
Crash Course

Lecturer: Nataliia Stulova
Teaching assistant: Mohammadreza Hazirprasand

Software Composition Group
University of Bern
16 September 2020

Part 1: Java ecosystem

2

Java is...

3

● a programming language

● an environment to run applications written in this language

WORA: Write Once Run Anywhere

Java bytecode:

● intermediate representation interpreted by the Java Virtual Machine (JVM)

● does not depend on exact hardware architecture (= run anywhere)

4

*.JAVA
compiler

*.CLASS

Java VM

program
source

Java
bytecode

machine
code

Java lingo

5

● Java SE/EE/ME: Java Standard/Enterprise/Micro platform

○ collections of tools to develop Java programs and the environment to
run Java programs

● JDK: Java Development Kit

○ an implementation of one of the platforms (differ by sets of tools)

○ we will use some in this course: java, javac, javadoc, jar

● JRE: Java Runtime Environment

● JVM: Java Virtual Machine

Part 2: Java syntax

6

Java programming language

7

● object-oriented

○ (almost) everything is an object of a class

○ classes describe how the data is represented (via

attributes) and manipulated (via methods)

● imperative

○ programmer specifies computational steps

Hello, World!

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello, World");
 }
}

8

main() method - application entry point
everything is an object of a class

The main() is the starting point for JVM to start execution of a Java program. Without the main()
method, JVM will not execute the program.

Hello, World! (anatomy)

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello, World");
 }

}

9

access modifiers class name

keyword

method return type
method argument

method signature

method body

Primitive and reference types

● Primitive data types (hold values)

○ byte < short < char < int < long < float < double

○ boolean

● All other types are reference types (hold references to objects)

● null - special reference, does not refer to anything, “empty” reference

10

Operators

For primitive types:

● Assignment: =
● Arithmetic: +, -, *, /, % (integer division)

● Comparison: >, >=, <, <=, == (equality) , != (inequality)

● Conditional: && (AND), || (OR), ! (NOT)

Different in reference types:

● Reference equality: ==
● Contents equality: .equals(...)

11

Operators can be overloaded -
given new meaning -
in reference types.

For example, + is used for
concatenation in Strings:

String s1 = “Hel” + “lo”;
String s2 = “Hello”;

System.out.println(
s1.equals(s2));

Conditionals

Executing different code depending on some
logical (=boolean-valued) conditions:

if (CONDITION1) {
 ...

} else if (CONDITION2) {
 ...

} else {
 ...

}

12

Executing different code depending on fixed
values of a variable:

switch (VARIABLE) {
 case VALUE1:
 ...
 break;
 case VALUE2:
 ...
 break;
 default:
 ...
 break;
}

Loops

Java has 3 kinds of loops...
● for (i = 0; i < N; i++) { code }

● while (condition) { code }

● do {code} while (condition)

...and two special loop statements

● continue - start next loop iteration

● break - exit the loop

13

for (int i = 0; i < 5; i++) {
 System.out.println(i);
}

for (int i = 0; i < 5; i++) {

 if (i % 2 == 0) continue;

 if (i == 3) break;

 System.out.println(i);
}

skip even
numbers

prints numbers 0-5

prints number 1

stops
reaching 3

Exceptions
Handling unexpected behavior:

try {
 ...code that might throw an exception

} catch (ExceptionType1 e1) {
 ...process exception

} catch (ExceptionType2 e2) {
 ...

} finally {
 ...code that always executes.
}

14

public void myMethod() throws IOException{
 ...
 throw new IOException();
}

If a method does not handle an exception, the method
must declare it using the throws keyword at the end of a
method's signature.

public void myMethod(double foo) throws IOException{
 ...
 myOtherMethod();
}

this method actually
throws an exception

IO: Input and Output

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello, World");
 }

}

15

Program input:
- CLI arguments (here)
- System.in

Program output:
- System.out (here)
- System.err

Stream IO

Reading from input stream:

The code on the right:
1. creates a Scanner object
2. uses it to read a String and an int
3. prints to the output stream, and
4. closes the Scanner object because there is

no more input to read

Hint: always close the input stream!

16

Scanner scanner = new Scanner(System.in);

String myString = scanner.next();
int myInt = scanner.nextInt();
System.out.println("myString is: " + myString);
System.out.println("myInt is: " + myInt);

scanner.close();

File IO

Reading a line from a text file

File myFile = new File("PATH/test.txt");
Scanner myReader = new Scanner(myFile);

String textLine = myReader.nextLine();
System.out.println(textLine);

myReader.close();

17

Writing a line to a text file

FileWriter myWriter = new FileWriter("PATH/test.txt");

myWriter.write("Hello, world!");

myWriter.close();

You might need to close the file stream explicitly in many cases

Comments

/** This is a class-level doc comment.
 */
public class HelloWorld {

 /** This is a method-level doc comment. This is free-text comment part.
 * @param args This is tagged comment part
 */
 public static void main(String[] args) {

 // this is an inline comment
 System.out.println("Hello, World");
 }

/* this is a
 multi-line block comment */
}

18

Part 3: Java applications

19

Compiling and running

Java code is usually organized as a project.

Project file hierarchy:

● project (collection of packages)
○ package (collection of classes)

■ class

20

3 options to produce an executable program:

● CLI: text editor + java, javac, jar

● IDE: Eclipse, NetBeans, IntelliJ,

VisualStudio Code,...

● Build systems: Maven, Gradle

No-IDE compilation

Make a folder with the following structure:

- your-program-name
- Main.java
- other *.java files
- MANIFEST.MF

The manifest file should specify main class:

Main-Class: Hello

21

Option 1:

$ javac *.java
$ java Main

Option 2:

$ javac *.java
$ jar cfm main.jar MANIFEST.MF *.class
$ java -jar hello.jar

Coding conventions: why?

80% of the lifetime cost of a piece of software goes to maintenance.

Hardly any software is maintained for its whole life by the original author.

Code conventions improve the readability of the software, allowing engineers to understand new

code more quickly and thoroughly.

 - Code Conventions for the Java™ Programming Language

22

Coding conventions: which?

Google Java Style Guide

23

Code Conventions for the

Java™ Programming

Language

● most IDEs have support for project-level style set up

● styles can differ between projects, so agree with collaborators

https://google.github.io/styleguide/javaguide.html
https://www.oracle.com/java/technologies/javase/codeconventions-contents.html
https://www.oracle.com/java/technologies/javase/codeconventions-contents.html
https://www.oracle.com/java/technologies/javase/codeconventions-contents.html

Unit testing
public class MyUnit {
 public String concatenate(String one, String two){
 return one + two;
 }
}

public class MyUnitTest {
@Test
public void testConcatenate() {

 MyUnit myUnit = new MyUnit();
 String result = myUnit.concatenate("one", "two");

 assertEquals("onetwo", result);

}
}

24

unit of code under test: method
concatenate()

unit test for the method
concatenate()

Part 4: practice

25

Exercises

● The simplest program: Hello, world!

● The unit test example program: string concatenation

● A printer program that: reads a number N, if it is even prints N characters ‘-’ to the standard output

stream, if it is odd - prints N characters ‘=’ to the standard error stream.

○ Stream IO, conditionals, operators, loops, comments, [exceptions]

● A program that copies text files: reads a line from one file and writes it to another file

○ File IO, conditionals, operators, loops, comments, exceptions, unit tests

26

Further resources* on Java

27

* section added on 18.09.2020

28

Online crash courses

Udemy: Java Beginners Program - A crash course

University of California, Berkeley: A Java Crash Course

General Java tutorials

Tutorial sites

https://www.javatpoint.com/java-tutorial

https://www.tutorialspoint.com/java/index.htm

https://www.w3schools.com/java/default.asp

https://howtodoinjava.com/

https://www.udemy.com/course/java-beginners-program-a-crash-course/
https://cs61bl.org/su20/java/
https://www.javatpoint.com/java-tutorial
https://www.tutorialspoint.com/java/index.htm
https://www.w3schools.com/java/default.asp
https://howtodoinjava.com/

Thematic resources

● Code examples collection of basic Java concepts

● StackOverflow - programming community Question/Answer website

● Maven in 5 minutes

● Unit testing with JUnit:

○ https://www.tutorialspoint.com/junit/junit_test_framework.htm

○ https://www.vogella.com/tutorials/JUnit/article.html

● Codility - a website with programming challenges

29

https://github.com/navinreddy20/Java-Tutorial-for-Beginners-Crash-Course
https://stackoverflow.com/questions/tagged/java
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://www.tutorialspoint.com/junit/junit_test_framework.htm
https://www.vogella.com/tutorials/JUnit/article.html
https://app.codility.com/programmers/lessons/1-iterations/

