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Resources

> Lecture notes on Static Program Analysis, Anders Møller 
and Michael I. Schwartzbach
—http://cs.au.dk/~amoeller/spa/
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These lecture notes offer a very thorough and gentle introduction 
to the main static analysis techniques.
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What is Static Analysis? 
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Static program analysis is 
the systematic examination 
of an abstraction of a 
program’s state space 



Instead of attempting to analyze the full behaviour of a program 
(which is in general undecidable), the idea is to create a more 
abstract representation, typically a finite one, which can be fully 
analyzed.



Questions about programs

> Does the program terminate on every input?
> Does the program contain dead code?
> Can secret information become publicly observable?
> Can the program deadlock?
> Does there exist an input that leads to a null pointer 

dereference, division by zero, or arithmetic overflow?
> Are all assertions guaranteed to succeed?
> Are all variables initialized before they are read?
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Rice’s Theorem
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“Any nontrivial property about the 
language recognized by a Turing 
machine is undecidable.” 

— Henry Gordon Rice, 1951

Implies that many interesting static analysis questions 
are incomplete, or unsound, or undecidable.



Rice’s theorem argues that there is no Turing machine that can 
always decide that the language of (another) given Turing 
machine has a particular nontrivial property.  
For this reason we do not attempt static analysis over the full 
behaviour of programs, but instead over abstractions of the 
possible program states. 

https://en.wikipedia.org/wiki/Rice%27s_theorem



Approximation
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> Approximate answers may be decidable
> Approximations must be conservative

—i.e., err on the “safe side”
—In practice, either no false positives, or no false negatives



By abstracting over the program state, we avoid the dilemma of 
Rice's theorem. However the answers given by our static analyses 
will in general be “wrong”. This means that there will be false 
positives (programs that the analysis concludes have a certain 
property while in fact they don’t) as well as false negatives 
(programs that we fail to detect have a given property). 
We want our static analyses to be conservative, i.e., either they 
have no false positives or no false negatives (depending on the 
particular problem).  
An analysis with both false negatives and positives is pretty much 
useless.



Example approximations
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> Code is live: don’t remove it
—False positives are ok (dead code left in)
—False negatives are not ok (removing live code)

> Downcast (A) x will succeed: skip run-time check
—False negatives are ok (check safe casts)
—False positives are not (skip test of unsafe cast)

The engineering challenge: minimize the errors 
with reasonable performance (time and space)



The engineering challenge is to provide useful and accurate 
analyses with reasonable cost and performance. To obtain more 
accurate results, an analysis must typically work with a fairly 
detailed state space, but this can require large amounts of 
memory, and can be expensive to analyze.  
See: 

“The Use and Limitations of Static-Analysis Tools to Improve Software 
Quality”, Paul Anderson, 2008 
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.639.624&rep=rep1&type=pdf



Static vs Dynamic Analysis

> Static analysis: 
—analyze a representation of the source code; don’t run the program
—may over- or under-approximate (false positives or negatives)

> Dynamic analysis: 
—execute the program, possibly with multiple inputs
—limited to specific runs (false negatives)

> Hybrid approaches
—use dynamic analysis results to augment static analysis
—common in recommender systems
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Static analysis works with a representation of the source code 
alone, e.g., the program text, the abstract syntax tree, a graph 
representing the control flow, etc. 
Dynamic analysis, on the other hand, works with a representation 
of a concrete run of the program, e.g., a log of the methods or 
procedures that have been executed, generated by an 
instrumented version of the compiled program. 
Although dynamic analysis works with precise data rather than an 
approximation, it only has access to individual traces that 
represent a subset of all possible runs of the program. 
Hence both techniques work with partial information. 
Hybrid approaches take results from dynamic analysis of the 
same system or related systems, and use them to offer insights 
into the software being statically analyzed.
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Type checking

> Type checking ensures that operations are only applied to 
valid arguments
—arithmetic operations only applied to numbers
—only invoke valid methods on objects
—only pass valid arguments to methods or functions
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Static and dynamic types

> The static type of a variable is its declared type
> The dynamic type of a variable is the run-time type of the 

value it holds

> In statically-typed languages types are checked at 
compile time
—The compiler will forbid code to be compiled that cannot be proven 

type-safe
> In dynamically-typed languages types are checked only 

at run time
—A static analysis tool can (attempt to) infer types and skip run-time 

checks that are deemed unnecessary
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Note that there is no such thing as an “untyped” language, just 
languages which check types at compile time and those that check 
them at run time.



Type safety
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typable

error-free

errors
Static type safety 
may exclude 
some programs 
that do not lead to 
errors, but are not 
provably type-safe

Object cowboy = new Cowboy();
cowboy.draw();



Møller and Schwartzbach refer to the yellow area as “slack”. The 
idea is to have a type system that is fast and efficient, and reduces 
as much as possible the “slack” area of programs that are actually 
ok, but cannot be statically type-checked. 
The sample code is in fact safe, but will not pass the Java type-
checker. We can fix this either by changing the declaration of 
cowboy to Cowboy in the first line, or by inserting a dynamic 
downcast in the second line of cowboy to Cowboy.



Type soundness
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typable

error-free

errors
If a type system is 
unsound, it can accept 
code that may lead to 
run-time errors.

Example: co-variant arrays in Java.



In general type systems should be sound, but sometimes for 
pragmatic reasons unsound type rules can be useful. In such 
cases, dynamic checks should be generated to avoid catastrophic 
errors at run time.



Type-checking constraints
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⟦ n ⟧ = int 
⟦ E1 ⟧ = ⟦ E2 ⟧ = ⟦ E1 op E2 ⟧ = int

The “static semantics” of expressions in the 
programming language denote their static types. 
The static analysis tool resolves constraints over 
the static types.

Constraints:

Code: 3 + 4
3 + “hello”



Constraints are defined for all syntactic constructs of the 
programming language. For a given program, constraints are 
generated for every identifier and expression. The constraint 
solver then attempts to resolve the constraints. 
In the example we would generate the constraints: 
⟦3⟧ = ⟦4⟧ = ⟦3+4⟧ = int 
⟦3⟧ = ⟦“hello”⟧ = ⟦3+“hello”⟧ = int 

The first expression clearly passes while the second does not. 

This is just one of many possible type-checking strategies. Here 
we also do not discuss techniques to statically infer types for 
dynamically-typed languages.



Type rules
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A ⊢ e₁ : int    A ⊢ e₂ : int

A ⊢ e₁ < e₂ : bool

A classical way to encode type checking 
rules is as natural deductions. 

Numbers have 
the type “int”

A comparison of two 
ints is of type “bool”

⊢ num : int



The type rules for a programming language can be described as a 
set of deduction rules, where the top part of the rule encodes what 
is known about some syntactic elements, and the bottom encode 
what can be concluded. 
In the first rule, there is no precondition, so the top part is empty. 
A number is always of type “int”. 
In the second rule, A represents the type environment, i.e., all the 
type declarations in the program. It says, if in this program we 
can conclude that e1 and e2 are ints, then in the same environment 
A we can also conclude that e1 < e2 is a bool. 
These rules can be translated to code that performs the type 
checking, for example by traversing the abstract syntax tree of the 
program. 

https://en.wikipedia.org/wiki/Type_rule
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Dataflow analysis
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Control-flow graph Lattice of abstract values

Dataflow analysis used used to reason about abstract values 
of variables. Here we want to reason about the signs of the 
variable a, b and c at various points in the program.



Dataflow analysis makes use of a control flow graph (CFG) that 
represents the possible flows through a program as a directed 
graph. Each node typically represents a “basic block” of straight-
line code (i.e., without any jumps or jump targets). 
In addition, a lattice represents the abstract values of interest, in 
this case the possible signs of the variables. These may be 
positive, negative, or zero (+, –, 0). A lattice is a graph structure 
in which every subset of nodes has a least upper bound, and a 
greatest lower bound. The top element ⊤ here represents “any 
possible sign” while the bottom ⊥ represents “no possible sign”. 
For each node in the graph we generate constraints from the 
inputs to the outputs. After node c=–5, for example, we know that 
c has the abstract value –.



Applications of data flow analysis

> Liveness
—Which variables are “live” (i.e., hold values that may later be read)?
—Uses subset lattice of all possibly live variables

> Constant propagation analysis
—Which expressions have compile-time constant value?
—Uses flat lattice of constant values

> Interval analysis
—What intervals of integer values  

may variables hold?
—Uses lattice of intervals
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In each case a different kind of lattice is used to reason about the 
possible “values” of interest variables or expressions may hold. In 
general the top element represents no useful information (all 
possible values), while the bottom element represents an 
impossible value (none of the values).



Interprocedural analysis

> Intraprocedural analysis
—analyze the body of a single function

> Interprocedural analysis
—analyze the whole program with function calls

> Key idea
—construct a CFG for each function
—glue them together in a graph
—need to handle

– parameter passing
– return values
– values of local variables across calls
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Pointer analysis
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Andersen’s algorithm 
uses constraints to 
reason about what 
variables a pointer 
may point to.

p = &a;
q = p; 
p = &b; 
r = p;

⟦p⟧ ⊇ {a}
⟦q⟧ ⊇ p
⟦p⟧ ⊇ {b} 
⟦r⟧ ⊇ p

p points-to {a,b}
q points-to {a,b}
r points-to {a,b}
a points-to {} 
b points-to {} 



Pointer analysis (or “points-to analysis”) attempts to determine 
what variables (i.e., areas in memory) a pointer may end up 
pointing to. Such analysis should be conservative, i.e., may 
include false positives, but no false negatives. 
Andersen’s algorithm generates a set of constraints for each point 
p, for ⟦p⟧, the set of variables that p might point to. 
In the example, p points to a, q points to the same thing p points 
to (q aliases p), p points to b, and finally r aliases p. 
Ignoring control flow, we conclude that p, q and r may point to a 
and b. 

“Program Analysis and Specialization for the C Programming Language”, 
Lars Ole Andersen, Ph.D. Thesis, U Copenhagen, 1994



Symbolic execution
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main () {
print fact(read());

}

fact (n) {
if (n<0) {

throw ERROR;
}
if (n == 0) {

return 1;
} else {

return n * fact(n-1);
}

}

n=IN
n=IN, n<0

n=IN, n≥0

n=IN, n>0

n=IN Execute program 
with symbolic 
values. Generate 
constraints and 
solve to determine 
outcomes.

Error only if IN<0

n–1≥0 cannot lead to error



Symbolic execution is a form of abstract interpretation used to 
analyze programs by simulating the execution of a program using 
symbolic values for the inputs, and constraints over these values 
to represent outcomes of conditional branches. 
Here we trace the execution of a factorial function, and see that 
an error can arise if the input is less than zero. 
Note that if we enter the recursive call, we establish that n>0, so 
the input to the recursive call is ≥0 and cannot lead to any error.



Model checking
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Model-checking 
approximates a 
software system 
as a finite-state 
system and 
exhaustively 
explores those 
states to verify 
some desirable 
property.

A safe system

Read-write conflicts



Model-checking refers to a general approach to verifying 
software systems by modeling them as finite state systems. 
The example shows LTSA (labeled transition system analyzer), a 
tool that models concurrent software as a set of interacting finite 
state processes. It can be used to verify safety properties (no bad 
state is reachable) as well as liveness properties (some desired 
actions are always possible). 
In the example, the system above is unsafe as there is a reachable 
state in which processes A and B conflict in reading, incrementing 
and writing a variable. The system below uses locks to avoid the 
unsafe state. 
LTSA web site: 

https://www.doc.ic.ac.uk/ltsa/



What you should know!

> Why do static analysis techniques work with an 
abstraction of a program’s state space?

> Why must approximations be conservative?
> How does static analysis differ from dynamic analysis?
> Why should type systems generally be sound (but not 

necessarily complete)?
> What kinds of questions can be answered by data flow 

analysis?
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Can you answer these questions?

> What technique(s) would you use to detect dead code?
> Can a type system reject only programs that lead to 

type errors?
> Why is symbolic execution considered to be a static 

(and not dynamic) analysis technique?
> Why is it crucial that model-checkers work with finite 

state models of software?
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