Analyzing Code Comments

Pooja Rani

Research Assistant
PhD student

Software Composition Group
University of Bern, Switzerland

Roadmap

Importance of code comments

- Code comment types

- What is a good comment?

- Challenges

- Tool support

- Various approaches to analyze

We use different tools and
techniques to understand code.

Understanding code...

Not So Happy Developers

Bie fon Sowce Rer lwgee Serch B fun Yimdow Hop
e QulwiN$ 0™ v Pl RO [Quick Access
DWetion D Pocion [Pojschis. 1 Modeina () Nowsiony

19 package net.sourceforge.atunes.kernel.modules.repository.audio;

G

0 Fotiein. | [AudicFiejna 3 |

-0

P —— 3 v
e et stune el coter dPrtroces ooy
B nesoucaorgetunesemelontllr dkTagDiog
e controtes eTesOueq !
conlen operCpterstiss 2

“import java.io.Files[]

public class AudioFile extends File {

tag:

yList externalPictures;
duration;

bitrate;

frequency;

File (string fileName) (
oProperties(this);

introspectTags () {
tor.getTags (this);

etExternalPicturesCount ()
I= nul:

xternalPictures

Happy Developers

Linden e

Fe £t Souce Reactor Novgte o B
. GOlGiINB -0~ @E- OO V-1V v AT SR (Quick Acces
% Package e 51 | T TypeHisary 720 DKo it s =0

Kernel is the class responsible of create and interconnect

21, Kernel.getInstanc

instance of Kernel. To access Ke.

private static Kernel instance;

is running in debug mode
DEBUG;

Defines if aTun
public static boolean

/** Logger */
private Logger logger

= Logger.getLogger (Kernel.class) ;

*/

1%+ of aTunes

Application State
public ApplicationState state;

of Kernel */
(8]

/** Constructor
private Kernel ()
instance.

* Static method to create the Kernel

public static void startKernel() {[
an

cts, controllers,

/** Creates all cbjects of aTu

private void startCreation() (]

/** Starts visual objects */
private void startVisualization() {[]

& Consoe 23

) TaghiewRerecrjoe
ascnoles o deoln t it

18 nesourcafogeatuneskeme.control®

1 ? externalPictures.size()

o

E
61 setExternalPictures(ArrayList externalPictures) {
‘ernalPictures - externalPictures;
stines kel e g 2
e S — Dcome 8-0-" .
< > Nocomlestodasev et e
Wise | Smanioen | 211

Comments in the

Absence of Comments in the Code

In GT, try to understand the class “BrLook”, “BlIElement”
without class comments.

BrLook -

BrActor

Package: Brick Tag: ! Core
Methods Comment Lookoverview Look graph
Category = All +

+

add:

addAll:

addChange:
addChangeAddChild:with:
addChangeAddChildAs:with:
addChangeAddChildFirst:with:
addChangeProperty:with:
addChangeProperty:withCopy:
asLook

changes

initialize
initializeRequests

looks

onInstalledIn:
onUninstalledIn:

remove:

widgetContent

+

Look hierarchy

References

api

api

api

api

Q
- composition
- composition
- composition
- composition
api - changes
api - changes
api - changes
api - changes
api - changes
api - changes

api - composition

api

- changes

initislization

initislization

accessing

api - hooks

api - hooks

api - composition

accessing

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

instance

api - co'npos‘it'ﬁn class

api - composition class

BrLook -

Superclass: BrActor

Package: Brick Tag: ! Core
Methods Comment Lookoverview Lookgraph Lookhierarchy References

| define how widgets look. In addition to the BrViewModel | listen to Ul events and update decoration (non meaningful) elements of the widgets.

Looks install themselves on Brick graphical widgets, and are able to modify the Bloc element tree of the widget. As such, they are very powerful, but should not be used as a hammer

for all situations, in particular:

- They should never affect the APl of the widget.
- They should not be used toadd or remove contentin the widget. Element composition is a better solution for this.

Code comments

Code comprehension tasks
Code maintenance tasks

To understand a new domain

You do not need comments if you
write clean code.

You do not need comments if you
write clean code?

10

Code can describe how but it can
not explain why.

Code comment types

Documentation (/** ... */)
(also used for packages / classes / methods

Block comments (/* ... */)

Inline comments (//...)

12

Programming languages follow different
syntaxes for comments.

However, most languages support a distinct delimiter for
comments.

13

Class comment example:

/**

* A class representing a window on the screen.
* For example:

* <pre>

* Window win = new Window (parent) ;

* win.show () ;

* </pre>

* @author Sami Shaio
* @version 1.13, 06/08/06

* @see java.awt.BaseWindow
* @see java.awt.Button
*/

class Window extends BaseWindow {

Java class comment

14

Class comment example:

class ExampleClass(object):
"""The summary line for a class docstring should fit on one line.

If the class has public attributes, they may be documented here

in an " Attributes’’ section and follow the same formatting as a
function's "‘Args’ " section. Alternatively, attributes may be documented
inline with the attribute's declaration (see __init__ method below).

Properties created with the " ‘@property’ " decorator should be documented
in the property's getter method.

Attributes

attrl : str
Description of ‘attrl’.
attr2 : :obj: int’, optional
Description of ‘attr2’.

Python class comment

15

GtSpotterProcessorsCollector - Q

Superclass: Object

Package: GToolkit-Spotter Tag: Collectors
Methods Examples map Examples Comment References v g -

| collect Spotter search pragmas.
Each pragma is a Spotter extension for a given object

By default, | look for gtSearch pragmas. It can be changed by pragmaName:

GToolkit-Spotter > GtSpotterProcessorsCollector

pragmaName: anObject
pragmaName := anObject

v -

The spotterStep = can decide whether or not an extension is enabled.
It can also configure each extension, e.g., override any property.

lam used by GtSpotterStep

Q

GT class comment

16

flush: aFlushBlock

"Process all currently available +items, passing each item to a flush block.

If there 1is another process, which currently fetching items from queue, or queue 1is
empty,

return immediately"

| item |

item := dummy makeCircular.
item == dummy ifTrue: [» self].

[| object |
object := item object.
object == dummy ifFalse: [
[aFlushBlock value: object] ifCurtailed: [
item object: dummy.
dummy next: item next].
1.

item object: dummy.

item isCircular ifTrue: [
"this was the last one"
dummy next: -item.
self signalNoMoreItems
A self
1.

item := item next.

] repeat.

GT method comment

17

What is a good comment?

/*

* Dear Maintainer

*

* Once you are done trying to ‘optimize’ this routine,

* and you have realized what a terrible mistake that was,
* please increment the following counter as a warning

* to the next guy.

X

*x total_hours_wasted_here = 73

*

// When I wrote this, only God and I understood what I was doing

// Now, God only knows

#This is brilliant
#Thanks. It’s nap time.

18

What is a good comment?

/*

* Dear Maintainer

*

* Once you are done trying to ‘optimize’ this routine,

* and you have realized what a terrible mistake that was,
* please increment the following counter as a warning

* to the next guy.

X

*x total_hours_wasted_here = 73

*

// When I wrote this, only God and I understood what I was

// Now, God only knows

#This is brilliant
#Thanks. It’s nap time.

19

What is a good comment?

Helps other developers in working with your code
Describes why, and not how
Reveals intent, limitation, assumptions, design decisions

Justifies the violation of a programming style

20

What is a good comment?

// format matched kk:mm:ss EEE, MMM dd, yyy
Pattern timePattern = Pattern.compile("\\d*:\\d*:\\d* \\w*, \\w*, \\d*, \\d*");

Examples

Note that to encode a String as Base64, you first have to encode the characters as bytes
using character encoder.

Warnings

It makes sense to use me if scalable element has fixed or matching parent horizontal size
but fits content vertically.

Preconditions

21

Coding style guidelines
- Agreed guidelines to express the information

= To write consistent & informative comments

Apache Maven Project M -

Apache /' Maven Download | Get Sources | Last Published: 2020-11-23

s

Wetcome Maven Code Style And Code Conventions

License
This document describes how developers and contributors should format code in order to improve consistency, readability and maintainability.

Generic Code Style And Convention

What is Maven?

Features All working files (java, xml, others) should respect the following conventions:

Ruenioad = License Header: Always add the current ASF license header in all files checked into the source code repository.
Use = Trailing Whitespace: Remove all trailing whitespace. If you use Eclipse, you can use the Anyedit Eclipse Plugin
Release Notes and the following style

= Indentation: Never use tabs!
= Line wrapping: Always use a 120-column line width

Maven Plugins

Note: The specific styles and conventions, listed in the next sections, can override these generic rules

Java
Plugin Developer
centre Java Code Style
Maven Centra
o N The Maven style for Java is mainly:
Repository

= White space: One space after control statements and between arguments (e.g) instead of if(foc)), myFunc(foo, bar, baz) instead of
myFun ,bar,baz)). No spaces after methods names (i.e. void myMetho

= Indentation: Always use 4 space indents and never use tabs!

= Blocks: Always enclose with a new line brace

a Line wrannina: Alwavs use a 120-column line width for Java code and Javadoc

Maven Developer
Cen

Guide to Helping
with Maven

Guideline examples: Oracle

Use blank lines after summary line.
Use 3rd person instead of 2nd person.

Write a one-line summary of the class.

23

Coding style guidelines
Java: Oracle, Apache, Google
Python: Pep, Google, Numpy
Smalltalk: Smalltalk style guide, comment template

Ruby: RubyStyle

Oracle: https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
Numpy:https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard

Smalltalk:http://sdmeta.gforge.inria.fr/[FreeBooks/WithStyle/Smalltalk WithStyle.pdf

24

! Comment x + &

Please comment me using the following template inspired by Class Responsibility Collaborator (CRC)
design:

For the Class part: State a one line summary. For example, "I represent a paragraph of text".
For the Responsibility part: Three sentences about my main responsibilities - what I do, what I know.
For the Collaborators Part: State my main collaborators and one line about how I +interact with them.
Public API and Key Messages
- message one
- message two
- (for bonus points) how to create instances.

One simple example is simply gorgeous.
Internal Representation and Key Implementation Points.

Instance Variables

environmentDictionaries: <Object>

Implementation Points

Pharo class comment template

25

Challenges

Multiple conventions -

Personal style
Incomplete comments | Impact overall quality of

comments
Outdated comments
Inconsistent writing style
Complex comments

26

We use different tools and
techniques to analyze code quality.

Code analysis tools

Syntax
Semantics
Style

IDE
Data flow Control flow

Analysis T analysis

Testing tools Coding style

checkers

/
\ Static analysis

tools

_/

Runtime tools

But what about comments?

Comment analysis tools

Syntax
Semantics

Style

Coding style

checkers

30

Comment analysis tools

Syntax (Javadoc, pydoc)
Semantics

Style

IDE

Coding style

31

Documentation tools

Check syntax of comments

Do not check the content

32

Coding style checkers

Java: Checkstyle, PMD
Python: pylint, pycodestyle
Smalltalk: No linter

Ruby: RuboCop

33

Coding style checkers

Detect presence/absence of comments
Check whether comments follow style guidelines

Limited to selected metrics (code/comment ratio)

34

Comment Content Analysis

Information types in Java code comments

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

Classifying code comments
in Java open-source software systems

Luca Pascarella
Delft University of Technology
Delft, The Netherlands
L.Pascarella@tudelft.nl

Abstract—Code comments are a key software component
containing information about the underlying implementation.
Several studies have shown that code comments enhance the
readability of the code. Nevertheless, not all the comments have
the same goal and target audience. In this paper, we investigate
how six diverse Java OSS projects use code comments, with the
aim of understanding their purpose. Through our analysis, we
produce a taxonomy of source code

Alberto Bacchelli
Delft University of Technology
Delft, The Netherlands
A Bacchelli @tudelft.nl

Haouari et al. [11] and Steidl et al. [28] presenled lhe ear-
liest and most si results in
Haouari et al. i ig: 3 habits, fo-
cusing on the position of comments with respect to source code
and proposing an initial taxonomy that includes four high-
level categories [11]; Steldl et al. proposed a semi- automated

mvestlgate how often each category occur by manllally classlfy-
ing more than 2,000 code from ti

h for the i and q of
comment quality, based on classlfymg comments in seven

projects. In addition, we conduct an initial evaluanon on how
to classify code at line level into our
taxonomy using machine learning; initial results are promising
and suggest that an accurate classification is within reach.

I. INTRODUCTION

‘While writing and reading source code, software engineers

routme]y introduce code comments [6]. Several researchers

i d the 1 of these showing that
thoroughly commented code is more readable and maintain-
able. For example, Woodfield et al. conducted one of the
first experiments di ating that code improve
program readability [35]; Tenny ef al. confirmed these results
with more experiments [31], [32]. Hartzman et al. investi-
gated the economical maintenance of large software products
showing that comments are crucial for maintenance [12]. Jiang
et al. found that comments that are misaligned to the anno-
tated functions confuse authors of future code changes [13].
Overall, given these results, having abundant comments in the
source code is a recognized good practice [4]. Accordingly,
researchers proposed to evaluate code quality with a new
metric based on code/comment ratio [21], [9].

Ni hel not all the are the same. This is
evident, for example, by glancing through the comments in
a source code file' from the Java Apache Hadoop Frame-
work [1]. In fact, we see that some comments target end-
user programmers (e.g., Javadoc) while others target internal

1 (e g ivlin, ach H

high-level categanes [28]. In spite of the innovative lechmques
they proposed to both und ding devel s’

habits and i ’ quality, lhe i ion of
comments was not in their primary focus.

In this paper, we focus on increasing our empirical under-
standing of the types of comments that developers write in
source code files. This is a key step lo guide future research
on the topic. M this i ding has the
potential to (1) improve current quality analysis approaches
that are restricted to the comment ratio metric only [21], [9]
and to (2) strengthen the reliability of other mining approaches
that use source code comments as input (e.g., [30], [23]).

To this aim, we conducted an in-depth analysis of the
comments in the source code files of six major OSS systems
in Java. We set up our study as an exploratory investigation.
We started without hypotheses regarding the content of source
code comments, with the aim of discovering their purposes
and roles, their format, and their frequency. To this end,
we (1) conducted three iterative content analysis sessions
(involving four researchers) over 50 source files including
about 250 comment blocks to define an initial taxonomy of
code comments, (2) validated the taxonomy externally with 3
developers, (3) inspected 2, 000 source code files and manually
classified (using a new application we devised for this purpose)
over 15,000 comment blocks comprising more than 28,000
lines, and (4) used the resulting dataset to evaluate how

ively can be i i

I

‘ Purpose ‘ Notice Under Development ‘ Style & IDE J ‘ Metadata' ,DiscardedJ
Summary Deprecation TODO { Directive \ License [Auto-
generated
Rational Usage Incomplete \ Formatter \ Owenership { Noise
Expand Exception Commented ‘ Pointer
_ Code

36

Information types in Python code comments

Classifying Python Code Comments
Based on Supervised Learning

Jingyi Zhang!, Lei Xu?®), and Yanhui Li?

! School of Management and Engineering, Nanjing University,
Nanjing, Jiangsu, China
jyzhangchn@outlook.com
2 Department of Computer Science and Technology, Nanjing University,
Nanjing, Jiangsu, China

xlei,yanhuilit@nju.edu.cn
{ 4 yenj Code comments

Abstract. Code comments can provide a great data source for under-
standing programmer’s needs and underlying implementation. Previous ‘ Noise ‘

work has illustrated that code comments enhance the reliability and ‘W Parameters — TODO — License '_
maintainability of the code, and engineers use them to interpret their _—
code as well as help other developers understand the code intention R Pr——
better. In this paper, we studied comments from 7 python open source ‘ Expand Usage — Version — ‘ Copyright »_
projects and contrived a taxonomy through an iterative process. To clar- i
Links

ify comments characteristics, we deploy an effective and automated app- Exception — Development| |
roach using supervised learning algorithms to classify code comments Notes
according to their different intentions. With our study, we find that
there does exist a pattern across different python projects: Summary
covers about 75% of comments. Finally, we conduct an evaluation on the
behaviors of two different supervised learning classifiers and find that
Decision Tree classifier is more effective on accuracy and runtime than
Naive Bayes classifier in our research.

Keywords: Code comments classification - Supervised learning
Python

37

Information types in Pharo code comments

What do class comments tell us? An investigation of comment
evolution and practices in Pharo Smalltalk

Pooja Rani - Sebastiano Panichella - Manuel
Leuenberger - Mohammad Ghafari - Oscar
Nierstrasz

Received: date / Accepted: date

Abstract Previous studies have characterized code comments in various programming lan-
guages, and have shown how a high quality of code comments is crucial to support program
comprehension activities and to improve the effectiveness of maintenance tasks. However,
very few studies have focused on the analysis of the information embedded in code com-
ments. None of them has compared developer practices to write comments following the
standard guidelines or analyzed these characteristics in the Pharo Smalltalk environment.

These class commenting practices have their origins in Smalltalk-80, going back 40
years. Smalltalk traditionally separates class comments from source code, and offers a brief
template for entering a comment for newly-created classes. These templates have evolved
over the years, particularly in the Pharo environment. This paper reports the first empirical
study investigating commenting practices in Pharo Smalltalk. As a first step, we analyze
class comment evolution over seven Pharo versions. Then, we quantitatively and qualita-
tively analyze class comments of the most recent version of Pharo, to investigate the infor-
mation types of Pharo comments. Finally, we study the adherence of developer commenting
practices to the class template over Pharo versions.

The results of this study show that there is a rapid increase in class comments in the ini-
tial three Pharo versions, while in subsequent versions developers added comments to both
new and old classes, thus maintaining a similar ratio. In addition, the analysis of the seman-
tics of the comments from the latest Pharo version suggests that 23 information types are
typically embedded in class comments by developers and that only seven of them are present
in the latest Pharo class comment template. However, the information types proposed by the
standard template tend to be present more often than other types of information. Addition-
ally, we find that a substantial proportion of comments follow the writing style of the tem-
plate in writing these information types, but they are written and formatted in a non-uniform
way. This suggests the need to standardize the commenting guidelines for formatting the

Intent

Responsibility
Collaborators

Class References
Examples
Implementation Points
Warnings

Instance Variables
Key Messages
Contracts
Dependencies
ReferencesOtherR esources
Discourse
Recommendations
Subclasses explanation
Observations

Categories

Naming conventions
Other

Extensions

Coding Guidelines
Links

TODO comments
License

I 134
e 75
I 57
I 51
[40
]
I 3
[34
[29

. 2

o

RN

s

04

Bs

I3

04

I3

|2

!

|1
0 50 150 200

Number of classes

100

231

250

256

38

300

Information types across Pharo projects

100

Categories

Color scale according to percentage of comments falling into a category
50

o
-~ = m
TR RETY
EX H3es28&F
[eloL s333load euwad)xy

39

Collected data

Class: FTTreeltem

| am an abstract class to define an Item use by a tree data source of Fast table.

Description

| define the basics methods needed by a FTTreeDataSource.
| use FTTreeltem to manage my elements and | am use by a FTFastTable.

Public APl and Key Messages

. #data. anObject from: aFTTreeDataSource
This is my constructor that is use by FTTreeDataSource and myself

Example

Should not be instanciate.

Internal Representation and Key Implementation Points.

Instance Variables

dataSource: | am the dataSource that holds this Item.

children: | am a collection of Items calculate by the item. | contains the chldren of the
Item.

Collected data

Class: FTTreeltem

Description

| define the basics methods needed by a FTTreeDataSource.
| use FTTreeltem to manage my elements and | am use by a FTFastTable.

Public APl and Key Messages

. #data. anObject from: aFTTreeDataSource
This is my constructor that is use by FTTreeDataSource and myself

Example

Should not be instanciate.

Internal Representation and Key Implementation Points.

Instance Variables
dataSource: | am the dataSource that holds this Item.

ltem.

children: | am a collection of Items calculate by the item. | contains the chldren of the

| am an abstract class to define an Item use by a tree data source of Fast table Intent

2
Responsibility

]
Collaborator

Key Messages

Warning

Instance variables

41

|dentification of heuristics

Class: FTTreeltem

Description

| define the basics methods needed by a FTTreeDataSource.
| use FTTreeltem to manage my elements and | am use by a FTFastTable.

Public APl and Key Messages

. #data. anObject from: aFTTreeDataSource
This is my constructor that is use by FTTreeDataSource and myself

Example

Should not be instanciate.

Internal Representation and Key Implementation Points.

Instance Variables
dataSource: | am the dataSource that holds this Item.

ltem.

children: | am a collection of Items calculate by the item. | contains the chldren of the

I am an abstract class to define an Item use by a tree data source of Fast table Intent

2
Responsibility

]
Collaborator

Key Messages

Warning

Instance variables

42

Taxonomy

43

Techniques

Natural Language
Processing

Textual Analysis

Techniques

== techniques

——
information

Features

44

Training & Testing

45

Workflow

Java

Pharo

i

i

Projects

Code comment types

CCT™M

Natural Language

Processing
I A
Textual Analysis

Techniques

3) 4)

J48
Naive Bayes
Random Forest,

t‘::r"n'f;\ —».@

Features Learning Phase Evaluation

=

N

Taxonomy Definition

Automated Classification of Comments Types

46

Comment Evolution

47

ava code comment co-evolution

Analyzing the co-evolution of comments and source code

Beat Fluri - Michael Wiirsch - Emanuel Giger -
Harald C. Gall

Published online: 26 March 2009
© Springer Science+Business Media, LLC 2009

Abstract Source code comments are a valuable instrument to preserve design decisions
and to communicate the intent of the code to programmers and maintainers. Nevertheless,
commenting source code and keeping comments up-to-date is often neglected for reasons
of time or programmers obliviousness. In this paper, we investigate the question whether
developers comment their code and to what extent they add comments or adapt them when
they evolve the code. We present an approach to associate comments with source code
entities to track their co-evolution over multiple versions. A set of heuristics are used to
decide whether a comment is associated with its preceding or its succeeding source code
entity. We analyzed the co-evolution of code and comments in eight different open source
and closed source software systems. We found with statistical significance that (1) the
relative amount of comments and source code grows at about the same rate; (2) the type of
a source code entity, such as a method declaration or an if-statement, has a significant
influence on whether or not it gets commented; (3) in six out of the eight systems, code and
comments co-evolve in 90% of the cases; and (4) surprisingly, API changes and comments
do not co-evolve but they are re-documented in a later revision. As a result, our approach
enables a quantitative assessment of the commenting process in a software system. We can,
therefore, leverage the results to provide feedback during development to increase the
awareness of when to add comments or when to adapt comments because of source code
changes.

48

Java code comment co-evolution

Mapping comments to
source code entities | ¥~

subsequent
versions

EvoLizER
RHDB

change
types

CHANGEDISTILLER

Source: Analyzing the co-evolution of comments and source code, fig 1

3

change
types

Tracking co-changes
over multiple revisions

49

Java code comment co-evolution

Analyzing the co-evolution of comments and source code

Beat Fluri - Michael Wiirsch - Emanuel Giger -
Harald C. Gall

Published online: 26 March 2009
© Springer Science+Business Media, LLC 2009

Abstract Source code comments are a valuable instrument to preserve design decisions
and to communicate the intent of the code to programmers and maintainers. Nevertheless,
commenting source code and keeping comments up-to-date is often neglected for reasons
of time or programmers obliviousness. In this paper, we investigate the question whether
developers comment their code and to what extent they add comments or adapt them when
they evolve the code. We present an approach to associate comments with source code
entities to track their co-evolution over multiple versions. A set of heuristics are used to
decide whether a comment is associated with its preceding or its succeeding source code
entity. We analyzed the co-evolution of code and comments in eight different open source
and closed source software systems. We found with statistical significance that (1) the
relative amount of comments and source code grows at about the same rate; (2) the type of
a source code entity, such as a method declaration or an if-statement, has a significant
influence on whether or not it gets commented; (3) in six out of the eight systems, code and
comments co-evolve in 90% of the cases; and (4) surprisingly, API changes and comments
do not co-evolve but they are re-documented in a later revision. As a result, our approach
enables a quantitative assessment of the commenting process in a software system. We can,
therefore, leverage the results to provide feedback during development to increase the
awareness of when to add comments or when to adapt comments because of source code
changes.

Over 50% of the comment
changes are related to
source code changes

Newly added code gets
barely commented

Growth factor of code and
comments are equal over
time

50

Pharo class comment co-evolution

What do class comments tell us? An investigation of comment
evolution and practices in Pharo Smalltalk

Pooja Rani - Sebastiano Panichella - Manuel
Leuenberger - Mohammad Ghafari - Oscar
Nierstrasz

Received: date / Accepted: date

Abstract Previous studies have characterized code comments in various programming lan-
guages, and have shown how a high quality of code comments is crucial to support program
comprehension activities and to improve the effectiveness of maintenance tasks. However,
very few studies have focused on the analysis of the information embedded in code com-
ments. None of them has compared developer practices to write comments following the
standard guidelines or analyzed these characteristics in the Pharo Smalltalk environment.

These class commenting practices have their origins in Smalltalk-80, going back 40
years. Smalltalk traditionally separates class comments from source code, and offers a brief
template for entering a comment for newly-created classes. These templates have evolved
over the years, particularly in the Pharo environment. This paper reports the first empirical
study investigating commenting practices in Pharo Smalltalk. As a first step, we analyze
class comment evolution over seven Pharo versions. Then, we quantitatively and qualita-
tively analyze class comments of the most recent version of Pharo, to investigate the infor-
mation types of Pharo comments. Finally, we study the adherence of developer commenting
practices to the class template over Pharo versions.

The results of this study show that there is a rapid increase in class comments in the ini-
tial three Pharo versions, while in subsequent versions developers added comments to both
new and old classes, thus maintaining a similar ratio. In addition, the analysis of the seman-
tics of the comments from the latest Pharo version suggests that 23 information types are
typically embedded in class comments by developers and that only seven of them are present
in the latest Pharo class comment template. However, the information types proposed by the
standard template tend to be present more often than other types of information. Addition-
ally, we find that a substantial proportion of comments follow the writing style of the tem-
plate in writing these information types, but they are written and formatted in a non-uniform
way. This suggests the need to standardize the commenting guidelines for formatting the

51

Pharo Comment Evolution

8000 - Without comments

. With comments

6000 -

4000
B I I I
0
1 2 3 - 5 6 7

Pharo versions

#Classes

1

52

Pharo class comment evolution

Classes

8000

7000

6000

5000

4000

3000

2000

100

(=]

(=]

2 3 4 5 6 7

Pharo versions

New classes
Old classes unchanged
m Old classes only comment changed
m Old classes only code changed
m Old classes comment and code changed

53

Pharo class comment co-evolution

What do class comments tell us? An investigation of comment
evolution and practices in Pharo Smalltalk

Pooja Rani - Sebastiano Panichella - Manuel
Leuenberger - Mohammad Ghafari - Oscar
Nierstrasz

Received: date / Accepted: date

Abstract Previous studies have characterized code comments in various programming lan-
guages, and have shown how a high quality of code comments is crucial to support program
comprehension activities and to improve the effectiveness of maintenance tasks. However,
very few studies have focused on the analysis of the information embedded in code com-
ments. None of them has compared developer practices to write comments following the
standard guidelines or analyzed these characteristics in the Pharo Smalltalk environment.

These class commenting practices have their origins in Smalltalk-80, going back 40
years. Smalltalk traditionally separates class comments from source code, and offers a brief
template for entering a comment for newly-created classes. These templates have evolved
over the years, particularly in the Pharo environment. This paper reports the first empirical
study investigating commenting practices in Pharo Smalltalk. As a first step, we analyze
class comment evolution over seven Pharo versions. Then, we quantitatively and qualita-
tively analyze class comments of the most recent version of Pharo, to investigate the infor-
mation types of Pharo comments. Finally, we study the adherence of developer commenting
practices to the class template over Pharo versions.

The results of this study show that there is a rapid increase in class comments in the ini-
tial three Pharo versions, while in subsequent versions developers added comments to both
new and old classes, thus maintaining a similar ratio. In addition, the analysis of the seman-
tics of the comments from the latest Pharo version suggests that 23 information types are
typically embedded in class comments by developers and that only seven of them are present
in the latest Pharo class comment template. However, the information types proposed by the
standard template tend to be present more often than other types of information. Addition-
ally, we find that a substantial proportion of comments follow the writing style of the tem-
plate in writing these information types, but they are written and formatted in a non-uniform
way. This suggests the need to standardize the commenting guidelines for formatting the

Over 50% of the comment
changes are related to
source code changes

Newly added code gets
commented often

Growth factor of code and
comments are not equal
over time

54

Automatic generation and
summarization of comments

55

Code summaries

“Automatically generated, short, yet accurate descriptions of
source code entities’.

They give more information than just the header or the name
of an artifact.

Significantly shorter and faster to read than the source code
they summarize

56

Example of natural language summaries

wid Text Compactor rome

Free Online Automatic Text Summarization Tool About

Follow these simple steps to create a summary of your text.

Step 1
Type or paste your text into the box.

family moved to Munich where Hermann Einstein and his brother Jakob founded the electrical engineering company Einstein & Cie. Albert
Einstein's sister Maria, called Maja, was born on November 18, 1881. Einstein's childhood was a normal one, except that to his family's irritation,
he learnt to speak at a late age. Beginning in 1884 he received private education in order to get prepared for school. 1885 he started learning to

Z

Step 2

Drag the slider, or enter a number in the box, to set the percentage of text to keep in the
summary.

—) D 35 %

https://www.textcompactor.com/

Example of natural language summaries

ATe:

Free Online .

Follow these simple steps to cre

Step 1
Type or paste your text into the b

family moved to Munich where Hermann Einstein an
Einstein's sister Maria, called Maja, was born on No
he learnt to speak at a late age. Beginning in 1884 h
play violin. Beginning in 1885 he received his primar

Step 2

Drag the slider, or enter a number in the box, to set the percentage of text to keep in the
summary.

—)} > | 35 %

Step 3
Read your summarized text. If you would like a different summary, repeat Step 2. When you

are happy with the summary, copy and paste the text into a word processor, or text to speech
program, or language translation tool

Albert Einstein was born on March 14, 1879 in Ulm, the first child of the Jewish couple
Hermann and Pauline Einstein, née Koch. In June 1880 the family moved to Munich where
Hermann Einstein and his brother Jakob founded the electrical engineering company Einstein
& Cie. However, as this education was not to his liking and, in addition, he did not get along
with his form-master he left this school in 1894 without a degree and joined his family in Italy
where they had settled meanwhile.

In order to be admitted to study at the "Eidgenoessische Polytechnische Schule" (later
renamed ETH) in Zurich, Einstein took his entrance examination in October 1895.

Z

Step 2

Drag the slider, or enter a number in the box, to set the percentage of text to keep in the

summary.

—) D 35 %

https://www.textcompactor.com/

58

Example of natural lanquage summaries
. What happened?

MILAN, Italy, April 18. A small airplahe ci-ashed into a government
building in héart of Milan, setting the top floors on fire, Italian
police reported. Thiere were no immediate rezports on casualties as

rescue workers It in 1 i omaial
district. Few d When, where? ilaly How many VlCtlmS?}

about it immediately set off fears that it might be a terrorist act
akin to the Sept. 11 attacks in the United States. Those fears'sent

ina to session lows in late thorning trading.
Says who?

Witnesses reported hearing a loud explosion (i Wasita terrPrlSt aCt?]
office building, which houses the administrative offices of the local
Lombardy region and sits nextto the city's ceritral train station.

Italian state television said the crash put a hole in the 25th floor

of the Pirelli building. News reports.said smoke poured from the
opening. Police and ambulances rushed\to the building in downtown
Milan. No further details were immediately available.

[What was the target?]

59

Comment summaries

ﬂText Compactorh Home|

Free Online Automatic Text Summarization Tool

Follow these simple steps to create a summary of your text.

Step 1

Type or paste your text into the box.

Class: FTTreeltem

I am an abstract class to define an Item use by a tree data source of Fast table.

Description

I define the basics methods needed by a FTTreeDataSource.
I use FTTreeItem to manage my elements and I am use by a FTFastTable.

Public API and Key Messages

. #data. anObject from: aFTTreeDataSource

This is my constructor that is use by FTTreeDataSource and myself

Example o

Step 2

Drag the slider, or enter a number in the box, to set the percentage of text to keep in the
summary.

ﬂ > | 50 %
Step 3

Read your summarized text. If you would like a different summary, repeat Step 2. When you
are happy with the summary, copy and paste the text into a word processor, or text to speech
program, or language translation tool

Class: FTTreeltem
I am an abstract class to define an Item use by a tree data source of Fast table.
Description

I define the basics methods needed by a FTTreeDataSource.
I use FTTreeltem to manage my elements and I am use by a FTFastTable.

Public API and Key Messages

o #data. /

https://www.textcompactor.com/

Navigating classes

package net.sourceforge.atunes.kernel.modules.repository.audio;

import java.io.File;[]

public final class AudioFile implements AudioObject, Serializable, Comparable<AudioFile> {
private static final long serialVersionUID = -1139001443603556703L;
private static transient Logger logger = new Logger();

private File file;

protected Tag tag;

private List<File> externalPictures; \/\/E} |()()L(Eit:

protected long duration;
protected long bitrate;

protected int frequency; - /\162,7769 C)f t/769 (3/63535;

protected long readTime;

private int stars = 0; - Attrlbutes

public AudioFile(String fileName) {

} readFileCnew File(fileName)); - Methods
private void readFile(File file) { - DG,DGI’?O'GHC/GS between classes

this.file = file;

if (lisApeFile(file) && !isMPCFile(file)) {
introspectTags();
readAudioProperties(this);

}

this.readTime = System.currentTimeMillis();

https://github.com/larsb/atunesplus/blob/master/aTunes/src/main/java/net/sourceforge/atunes/kernel/modules/repository/audio/AudioFile.java

Java class summaries

JSummarizer: An Automatic Generator of Natural
Language Summaries for Java Classes

Laura Moreno', Andrian Marcus', Lori Pollock?, K. Vijay-Shanker”

'Department of Computer Science
Wayne State University
Detroit, MI, USA
{lmorenoc, amarcus} @wayne.edu

Abstract—JSummarizer is an Eclipse plug-in for automatically
generating natural language summaries of Java classes. The
summary is based on the stereotype of the class, which implicitly
encodes the design intent of the class and is automatically
inferred by JSummarizer. The tool uses a set of predefined
heuristics to determine what information will be reflected in the
summary, and it uses natural language processing and generation
techniques to form the summary. The generated summaries can
be used to re-document the code and to help developers to easier
understand large and complex classes.

Index Terms—Source code summarization, program
comprehension, d ation generation.

1. INTRODUCTION

During software evolution, depending on the task at hand,
developers need to understand relevant parts of the code. In
consequence, developers often spend more time reading code
[1] than writing it. Good leading comments help when reading
code, by providing developers with at least a superficial
understanding of the source code artifact that they describe.
However, outdated or missing comments are very common and
developers often must read more of the code or turn to external
documentation in order to gain any understanding of the code
relevant to their task.

An obvious solution to this problem would be enforcing the
creation and continuous update of internal documentation.
While such a solution may work with new code, it will likely
not work on existing, poorly-documented code. A more
suitable approach is automatically generating summaries that
describe the code. Such summaries can be used for re-

Computer and Information Sciences Department
University of Delaware
Newark, DE, USA
{pollock, vijay}@cis.udel.edu

II. CLASS SUMMARIZATION

Summarizing a class is more complex than simply listing its
methods and/or its attributes. Object-Oriented (OO) classes
have generic responsibilities (i.e., domain-independent) and
specific responsibilities (i.e., domain-dependent). For example,
the main functionality of a class may be providing data (generic
role) of a particular file, such as an audio file (specific role).
Ideally, both roles should be reflected by the class summaries.
While the specific responsibilities can be inferred from the
textual information embedded in the source code (e.g.,
identifiers or comments), the generic responsibilities of a class
must be inferred from its design. To this end, JSummarizer has
a component that automatically infers the class stereotype [2],
based on the stereotypes of its member methods. Class
stereotypes are low-level patterns that capture the design intent
of the class. For example, a class consisting mostly of methods
that are in charge external objects (i.e., factory and controller
methods) is stereotyped as controller.

Next, JSummarizer uses the class stereotype to determine
what parts of the class should be reflected in the summary,
mostly fields and attributes of the class. The summary of a
class generated by JSummarizer consists of:

e a general description based on its interfaces,

superclass, and/or stereotype;

e the characterization of its structure given by the

definition of its class stereotype;

e a description of its behavior provided by the relevant

methods, grouped in blocks; and

o the enumeration of'its inner classes. ifthevexijst, |

Generate class
summaries

Decide the information
to generate

Gather the heuristics

Generate the info

62

Workflow

Java =
class

Java —
project

_

(Stereotype

identification
Structural attributes
extraction
Method stereotype
identification
Class stereotype
identification

Content Selection \

Stereotype-based
filter
Access-level filter

Text Generation

NL phrase
generation
Summary
construction

JSummarizer: An automatic generator of natural language summaries for Java classes by Moreno

—> (Class
summary

63

Summary

General
description

Inner classes

C] org.argouml.ui.explorer.ExplorerTreeModel

A TreeModelUMLEventListener, ItemListener im
DefaultTreeModel extension for exp

external objects, i.e., the majority of its methods are controllers or object

creators.

It allows managing:

e children; and
e structure changed.

It also allows:

handling model element changed;

removing node from parent;

handling model element added;

handling model element removed; and

inserting node into new child mutable tree node. _|

. N

plementation, and
lorer tree models. This class controls

Description
of the
structure

Description of
the behavior

64

Questions when summarizing classes

What information to include in the summaries?

How much information to include in the summaries?

How to generate and present the summaries?

65

Content adequacy vs. expressiveness

Missing some information

Not easy to understand

66

To overcome these limitations...

Researchers proposed to detect source code
descriptions from external sources:

Mailing list and issue trackers

StackOverflow discussions

67

Linguistic Analysis

Linguistic ana

©®® TAACO20

lysis for English

Tool for the Automatic Analysis of Cohesion

Instructions

~Options

~Source text analysis (optional)

~Your selected source text:

(No Source Text Chosen) Select
Source text options
(| Key item overlap | | LSA [| LDA || Word2vec
Lemma tokens to analyze for lexical overlap and TTR
All Content || Function [| Noun || Pronoun
| Argument 2 Verb 1 ADJ “1ADV || N-grams

Lexical overlap options
@ Sentence Paragraph B Adjacent || Adjacent 2

LsA @ LDA Word2vec || Synonym overlap

Other indices

(Semantlc overlap opnons
(TTR [Connectives | | Givenness

’ Select All Select None |

Diagnostic output options
(Output diagnostic file £ Output tagged files
rData Input

~Your selected input folder:
..inguistic Select

~Your selected output filename:
.../Taaco-results.csv Select

Run Program

Process Texts

Processed 2 Files

TAACO

{ngram Status

69

Linguistic analysis for Englis

©®® TAACO20

Tool for the Automatic Analysis of Cohesion

Instructions

~Options

~Source text analysis (optional)

~Your selected source text:
(No Source Text Chosen) Select

Source text options
(| Key item overlap || LSA [| LDA [| Word2vec

Lemma tokens to analyze for lexical overlap and TTR
All Content || Function || Noun || Pronoun
| Argument 2 Verb | ADJ | ADV || N-grams

Lexical overlap options
Sentence | | Paragraph [Adjacent || Adjacent 2

LsA @ LDA Word2vec || Synonym overlap

Other indices

(Semantlc overlap optmns
(TTR Connectives | | Givenness

‘ Select All Select None ‘

Diagnostic output options
(Output diagnostic file £ Output tagged files

rData Input

~Your selected input folder:

..inguistic Select
~Your selected output filename:

.../Taaco-results.csv Select

Run Program

Process Texts

Processed 2 Files

TAACO

(ngram Status

.Q. [J TAALES Version 2.2
Tool for the Automatic Analysis of Lexical Sophistication
Instructions
Options

BNC N-gram BNC Word MRC SUBTLEXus

Frequency and Range
’V Frequencies Frequencies Frequencies Frequencies

Academic Formulas List £2 Academic Word List AWL Sublists
Other Index Types

(Academic Language

Age of Contextual ELP Word ELP Word
Exposure Distinctiveness Information Recognition Norms
= S
Select All Hypernymy 2 Psycholinguistic Select None
& Polysemy Norms
~COCA Options

(Word Frequency and Range

Select All academic fiction magazine news spoken

~Bigram Frequency, Range, and Association Strength——————

Select All academic fiction magazine news spoken

(Trigram Frequency, Range, and Association Strength

Select All academic | fiction magazine news spoken

Clear All COCA Choices

Data Input
Select Input Folder

Your selected input folder:
(.../linguistic ‘

Select Output Filename

Include Individual ltem Output?

Your selected output filename:

’V .../results.csv J
Run Program
’V Process Texts ‘

TAALES

70

Linguistic analysis for English

YI " TAACO 2.0

Tool for the Automatic Analysis of Cohesion

Instructions

Options

~Source text analysis (optional)

~Your selected source text:
(No Source Text Chosen) Select

Source text options
(Word2vec

| Key item overlap | | LSA [| LDA [

Lemma tokens to analyze for lexical overlap and TTR

All Content || Function [| Noun || Pronoun
Argument 2 Verb 1 ADJ ~ | ADV || N-grams
Lexical overlap options
(. Sentence Paragraph B Adjacent || Adjacent 2
Semantic overlap optmns
(LsA @ LDA Word2vec || Synonym overlap
Other indices
(TTR Connectives | | Givenness
‘ Select All Select None ’

Diagnostic output options
(Output diagnostic file £ Output tagged files

rData Input

~Your selected input folder:
..inguistic Select

~Your selected output filename:
.../Taaco-results.csv Select

Run Program

Process Texts

Program Status
(Proces&ad 2 Files

TAACO

.g. o TAALES Version 2.2
Tool for the Automatic Analysis of Lexical Sophistication

Instructions

Options
"Frequency and Range

BNC N-gram BNC Word MRC
Frequencies Frequencies

SUBTLEXus

Frequencies Frequencies

(Academic Language

Academic Formulas List £2 Academic Word List AWL Sublists
Other Index Types
Age of Contextual ELP Word ELP Word

Exposure Distinctiveness Information Recognition Norms
= S
Select All Hypernymy 2 Psycholinguistic Select None
& Polysemy Norms
~COCA Options

Select Al academic | fiction

Word Frequency and Range
’V magazine news spoken

~Bigram Frequency, Range, and Association Strength

Select All academic fiction magazine news spoken

(Trigram Frequency, Range, and Association Strength

Select All academic fiction magazine news spoken

Clear All COCA Choices

Data Input
Select Input Folder

Your selected input folder:
(.../linguistic ‘

Select Output Filename

Include Individual ltem Output?

Your selected output filename:

’V .../results.csv J
Run Program
(Process Texts ‘

TAALES

]... ARTE

--Step 1 - Choose File(s)--
Choose File(s)
--Step 2 - Choose Tests--
Flesch-Reading Ease
Flesch-Kincaid Readability
Automated Readability Index
SMOG Readability Formula
New Dale-Chall Readability Formula
CAREC
CAREC_M
CARES
CML2RI

--Step 3 - Save results as--
ARTE-results
Get random file name
Choose directory to save file
--Step 4 - Run Tests--

Run Tests

Done!

ARTE

71

Style analysis of Java comments

Metric-based methods

Automatic Quality Assessment of
Source Code Comments: The JavadocMiner

Ninus Khamis, René Witte, and Juergen Rilling Com ment too Short, too Iong

Department of Computer Science and Software Engineering
Concordia University, Montréal, Canada

Abstract. An important software engineering artefact used by develop- C h e C k d O Cu m e n ta b I e ite m S

ers and maintainers to assist in software comprehension and maintenance
is source code documentation. It provides insights that help software engi- (tag S)
neers to effectively perform their tasks, and therefore ensuring the quality

of the documentation is extremely important. Inline documentation is
at the forefront of explaining a programmer’s original intentions for a
given implementation. Since this documentation is written in natural
language, ensuring its quality needs to be performed manually. In this
paper, we present an effective and automated approach for assessing R d b' I 't
the quality of inline documentation using a set of heuristics, targeting ea a I I y
both quality of language and consistency between source code and its
comments. We apply our tool to the different modules of two open source
applications (ArgoUML and Eclipse), and correlate the results returned
by the analysis with bug defects reported for the individual modules in
order to determine connections between documentation and code quality.

1 Introduction

“Comments as well as the structure of the source code aid in program understanding
and therefore reduce maintenance costs.” — Elshoff and Marcotty (1982) [1]

72

Style analysis of Java comments

Quality Analysis of Source Code Comments

Daniela Steidl

Benjamin Hummel

Elmar Juergens

CQSE GmbH, Garching b. Miinchen, Germany
{steidl,hummel,juergens } @cgse.eu

Abstract—A significant amount of source code in software
of , parts of the code which are
lgnored by the compiler. Comments in code represent a main
source for system documentation and are hence key for source
code understanding with respect to deve]opment and mainte-
nance. Although many software d pers
to be crucial for program understanding, existing approaches
for software quality analysis ignore system commenting or make
only quantitative claims. Hence, current quality analyzes do not
take a significant part of the software into account. In this work,
we present a first detailed approach for quality analysis and

t of code ts. The approach provides a model for
comment quality which is based on different comment categories.
To ize we use hine learning on Java and

C/C++ programs The model comprises different quality aspects:
by providing metrics tailored to suit specific categories, we show
how quality aspects of the model can be assessed. The validity
of the metrics is evaluated with a survey among 16 experienced
software developers, a case study d trates the rel e of
the metrics in practice.

1. INTRODUCTION

A significant amount of source code in software systems
consists of comments, which document the implementation
and help developers to understand the code, e.g., for later
modification or reuse: Several researchers have conducted
experiments showing that commented code is easier to un-
derstand than code without comments [1], [2]. Comments are
the second most-used documentary artifact for code under-
standing, behind only the code itself [3]. In addition, source
code documentation is also vital in maintenance and forms an
important part of the general documentation of a system. In
contrast to external documentation, comments in source code

as they do not enhance system understanding and quantitative
measures cannot detect outdated/ useless comments.

Furthermore, a complete model of comment quality does
not exist. Coding conventions, e. g., marginally touch on the
topic of commenting code but mostly lack depth and precision
[8]. So far, (semi-) automatic methods for comment quality
assessment have not been developed as comment analysis is a
difficult task: Comments comprise natural language and have
no mandatory format aside from syntactic delimiters. Hence,
algorithmic solutions will be heuristic in nature.

Problem Statement. Current quality analysis approaches ig-
nore system commenting or are restricted to the comment ratio
metric only. Hence, a major part of source code documentation
is ignored during software quality assessment.

Contribution. Based on comment classification, we provide
a semi-automatic approach for quantitative and qualitative
evaluation of comment quality.

‘We present a semi-automatic approach for comment quality
analysis and assessment. First, we perform comment cat-
egorization both for Java and C/C++ programs based on
machine learning to differentiate between different comment
types. Comment categorization enables a detailed quantitative
analysis of a system’s comment ratio and a qualitative analysis
tailored to suit each single category. Comment categorization
is the underlying basis of our comprehensive quality model.
The model comprises quality attributes for each comment cate-
gory based on four criteria: consistency throughout the project,
completeness of system documentation, coherence with source

Metric-based method

Check whether comments
are similar to method names

73

Future work

Evaluate if a comment is good or not
Detect inconsistent comments

Propose refactoring of comments

74

ummary

Understanding code...

Happy Developers
Not So Happy Developers

)

Absence of Comments in the Code

Comments in the Code

Code comment types
Documentation (/** ... */)

(also used for packages / classes / methods

Block comments (/* ... */)

« Inline comments (//...)

What is a good comment?
Helps other developers in working with your code
- Describes why, and not how
- Reveals intent, limitation, assumptions, design decisions

- Justifies the violation of a programming style

Comment analysis tools

- Syntax
- Semantics
Style

N
—(C)-=

Workflow

E) Bl
il B/
prjects com Tcmiques Foaures Loarming Prase Evaaton
J—— At Gistcaton s Camt pes |
46

Summary

@ org.argoumLui.explorer.ExplorerTreeModel

ATrectiode 1o - nd
efaul 421 extension for explorer tree models This dlass controls_
‘external

objects, i.e, the majority of its methods are controllers or object 3
eators.
It allows managing

o children; and
o structure changed.

Italso allows: Description of
o handling model element changed: U behenog
o removing node from parent
o handling model element added:

« handling model element removed: and
o inserting node into new child mutable tree node.

SJNS(Iassde(\aves(hehe\ne'dass';v', xexlodater

75

