
Oscar Nierstrasz

Static Analysis

Part 1: Static Analysis Techniques

> What is static analysis?
> Type checking
> Dataflow analysis
> Common static analysis techniques

Roadmap

2

Resources

> Lecture notes on Static Program Analysis, Anders Møller
and Michael I. Schwartzbach
—http://cs.au.dk/~amoeller/spa/

3

http://cs.au.dk/~amoeller/spa/
http://cs.au.dk/~amoeller/spa/

These lecture notes offer a very thorough and gentle introduction
to the main static analysis techniques.

> What is static analysis?
> Type checking
> Dataflow analysis
> Common static analysis techniques

Roadmap

4

What is Static Analysis?

5

Static program analysis is
the systematic examination
of an abstraction of a
program’s state space

Instead of attempting to analyze the full behaviour of a program
(which is in general undecidable), the idea is to create a more
abstract representation, typically a finite one, which can be fully
analyzed.

Questions about programs

> Does the program terminate on every input?
> Does the program contain dead code?
> Can secret information become publicly observable?
> Can the program deadlock?
> Does there exist an input that leads to a null pointer

dereference, division by zero, or arithmetic overflow?
> Are all assertions guaranteed to succeed?
> Are all variables initialized before they are read?

6

Rice’s Theorem

7

“Any nontrivial property about the
language recognized by a Turing
machine is undecidable.”

— Henry Gordon Rice, 1951

Implies that many interesting static analysis questions
are incomplete, or unsound, or undecidable.

Rice’s theorem argues that there is no Turing machine that can
always decide that the language of (another) given Turing
machine has a particular nontrivial property.
For this reason we do not attempt static analysis over the full
behaviour of programs, but instead over abstractions of the
possible program states.

https://en.wikipedia.org/wiki/Rice%27s_theorem

Approximation

8

> Approximate answers may be decidable
> Approximations must be conservative

—i.e., err on the “safe side”
—In practice, either no false positives, or no false negatives

By abstracting over the program state, we avoid the dilemma of
Rice's theorem. However the answers given by our static analyses
will in general be “wrong”. This means that there will be false
positives (programs that the analysis concludes have a certain
property while in fact they don’t) as well as false negatives
(programs that we fail to detect have a given property).
We want our static analyses to be conservative, i.e., either they
have no false positives or no false negatives (depending on the
particular problem).
An analysis with both false negatives and positives is pretty much
useless.

Example approximations

9

> Code is live: don’t remove it
—False positives are ok (dead code left in)
—False negatives are not ok (removing live code)

> Downcast (A) x will succeed: skip run-time check
—False negatives are ok (check safe casts)
—False positives are not (skip test of unsafe cast)

The engineering challenge: minimize the errors
with reasonable performance (time and space)

The engineering challenge is to provide useful and accurate
analyses with reasonable cost and performance. To obtain more
accurate results, an analysis must typically work with a fairly
detailed state space, but this can require large amounts of
memory, and can be expensive to analyze.
See:

“The Use and Limitations of Static-Analysis Tools to Improve Software
Quality”, Paul Anderson, 2008
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.639.624&rep=rep1&type=pdf

Static vs Dynamic Analysis

> Static analysis:
—analyze a representation of the source code; don’t run the program
—may over- or under-approximate (false positives or negatives)

> Dynamic analysis:
—execute the program, possibly with multiple inputs
—limited to specific runs (false negatives)

> Hybrid approaches
—use dynamic analysis results to augment static analysis
—common in recommender systems

10

Static analysis works with a representation of the source code
alone, e.g., the program text, the abstract syntax tree, a graph
representing the control flow, etc.
Dynamic analysis, on the other hand, works with a representation
of a concrete run of the program, e.g., a log of the methods or
procedures that have been executed, generated by an
instrumented version of the compiled program.
Although dynamic analysis works with precise data rather than an
approximation, it only has access to individual traces that
represent a subset of all possible runs of the program.
Hence both techniques work with partial information.
Hybrid approaches take results from dynamic analysis of the
same system or related systems, and use them to offer insights
into the software being statically analyzed.

> What is static analysis?
> Type checking
> Dataflow analysis
> Common static analysis techniques

Roadmap

11

Type checking

> Type checking ensures that operations are only applied to
valid arguments
—arithmetic operations only applied to numbers
—only invoke valid methods on objects
—only pass valid arguments to methods or functions

12

Static and dynamic types

> The static type of a variable is its declared type
> The dynamic type of a variable is the run-time type of the

value it holds

> In statically-typed languages types are checked at
compile time
—The compiler will forbid code to be compiled that cannot be proven

type-safe
> In dynamically-typed languages types are checked only

at run time
—A static analysis tool can (attempt to) infer types and skip run-time

checks that are deemed unnecessary

13

Note that there is no such thing as an “untyped” language, just
languages which check types at compile time and those that check
them at run time.

Type safety

14

typable

error-free

errors
Static type safety
may exclude
some programs
that do not lead to
errors, but are not
provably type-safe

Object cowboy = new Cowboy();
cowboy.draw();

Møller and Schwartzbach refer to the yellow area as “slack”. The
idea is to have a type system that is fast and efficient, and reduces
as much as possible the “slack” area of programs that are actually
ok, but cannot be statically type-checked.
The sample code is in fact safe, but will not pass the Java type-
checker. We can fix this either by changing the declaration of
cowboy to Cowboy in the first line, or by inserting a dynamic
downcast in the second line of cowboy to Cowboy.

Type soundness

15

typable

error-free

errors
If a type system is
unsound, it can accept
code that may lead to
run-time errors.

Example: co-variant arrays in Java.

In general type systems should be sound, but sometimes for
pragmatic reasons unsound type rules can be useful. In such
cases, dynamic checks should be generated to avoid catastrophic
errors at run time.

Type-checking constraints

16

⟦ n ⟧ = int 
⟦ E1 ⟧ = ⟦ E2 ⟧ = ⟦ E1 op E2 ⟧ = int

The “static semantics” of expressions in the
programming language denote their static types.
The static analysis tool resolves constraints over
the static types.

Constraints:

Code: 3 + 4
3 + “hello”

Constraints are defined for all syntactic constructs of the
programming language. For a given program, constraints are
generated for every identifier and expression. The constraint
solver then attempts to resolve the constraints.
In the example we would generate the constraints:
⟦3⟧ = ⟦4⟧ = ⟦3+4⟧ = int
⟦3⟧ = ⟦“hello”⟧ = ⟦3+“hello”⟧ = int

The first expression clearly passes while the second does not.

This is just one of many possible type-checking strategies. Here
we also do not discuss techniques to statically infer types for
dynamically-typed languages.

Type rules

17

A ⊢ e₁ : int A ⊢ e₂ : int

A ⊢ e₁ < e₂ : bool

A classical way to encode type checking
rules is as natural deductions.

Numbers have
the type “int”

A comparison of two
ints is of type “bool”

⊢ num : int

The type rules for a programming language can be described as a
set of deduction rules, where the top part of the rule encodes what
is known about some syntactic elements, and the bottom encode
what can be concluded.
In the first rule, there is no precondition, so the top part is empty.
A number is always of type “int”.
In the second rule, A represents the type environment, i.e., all the
type declarations in the program. It says, if in this program we
can conclude that e1 and e2 are ints, then in the same environment
A we can also conclude that e1 < e2 is a bool.
These rules can be translated to code that performs the type
checking, for example by traversing the abstract syntax tree of the
program.

https://en.wikipedia.org/wiki/Type_rule

> What is static analysis?
> Type checking
> Dataflow analysis
> Common static analysis techniques

Roadmap

18

Dataflow analysis

19

Control-flow graph Lattice of abstract values

Dataflow analysis used used to reason about abstract values
of variables. Here we want to reason about the signs of the
variable a, b and c at various points in the program.

Dataflow analysis makes use of a control flow graph (CFG) that
represents the possible flows through a program as a directed
graph. Each node typically represents a “basic block” of straight-
line code (i.e., without any jumps or jump targets).
In addition, a lattice represents the abstract values of interest, in
this case the possible signs of the variables. These may be
positive, negative, or zero (+, –, 0). A lattice is a graph structure
in which every subset of nodes has a least upper bound, and a
greatest lower bound. The top element ⊤ here represents “any
possible sign” while the bottom ⊥ represents “no possible sign”.
For each node in the graph we generate constraints from the
inputs to the outputs. After node c=–5, for example, we know that
c has the abstract value –.

Applications of data flow analysis

> Liveness
—Which variables are “live” (i.e., hold values that may later be read)?
—Uses subset lattice of all possibly live variables

> Constant propagation analysis
—Which expressions have compile-time constant value?
—Uses flat lattice of constant values

> Interval analysis
—What intervals of integer values  

may variables hold?
—Uses lattice of intervals

20

In each case a different kind of lattice is used to reason about the
possible “values” of interest variables or expressions may hold. In
general the top element represents no useful information (all
possible values), while the bottom element represents an
impossible value (none of the values).

Interprocedural analysis

> Intraprocedural analysis
—analyze the body of a single function

> Interprocedural analysis
—analyze the whole program with function calls

> Key idea
—construct a CFG for each function
—glue them together in a graph
—need to handle

– parameter passing
– return values
– values of local variables across calls

21

> What is static analysis?
> Type checking
> Dataflow analysis
> Common static analysis techniques

Roadmap

22

Pointer analysis

23

Andersen’s algorithm
uses constraints to
reason about what
variables a pointer
may point to.

p = &a;
q = p;
p = &b;
r = p;

⟦p⟧ ⊇ {a}
⟦q⟧ ⊇ p
⟦p⟧ ⊇ {b}
⟦r⟧ ⊇ p

p points-to {a,b}
q points-to {a,b}
r points-to {a,b}
a points-to {}
b points-to {}

Pointer analysis (or “points-to analysis”) attempts to determine
what variables (i.e., areas in memory) a pointer may end up
pointing to. Such analysis should be conservative, i.e., may
include false positives, but no false negatives.
Andersen’s algorithm generates a set of constraints for each point
p, for ⟦p⟧, the set of variables that p might point to.
In the example, p points to a, q points to the same thing p points
to (q aliases p), p points to b, and finally r aliases p.
Ignoring control flow, we conclude that p, q and r may point to a
and b.

“Program Analysis and Specialization for the C Programming Language”,
Lars Ole Andersen, Ph.D. Thesis, U Copenhagen, 1994

Symbolic execution

24

main () {
print fact(read());

}

fact (n) {
if (n<0) {

throw ERROR;
}
if (n == 0) {

return 1;
} else {

return n * fact(n-1);
}

}

n=IN
n=IN, n<0

n=IN, n≥0

n=IN, n>0

n=IN Execute program
with symbolic
values. Generate
constraints and
solve to determine
outcomes.

Error only if IN<0

n–1≥0 cannot lead to error

Symbolic execution is a form of abstract interpretation used to
analyze programs by simulating the execution of a program using
symbolic values for the inputs, and constraints over these values
to represent outcomes of conditional branches.
Here we trace the execution of a factorial function, and see that
an error can arise if the input is less than zero.
Note that if we enter the recursive call, we establish that n>0, so
the input to the recursive call is ≥0 and cannot lead to any error.

Model checking

25

Model-checking
approximates a
software system
as a finite-state
system and
exhaustively
explores those
states to verify
some desirable
property.

A safe system

Read-write conflicts

Model-checking refers to a general approach to verifying
software systems by modeling them as finite state systems.
The example shows LTSA (labeled transition system analyzer), a
tool that models concurrent software as a set of interacting finite
state processes. It can be used to verify safety properties (no bad
state is reachable) as well as liveness properties (some desired
actions are always possible).
In the example, the system above is unsafe as there is a reachable
state in which processes A and B conflict in reading, incrementing
and writing a variable. The system below uses locks to avoid the
unsafe state.
LTSA web site:

https://www.doc.ic.ac.uk/ltsa/

What you should know!

> Why do static analysis techniques work with an
abstraction of a program’s state space?

> Why must approximations be conservative?
> How does static analysis differ from dynamic analysis?
> Why should type systems generally be sound (but not

necessarily complete)?
> What kinds of questions can be answered by data flow

analysis?

26

Can you answer these questions?

> What technique(s) would you use to detect dead code?
> Can a type system reject only programs that lead to

type errors?
> Why is symbolic execution considered to be a static

(and not dynamic) analysis technique?
> Why is it crucial that model-checkers work with finite

state models of software?

27

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

