
Dynamic Program Analysis
Nataliia Stulova

SMA: Software Modeling and Analysis

Roadmap

> what is dynamic analysis?

> program instrumentation

> dynamic analysis use cases:

>> understanding program
performance

>> contracts and program
correctness beyond types

2

dynamic program analysis

Dynamic program analysis is the analysis of program
properties by observing the program behavior during
execution (on a concrete architecture) with concrete inputs.

3

</>

program
+

inputs

? observed
program
behavior

execution

program
properties

log

?
?

DPA

dynamic VS static analyses
Dynamic analysis Static analysis

Information execution behavior program structure

Scope executed program part whole program

Soundness feasible (only FN) feasible (either FP or FN)

Completeness difficult feasible

Imprecision source limited inputs abstractions

Scalability easy hard

4

FP = false positives, FN = false negatives

dynamic VS static analyses
Dynamic analysis Static analysis

Information execution behavior program structure

Scope executed program part whole program

Soundness feasible (only FN) feasible (either FP or FN)

Completeness difficult feasible

Imprecision source limited inputs abstractions

Scalability easy hard

5

FP = false positives, FN = false negatives

dynamic VS static analyses
Dynamic analysis Static analysis

Information execution behavior program structure

Scope executed program part whole program

Soundness feasible (only FN) feasible (either FP or FN)

Completeness difficult feasible

Imprecision source limited inputs abstractions

Scalability easy hard

6

FP = false positives, FN = false negatives

dynamic VS static analyses
Dynamic analysis Static analysis

Information execution behavior program structure

Scope executed program part whole program

Soundness feasible (only FN) feasible (either FP or FN)

Completeness difficult feasible

Imprecision source limited inputs abstractions

Scalability easy hard

7

FP = false positives, FN = false negatives

dynamic VS static analyses
Dynamic analysis Static analysis

Information execution behavior program structure

Scope executed program part whole program

Soundness feasible (only FN) feasible (either FP or FN)

Completeness difficult feasible

Imprecision source limited inputs abstractions

Scalability easy hard

8

FP = false positives, FN = false negatives

dynamic VS static analyses
Dynamic analysis Static analysis

Information execution behavior program structure

Scope executed program part whole program

Soundness feasible (only FN) feasible (either FP or FN)

Completeness difficult feasible

Imprecision source limited inputs abstractions

Scalability easy hard

9

FP = false positives, FN = false negatives

why analyzing programs at run-time? (1/2)

Case 1: you are not satisfied with the precision of static
analysis (over-/under-approximations):

10

int f(int age) {
 if (age < 16) {
 …
 } else {
 return g(age);}
}

age: read from run time input

static analysis: looks at types, says age is an
integer (−32,768 to 32,767)

realistically: age > 120 or age < 0 makes no sense

dynamic analysis: can observe exact values

why analyzing programs at run-time? (2/2)

Case 2: you are interested in detecting properties that are
beyond the capabilities of static analysis:

- program “hot spots” - which parts of program take most resources?

- memory reference errors - is there uninitialized memory, indexing
beyond array bounds, any leaks?

- likely invariants - what (implicit) properties actually hold for
program variables and methods?

11

Roadmap

12

> what is dynamic analysis?

> program instrumentation

> dynamic analysis use cases:

>> understanding program
performance

>> contracts and program
correctness beyond types

--

</>

program
+

inputs

? observed
program
behavior

execution

program
properties

log

?
?

DPA

program instrumentation
Instrumentation is a harness (special code) to capture
run-time values of variables at points of interest:

13

</>

program

? observed
program
behavior

program
properties

log

?
?

?

DPA is inferring/checking program properties that hold at those points.

myList = ? myList = [1, 2]
myList = [-4, 18, 42]

isSorted(myList)
maxSize(myList,2)

instrumentation points of interest

14

● method entry
○ captures values of input

parameters
● program point

○ captures values of specific
variables

● method exit
○ captures return values

void print_number(int* myInt) {
 assert (myInt != NULL);
 printf ("%d\n",*myInt);
}

int main () {
 int a=10;
 int * b = NULL;
 int * c = NULL;
 b=&a;
 assert (*b > 0);

 print_number (b);
 print_number (c);

 assert (c != NULL)
 return *c;
}

C++

1

2

3

1

3

2

what to consider for instrumenting

how much information is collected

which level is the instrumentation inserted at:

- from annotations in source code

- directly to object/byte/machine code

how intrusive the instrumentation is:

- performance overhead

- program behavior affected (esp.

instrumentation that checks properties)
15

precision overhead
behavior

Roadmap

16

> what is dynamic analysis?

> program instrumentation

> dynamic analysis use cases:

>> understanding program
performance

>> contracts and program
correctness beyond types

--

</>

program
+

inputs

? observed
program
behavior

execution

program
properties

log

?
?

DPA

performance profiling

A form of dynamic program analysis that collects performance
metrics of a program, usually done with a tool - a profiler.

Profilers:

- event-based - collect information at specified locations
(high precision and overhead)

- statistical - collect information from run-time
environment (less precise, but almost no overhead)

17

why studying program performance?

Pareto principle applies to programs too:

18

80% of the processor’s time will be consumed
by only 20% of the functions.

So assuming we have 100 functions, by just
optimizing 20 of those, we can improve
performance more than by optimizing all of
the other 80 functions.

20

80
methods resources80

20

Additionally, high resource use may indicate bugs in the code

example: performance analysis guiding optimization
class A() {
 public int f(int x) {return x + 1;}
}

class B() {
 public int f(int x) {return x * 4;}
}

//...
Object ab;
if (g(0) == 1) ab = new A();
else ab = new B();

int c = g(1);
int z = 0;

for(int i = c, i > 0, i--){
 z = z + ab.f(c);
}

Situation: source code of g() is not
available from its library file.

What can we do with dynamic analysis?

- observe values of g(0), g(1)
- if they do not change, optimize:

- if we can inline f() at , then
we can speed up the loop at

1

3
4

libraries

client

4

2

3

1 2

19

example: profiling memory usage in Python

Memory Profiler is a python module for monitoring memory consumption of a process
as well as line-by-line analysis of memory consumption for python programs:

20

Line # Mem usage Increment Occurrences Line Contents
==
 3 38.816 MiB 38.816 MiB 1 @profile
 4 def my_func():
 5 46.492 MiB 7.676 MiB 1 a = [1] * (10 ** 6)
 6 199.117 MiB 152.625 MiB 1 b = [2] * (2 * 10 ** 7)
 7 46.629 MiB -152.488 MiB 1 del b
 8 46.629 MiB 0.000 MiB 1 return a

Roadmap

21

> what is dynamic analysis?

> program instrumentation

> dynamic analysis use cases:

>> understanding program
performance

>> contracts and program
correctness beyond types

--

</>

program
+

inputs

? observed
program
behavior

execution

program
properties

log

?
?

DPA

design by contract - to the types and beyond

The idea:

“...software designers should define
formal, precise and verifiable
interface specifications for
software components, which extend
the ordinary definition of abstract
data types with preconditions,
postconditions and invariants.

22

contracts place in software development process

a typical
program
lifecycle
+ contracts

23

productiondesign development testing

add
contracts

check
contracts

disable most contracts
(performance)

native contract support
For many programming languages contract syntax is a part of the language and is
understood by the compiler: Clojure, Kotlin, Scala, Spec#, …

24

put (x: ELEMENT; key: STRING) is
 -- Insert x so that it will be
 -- retrievable through key.
 require
 count <= capacity
 not key.empty
 do
 ... Some insertion algorithm ...
 ensure
 has (x)
 item (key) = x
 count = old count + 1
 end

Eiffel

precondition

postcondition

In this example:

● precondition: before inserting
an element to a collection make
sure there is space and the
element key is non-null

● postcondition: after element
insertion collection should
have the element, specifically
at a given key (no key
collisions), and collection
size grows by 1

third-party contract support

25

For some other programming languages contracts are enabled by a specialized
tool, a pre-processor: C/C++/C#, Go, Java, Perl, PHP, Ruby, Rust, …

@Contract("null -> fail; _ -> param1") method throws an exception if the
first argument is null, otherwise
it returns the first argument

@Contract, IntelliJ IDEA

/**
 * @pre f >= 0.0
 * @post Math.abs((return * return) - f) < 0.001
 */
public float sqrt(float f) { ... }

method calculates the square root
of f within a specific margin of
error (+/- 0.001).

Java

Java iContract

instrumenting the contracts

26

1

3

2

● preconditions: state
properties which should
hold at method entry

● postconditions: state
properties which should
hold at method exit
(optionally: for a given
entry)

● invariants: state
properties which should
hold at any point

void print_number(int* myInt) {
 assert (myInt != NULL);
 printf ("%d\n",*myInt);
}

int main () {
 int a=10;
 int * b = NULL;
 int * c = NULL;
 b=&a;
 assert (*b > 0);

 print_number (b);
 print_number (c);

 assert (c != NULL)
 return *c;
}

C++

1

2

3

1

1 3

preconditions

● the precondition ensures that the
argument f of function sqrt() is

greater than or equal to zero.

27

Preconditions involve the system state and the arguments passed into
the method before a method can execute.

/**
 * @pre f >= 0.0
 */
public float sqrt(float f)
{ ... }

java

postconditions

● the first postcondition
specifies that the size of the
collection must grow by 1 when
we append an element. The
expression c@pre refers to the
collection c before execution
of the append method.

● the second postcondition
specifies that at the method
exit o is a part of c 28

/**
 * Append an element to a collection.
 *
 * @post c.size() = c@pre.size() + 1
 * @post c.contains(o)
 */
public void append(Collection c, Object o)
{ ... }

java

Postconditions involve the old system state, the new system state,
the method arguments, and the method's return value.

invariants

● this class invariant guarantees
that the PositiveInteger's value
is always greater than or equal to
zero. That assertion is checked
before and after execution of any
method of that class.

29

/**
 * A PositiveInteger is an Integer
 * that is guaranteed to be positive.
 *
 * @inv intValue() > 0
 */
class PositiveInteger extends Integer
{ ... }

java

Invariants describe properties that hold at any given time during
execution, so depending on their scope granularity they can be
checked at program points, method boundaries, and class level:

contracts and first order logic

● quantifiers: forall, exists
● negation
● implication

30

/**
 *
 * A single office per employee.
 *
 * @invariant forall IEmployee e1 in getEmployees() |
 * forall IEmployee e2 in getEmployees() |
 * (e1 != e2) implies e1.getOffice() != e2.getOffice()
 */

java

invariant detection with Daikon

Daikon is a tool for dynamic detection of likely invariants by M. Ernst et al.

31

observed
program
behavior

log

transform

full trace:

x = …
x < …

invariant
pattern
library

== 0

x

!=
is_odd

filter

invariants

== 0x
is_oddx

http://plse.cs.washington.edu/daikon/

Daikon for Java

32

javac

DynComp

Chicory

Daikon

source
code

*.java

bytecode

*.class variable
comparability

sets

invariants

trace

1

2

3

4

Four main steps:
● Compile program sources, get the bytecode
● Run the program under DynComp component to group variables at each program point

into comparability sets, limiting invariant scopes
● Run the program under Chicory component to instruments the bytecode and produce

the trace(s)
● Analyze the trace(s) with Daikon to get invariants

1
2

3

4

https://plse.cs.washington.edu/daikon/download/doc/daikon/Front-ends-_0028instrumentation_0029.html#DynComp-for-Java
https://plse.cs.washington.edu/daikon/download/doc/daikon/Front-ends-_0028instrumentation_0029.html#Chicory

 demo!

33

