack of modularity  

= strong coupling
> duplicated code  

= copy, paste & edit code
> duplicated functionality  

= similar functionality 
 by separate teams

Refactoring opportunities
> misuse of inheritance  

= code reuse vs polymorphism
> missing inheritance  

= duplication, case-statements
> misplaced operations  

= operations outside classes
> violation of encapsulation 

= type-casting; C++ "friends"
> class abuse 

= classes as namespaces

How to cope with evolution?

> Need to assess evolution
> Need to analyze software and running systems
> Need to adapt evolving software systems
> Need to enable evolution, also at runtime

16

Roadmap

> Overview
> Laws of Software Evolution
> Reverse and Reengineering
> Software Modeling
> Software Analysis

17

Some Terminology

“Forward Engineering is the traditional process of moving from
high-level abstractions and logical, implementation-
independent designs to the physical implementation of a
system.”

“Reverse Engineering is the process of analyzing a subject
system to identify the system’s components and their
interrelationships and create representations of the system in
another form or at a higher level of abstraction.”

“Reengineering ... is the examination and alteration of a subject
system to reconstitute it in a new form and the subsequent
implementation of the new form.”

— Chikofsky and Cross [IEEE Software 1990]

18

Elliot Chikofsky and James Cross II. Reverse Engineering and
Design Recovery: A Taxonomy. In IEEE Software 7(1) p. 13—17,
January 1990.

http://dx.doi.org/10.1109/52.43044
http://scgresources.unibe.ch/Literature/Reengineering/Chik90a.pdf

What does this have to do with me?

19

All Software Engineering entails:
• Forward engineering
• Reverse engineering
• Reengineering
• Software maintenance

Our claim:

Real software systems evolve and must be maintained. You
cannot escape legacy software. Although some development
entails forward engineering, you will need to apply reverse
engineering techniques to understand the legacy, and you must
apply reengineering techniques to keep down the costs of
maintaining legacy software over time.

Goals of Reverse Engineering

> Cope with complexity
— need techniques to understand large, complex systems

> Generate alternative views
— automatically generate different ways to view systems

> Recover lost information
— extract what changes have been made and why

> Detect side effects
— help understand ramifications of changes

> Synthesize higher abstractions
— identify latent abstractions in software

> Facilitate reuse
— detect candidate reusable artifacts and components

— Chikofsky and Cross [IEEE Software 1990]

20

Goals of Reengineering

> Unbundling
— split a monolithic system into parts that can be separately marketed

> Performance
— “first do it, then do it right, then do it fast” — experience shows this is the

right sequence!
> Port to other Platform

— the architecture must distinguish the platform dependent modules
> Design extraction

— to improve maintainability, portability, etc.
> Exploitation of New Technology

— i.e., new language features, standards, libraries, etc.

21

The Reengineering Life-Cycle

Requirements

Designs

Code

(0) requirement
analysis

(1) model
capture

(2) problem
detection (3) problem

resolution

(4) program transformation

• people centric
• lightweight

22

This picture offers an ideal view of the software reengineering
lifecycle. It should not be read as a purely sequential process, but
as a set of interleaving activities.

(0) Requirement analysis: analyse which parts of your requirements have
changed
(1) Model capture: reverse engineer from the source-code to a more abstract
form, i.e., a software model
(2) problem detection: identify design problems in that model
(3) problem resolution: propose an alternative design to fix the problems
(4) program transformations: make the necessary changes to the code

We will focus mainly on lightweight tools and techniques for
modeling and analysis

A Map of Reengineering Patterns

Tests: Your Life Insurance

Detailed Model Capture

Initial Understanding

First Contact

Setting Direction

Migration Strategies

Detecting Duplicated Code

Redistribute
Responsibilities

Transform Conditionals to
Polymorphism

23

The book Object-Oriented Reengineering Patterns presents a
series of process “patterns” to reverse and reengineer complex
software systems. The patterns have been mined from experience
reengineering a large number of legacy software systems.
The book is available as open source and will be referred to
periodically in this course:

http://scg.unibe.ch/download/oorp/

Reverse engineering Patterns

Reverse engineering patterns encode expertise and trade-offs
in extracting design from source code, running systems and
people.

—Even if design documents exist, they are typically out of sync with
reality.

Example: Interview During Demo

24

Reengineering Patterns

Reengineering patterns encode expertise and trade-offs in
transforming legacy code to resolve problems that have
emerged.

—These problems are typically not apparent in original design but are
due to architectural drift as requirements evolve

Example: Move Behaviour Close to Data

25

Roadmap

> Overview
> Laws of Software Evolution
> Reverse and Reengineering
> Software Modeling
> Software Analysis

26

What is a model?

This slide intentionally left blank

27

What are examples of models?
What about software models?
What does a model describe?
What are models used for?
How are models specified?

What is a meta-model?

This slide intentionally left blank

28

What are examples of meta-models?
What does a meta-model describe?
Is a meta-model a kind of model?
Do we need meta-meta-models?
If so, when does it all end?

Example from databases

Model

System

Meta-model

Meta-meta-model Relational data model:
Tables, attributes, tuples

Database schema:
Student, Course, Enrolment …

Database tables of tuples:
(andreas, muster, 07-123-123), …

«represented-by»

«instance-of»

«instance-of»

29

Real world:
You, MMS, …

In the world of relational databases, a DB tuple represents some
entity in the “real” world (NB: we can also model imagined
entities, but that is beside the point).
The model entities, on the other hand, are instances of some
database schema (i.e., a metamodel) that dictates the structure of
the model. We can have many such instances, each of which
represents some other real world (modeled) entities.
The metamodel itself is an instance of a meta-meta-model, which
dictates the structure of the metamodel.
In the UML world, we refer to the real world entities as living at
the M0 level. Models are at M1, metamodels at M2, and meta-
meta-models are at level M3.

The MOF

30

M1

M2

M3

• One unique Metametamodel (the MOF)
• An important library of compatible

Metamodels, each defining a DSL
• Each of the models is defined in the

language of its unique metamodel

The Meta-Object Facility (MOF) is a standard of the Object
Management Group (OMG) for Model-Driven Engineering
(MDE), an approach in which code is generated from models.
Models exist at levels M1, M2 and M3. A model at level M1
conforms to its metamodel at level M2, which conforms to its
metametamodel at level M3.
In the MOF world, M3 conforms to itself, so there is no need for
an infinite tower of metamodels.

https://en.wikipedia.org/wiki/Meta-Object_Facility

µ

The OMG/MDA Stack

31

metamodel

model

"the real world"

meta-meta
model

The MOF

The UML metamodel ++

Some UML Models ++

Various usages
of these modelsM0

M1

M2

M3

the UML MetaModel

Class Attribute*
1

a UML Model

Client

Name : String

M2

M1

the MOF

Class Association

source

destination

M3

c2

c2

c2

µµ µ

µµ

µ

Level M0 refers to “the real world”. Note that M0 does not
“conform to” M1, but rather M1 models M0.
UML models at level M1 model various aspects of the real world
in M0. Each UML model (a class diagram, a sequence diagram
etc.) conforms to its particular metamodel at level M2. All UML
metamodels conform to the MOF at level M3.
For example, a Client class has a Name attribute, conforming
to the UML metamodel stating that classes may have attributes.
The UML metamodel conforms to the MOF, which states that
Class and Attribute (at M2) are classes (M3), which are
related by an Association (belongs-to).
At level M3, Class and Association are both modeled as
classes, and the relationships between them are modeled as
associations.

What kinds of software models are useful?

32

It depends on the analysis task

FAMIX (Moose)

module analysis::m3::Core
...

data M3 = m3(loc id);

anno rel[loc name, loc src] M3@declarations; // maps declarations to where they are declared. contains any kind of data or type or code declaration (classes, fields, methods, variables, etc. etc.)
anno rel[loc name, TypeSymbol typ] M3@types; // assigns types to declared source code artifacts
anno rel[loc src, loc name] M3@uses; // maps source locations of usages to the respective declarations
anno rel[loc from, loc to] M3@containment; // what is logically contained in what else (not necessarily physically, but usually also)
anno list[Message messages] M3@messages; // error messages and warnings produced while constructing a single m3 model
anno rel[str simpleName, loc qualifiedName] M3@names; // convenience mapping from logical names to end-user readable (GUI) names, and vice versa
anno rel[loc definition, loc comments] M3@documentation; // comments and javadoc attached to declared things
anno rel[loc definition, Modifier modifier] M3@modifiers; // modifiers associated with declared things

...

M3 (Rascal)

Software models may be very simple or complex, depending on
the task you need to perform. FAMIX is a simple object-oriented
metamodel for Moose, a data and software analysis system. It
captures basic relations between software entities, but does not
express program logic at the level of statements or expressions.
M3 is a similar, relational metamodel for Rascal, a
metaprogramming language integrated into Eclipse.
Both FAMIX and M3 can easily be extended to express different
or more detailed kinds of information.

http://www.moosetechnology.org
http://www.rascal-mpl.org

Metaprogramming

33

A metaprogram is a program that
manipulates a program (possibly itself)

The original metaprogramming system is Lisp, a language in
which all data is represented as lists, including programs
themselves. It is easy to write a Lisp interpreter in Lisp.
Metaprogramming is useful for generating programs,
transforming progarms, analyzing them, and instrumenting them.
All program development tools are essentially metaprograms.

Reflection

> “Reflection is the ability of a program to manipulate as data
something representing the state of the program during its
own execution.

> Introspection is the ability for a program to observe and
therefore reason about its own state.

> Intercession is the ability for a program to modify its own
execution state or alter its own interpretation or meaning.

Both aspects require a mechanism for encoding execution state
as data: this is called reification.”

— Bobrow, Gabriel & White, “CLOS in Context”, 1993

34

Many programming languages provide some form of reflective
features, allowing programs to ask at run time questions about the
running system.
We draw a strong distinction between “introspection”, which only
allows programs to query the running system, and “intercession”,
which allows a system to be modified while it is running.
In both cases we need to “reify” parts of the running system, i.e.,
turn them into data (or objects) that are accessible to the running
program. With intercession, changes to these reified entities will
actually be reflected back to the system itself.

Object

Reflection and Reification

Metamodel

Model

«instance of»

«reification»

«introspection»
(“reflection”)

«intercession»
(reflection)

«modification»

Object class
anObject

35

anObject

An object (anObject) at run time is a model (M1) entity that is
an instance of a class Object, which is itself a metamodel (M2)
entity.
We can query the class of an object by reifying the class,
obtaining a model entity that represents the class (Object
class). This entity lives in the M1 world, so we can interact
with it and query it.
With intercession, if we change this model entity (for example, by
adding or deleting some methods), then these changes will be
reflected back to the metamodel (M2) level, thus changing the
behaviour of the system and in particular of all instances of the
class Object.

Causal connection

> “A system having itself as application domain and that is
causally connected with this domain can be qualified as a
reflective system”
— Maes, OOPSLA 1987

—A reflective system has an internal representation of itself.
—A reflective system is able to act on itself with the ensurance that its

representation will be causally connected (up to date).
—A reflective system has some static capacity of self-representation and

dynamic self-modification in constant synchronization

36

Pattie Maes provided a very influential description of reflection in
object-oriented languages in this classic 1987 paper:

Pattie Maes. Concepts and Experiments in Computational Reflection.
OOPSLA '87, pp. 147—155, December 1987.
http://dx.doi.org/10.1145/38765.38821
http://scgresources.unibe.ch/Literature/OOPSLA/oopsla87/p147-maes.pdf

Roadmap

> Overview
> Laws of Software Evolution
> Reverse and Reengineering
> Software Modeling
> Software Analysis

37

Reports
Metrics,
Visualizations,
New code …

Analyze

What is Software Analysis?

38

Instrument

Run-time
data

Extract Software
model

Documentation
Javadoc, UML …

Process data
Issue tracker,
Bug reports,
Emails …

Static analysis Dynamic analysis

Programs
Source code (git, svn …)
Executables (bytecode …)

Data mining

Software analysis is concerned with various kinds of software artifacts,
ranging from source code and executables, through to all other kinds of
documents related to the software process (bug reports, documentation
etc.).
To perform an analysis, one must first extract some form of model of the
information of interest. The extraction process typically entails some kind
of parsing technology. The extracted models may be very coarse (e.g., a
list of file names and their sizes) or fine-grained (e.g., abstract syntax trees
of the source code), depending on the task at hand.
The result of the analysis take any form, such as a textual or visual report,
or even refactored or generated code.
We traditionally distinguish static analysis from dynamic analysis. The
latter requires the code to be instrumented and executed, and a log of run-
time data to be produced for further processing.
Whereas static and dynamic analysis focus on programs (source code or
executables), data mining focuses on other kinds of software artifacts. All
these techniques may be combined in software analysis.

What is static analysis?

39

Static software analysis refers to analysis performed based on
source code (and other static data sources) alone, i.e., without
running the software.

Sample tasks:
• dependency analysis
• method senders/receivers
• code clone detection

Static analysis tools:
• parsing technology
• introspection
• metrics
• type inference
• model checking
• data flow analysis
• symbolic execution

“Static analysis” simply refers to analysis that does not require
the code to be executed. The term is commonly used in the
context of compiler technology, to refer to analyses to improve
the performance of generated code, or to reason about desirable
properties (type safety, liveness, etc.).
In this course we focus on static analysis for program
comprehension (reverse engineering) and software maintenance
(reengineering) tasks. We will mostly focus on lightweight static
analyses that do not require advanced techniques like model
checking or data flow analysis.

What is dynamic analysis?

40

Dynamic software analysis refers to analysis based on data
collected while running the studied software system.

Sample tasks:
• test coverage
• memory usage
• performance benchmarking

Dynamic analysis tools:
• metaprogramming

technology
• bytecode instrumenters
• profilers

Dynamic analysis simply refers to any software anlysis that
requires the code to be executed. This typically entails the code to
be instrumented using reflection and metaprogramming
techniques. Alternatively, in the case of bytecode machines, the
virtual machine itself might provide the needed information
without instrumentation of the code.
In any case, executing the code will produce a run-time log which
can be further processed to produce the needed software model.
Obviously dynamic analysis can also make use of statically
obtained information.
Dynamic analysis is often used in virtual machines to improve
run-time performance. In this course, as with static analysis, we
focus instead on dynamic analyses that aid in program
comprehension.

What are software metrics?

41

Software metrics measure any attribute of software or related
entities.
A detection strategy is a metrics-based predicate to identify
artifacts that conform to (or violate) a particular design rule

Software metrics are used for many purposes in Software
Engineering, for example in cost estimation (to estimate development
effort) and process control (to track progress). We focus on software
metrics to detect possible violations of design rules, or more generally
to gain an understanding of the characteristics of a software system.
In this example, we use metrics with thresholds to detect possible
“God classes” — classes that assume too much responsibility in the
the system, and hence may pose difficulties for further development.
The acronyms refer to common metrics:

ATFD = access to foreign data
WMC = weighted method count
TCC = tight class cohesion

See: Michele Lanza and Radu Marinescu. Object-Oriented Metrics in
Practice, Springer-Verlag, 2006.

What is software visualization?

42

A software visualization maps selected attributes of
software artifacts to a visual representation, in order
to highlight some properties of that software.

A software visualization may be static or interactive.
The visualization technique may be either lightweight
(e.g., polymetric views) or advanced (e.g., spring layout).

The visualization on the left is a “class blueprint”, a so-called
polymetric view that maps software metrics to a simple
visualization. The large boxes represent classes and the small
ones are methods and attributes. From left to right we see 1)
creation methods, 2) public interface methods, 3) internal
methods, 4) accessors, 5) attributes. Calls between methods are
visualized. The height and width of the method boxes can
represent various metrics (e.g., lines of code, number of
invocations).
The second visualization shows the evolution of “code
critiques” (metrics indicating possible code quality issues) over
time. by navigating through the 3D space, one can get an idea
where the quality of the system improved or degraded over time.

43

A simple class hierarchy view

Nodes = Classes
Edges = Inheritance Relationships

A simple class hierarchy view does not give much insight into a
software system.

44

System Complexity View

Nodes = Classes
Edges = Inheritance Relationships

Width = Number of Attributes
Height = Number of Methods
Color = Number of Lines of Code

System Complexity View

Color
Metric

Position
Metrics

Width Metric

Height
Metric

The System Complexity View is a basic polymetric view that
maps software metrics to the height, width and color of the class
nodes in the hierarchy.
Interestingly, outliers jump out in such a visualization, giving you
some insight into the system.
For example: a tall, narrow, dark node has many methods, many
lines of code per method, and few attributes. This suggests that
the class represents an algorithm.
What else can you learn from this picture?

See: Michele Lanza and Stéphane Ducasse. Polymetric Views—A Lightweight
Visual Approach to Reverse Engineering. IEEE TSE 29(9) p. 782—795, Sept.
2003.
http://dx.doi.org/10.1109/TSE.2003.1232284
http://scg.unibe.ch/archive/papers/Lanz03dTSEPolymetric.pdf

Why is Smalltalk interesting for Software
Analysis?

45

Modeling
(live, fully OO)

Analysis
(rapid prototyping)

Instrumentation
(dynamic adaptation)

In this course we will make heavy (thought not exclusive) use of
Smalltalk. Smalltalk is especially interesting because it offers a
live programming environment that supports metaprogramming
with the help of a mature and rich metamodel. These features
make Smalltalk an excellent prototyping environment, as well as
a good platform for modeling, instrumentation and analysis.
We will use the Pharo dialect of Smalltalk, and the Moose data
and software analysis platform.

http://pharo.org
http://files.pharo.org/books/
http://www.moosetechnology.org

What you should know!

> What are “legacy” software systems? What problems do they
suffer from?

> Why is “software maintenance” really continuous development?
> How does reverse-engineering differ from reengineering?
> What is the difference between reflection and reification?

Between introspection and intercession?
> What is metaprogramming?
> How do static and dynamic analysis of software systems differ?
> What role do software metrics play in software analysis?

46

Can you answer these questions?

> Why must real-world programs change or become less useful
over time?

> Why do successful software systems always require more
maintenance?

> Why is duplicated code a problem in legacy software?
> What is the relationship between a model and its meta-

model?
> Why do we seldom need to consider meta-meta-meta-

models (level M4)?
> What kind of “reflection” does Java support?

47

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

