
SPECIAL ISSUE—VISSOFT 2016

Towards Actionable Visualization for Software Developers

LeonelMerino,MohammadGhafari andOscar Nierstrasz

Software Composition Group, University of
Bern, Bern, Switzerland
Correspondence
Email: {merino, ghafari, oscar}@inf.unibe.ch

Abstract
Abundant studies have shown that visualization is advantageous for software developers, yet
adopting visualization during software development is not a common practice due to the large
effort involved in finding an appropriate visualization. Developers require support to facilitate
that task.
Among 368 papers in SOFTVIS/VISSOFT venues, we identify 86 design study papers about the
application of visualization to relieve concerns in software development. We extract from these
studies the task, need, audience, data source, representation, medium and tool; and we charac-
terize them according to the subject, process and problem domain. On the one hand, we support
software developers to put visualization in action by mapping existing visualization techniques
to particular needs from different perspectives. On the other hand, we highlight the problem
domains that are overlooked in the field and needmore support.
KEYWORDS:
software visualization taxonomy, actionable visualization, literature review

1 INTRODUCTION

Software visualization provides enormous advantages for the development process; to name a few, it supports project managers in communicating
insights to their teams 1, it guides testers when exploring code for anomalies 2, it helps analysts tomake sense of multivariate data 3, and it aids new
developers in open software communities 4. However, visualization is not yet commonly used by developers. More than a decade ago researchers
wondered why is software visualization not widely used? 5. They observed that one of the reasons is that efforts in software visualization are out of
touch with the needs of developers 6. Several attempts have tried to fill in the gap and encourage developers to adopt visualization. For instance,
Maletic et al. 7 proposed a taxonomy of software visualization to support various tasks during software development; Schots et al. 8 extended this
taxonomy by adding the resource requirements of visualizations, and providing evidence of their utility; Storey et al. 9 proposed a framework to
assess visualization tools; Kienle et al. 10 performeda literature survey to identify quality attributes and functional requirements for software visual-
ization tools; Padda et al. 11 proposed some visualization patterns to guide users in understanding the capabilities of a given visualization technique;
Sensalire et al. 12 classified the features that users require in software visualization tools; and Merino et al. 13 proposed meta-visualization of key-
words that represent development concerns connected to visualization examples for helping developers to find suitable visualizations. However,
the lack of organization among visualization approaches is still an important barrier to finding and using them in practice 8. In fact, developers are
still unaware of existing visualization techniques to adopt for their particular needs. A few studies have tried to address this issue by investigating
to which software engineering tasks particular visualization techniques have been applied 14,15,16. Nevertheless, we believe these studies are still
too coarse-grained tomatch a suitable visualization to their concrete needs.
Whendevelopersperformaparticular programming task theyask somequestions suchas “what code is related to a change?”or “where is thismethod

called?” Several studies have investigated such questions and classified them into groups 17,18,19. Indeed, such questions reflect developer needs, and
webelieve thatmapping them to existing types of visualization can help developers to adopt visualization in their dailywork. In particular, wewould
like to answer the following research questions:



2

RQ1. What are the characteristics of visualization techniques that support developer needs?
RQ2. Howwell are developer needs supported by visualization?
We believe answering these questions, (1) helps practitioners to find suitable visualization for their specific needs, and (2) assists researchers in

the field to identify needs with little visualization support.
This article is anextensionof previouswork 20 inwhichweanalyzed65design studypapers thatweclassifiedby task, need, audience, data source,

representation,mediumand tool.Wegroupedneedsby theproblemdomains thatwediscussed in relation to theproposedvisualization techniques.
The extension we present here consists of 86 design study papers, i.e., a 32% increase in size (Tables 2 and 3 ). In addition to a problem-oriented
classificationwe also perform subject (Table 11 ) and process-oriented (Table 12 ) classifications, we cross-validate our findings by consulting 57%
of the authors of the included studies, and finally we thoroughly discuss the evolution of the community in software visualization.
In particular, we review 86 design studies from which we extracted task, need, audience, data source, representation, medium and tool. We

characterize them according to the subject, process and problem domain that we discuss in relation to the proposed visualization techniques. We
found that one third of the studies combined various visualization techniques, but most of them belong to one of the following three types: (1)
techniques that use geometric transformations to explore structure and distribution e.g., Parallel Coordinates, (2) stacked techniques that are tailored
to present data partitioned in a hierarchical fashion e.g., Treemap, and (3) pixel-oriented techniques that are suitable for displaying large amounts of
data e.g., Table lens.We found that software visualizations address problem domains that receive diverse levels of attention from developers. That
is, many visualizations have been proposed to tackle problems in domains that are highly important for developers such as history and debugging,
but also in domains that are reported less frequently among developers such as dependencies and concurrency. In contrast, there is little support
for needs in contract and policy domains, which are fairly important for developers.
The remainder of the paper is structured as follows: Section 2 describes the methodology that we followed to collect relevant literature and

select design studies proposed in the software visualization field; Section 3 presents our results by classifying them based on their task, need, audi-
ence, data source, representation, tool, andmedium 7; Section 4 discusses our research questions and threats to validity of our findings, and Section 5
concludes and presents future work.

2 METHODOLOGY

Weapplied the Systematic Literature Review (SLR) approach, a rigorous and auditable researchmethodology for Evidence-Based Software Engineer-
ing (EBSE). The method offers a means for evaluating and interpreting relevant research to a topic of interest. We followed Keele’s comprehensive
guidelines 21, whichmake it less likely that the results of the literature survey will be biased.

2.1 Data sources and search strategy
We sought papers that are relevant to the aim of this study, i.e., that propose a visualization technique useful to solve a specific problem in software
development. Although such papers are expected to be found across multiple software engineering venues, we decided to collect them from the
complete set of papers published by SOFTVIS 22 and VISSOFT 23. We opted for these two venues becausewe believe their fifteen editions and hun-
dreds of papers dedicated specially to software visualization offer a sound body of literature reflected in the good (B) classification that they obtain
in the CORE ranking 24 (which considers citation rates, paper submission and acceptance rates among other indicators). Figure 1 summarizes the
number of papers collected as well as those included in this study.

2.2 Included and excluded studies
We searched for problem-driven studies in which we could identify the role of the user, specific development needs, a proposed visualization tech-
nique, and an evaluation demonstrating utility. We excluded short papers of one or two pages (like posters, keynotes and challenges) which due to
limited space are unlikely to contain enough detail.We also excluded short papers forwhich a longer version exists. Of the 295 remaining paperswe
selected design study papers that describe how a visualization is suitable for tackling a particular problem in software development. We included
such papers in our study and excluded papers in the other categories proposed by Munzner 25 (evaluation, model, system and technique) because
we considered them unlikely to provide a visualization to tackle a problem in software development.
We classified the types of papers by first reading the abstract, second the conclusion, and finally, in the cases where we still were not sure of

theirmain contribution, reading the rest of the paper. Although some papersmight exhibit characteristics ofmore than one type, we classified them
focusing on their primary contribution. Figure 2 shows the outcome of our classification.We identified 86 design study papers and included them



3

FIGURE 1 The 86 included papers from the collection of 368 papers published in SOFTVIS/VISSOFT venues.

in the study. Although more than two thirds of the papers came from VISSOFT, selected papers that we classify as design studies are moderately
balanced.
A frequent critique of visualization papers is their lack of evaluation. Indeed, Figure 3 shows that papers that take evaluation as theirmain focus

are unusual. The chart also shows an important increment in the number of design study papers in VISSOFT’16, while only a few correspond to
model and systempapers. Traditionally, thenumberof papers in SOFTVISeditions (2003-2010)was consistently higher than inVISSOFTworkshops
(2002-2011). The trend of the publications once theymerged in the VISSOFT conferences (2013-2016) seemsmore influenced by SOFTVIS.
Figure 4 shows a visualization of the universe of 368 papers published in SOFTVIS/VISSOFT 26. In this visualization, rectangles represent

papers, their height encodes the number of pages (a 5-page paper is depicted by a square), and the color is used to identify its venue (VISSOFT in
blue, and SOFTVIS in red).We used the intensity of the color to represent the publication year, thus the darker the color the newer the paper. Edges
connect authors (gray circles) to papers (rectangles). Paper and author nodes are distributed using a force-directed layout. The 86 selected design
study papers are distinguishedby ablack border and a label on top. In the visualization the topology of the community is exposed. A few large groups
of collaborators that agglomerate many publications (for which we labeled a main contributor) contrast with the large number of groups that have
few of them. We identify two main groups: (1) a cohesive one where we labeled the author “Telea, A.”, and (2) another less cohesive but larger one,
where we labeled the author “Lanza, M.”. Although the graph does not show the usual topology of a community (due the lack of collaboration), we
notice that in VISSOFT’16 bothmain groups collaborated in a recent publication 27. The visualization facilitates the observation that in small groups
only one color predominates, thus their publications are not intermingled between SOFTVIS and VISSOFT.Moreover, we observe that the selected
papers are scattered among groups of different size, venues and years of publication. An interactive version of this visualization is available 1.



4

FIGURE 2 Classification of the 295 SOFTVIS/VISSOFT papers by type.

2.3 Data Extraction
Table 1 presents the attributes that we extracted from each paper: 1) task; 2) need; 3) audience; 4) data source; 5) representation; 6) medium; and
7) tool.

TABLE 1 Data extracted from papers.

Attribute Description
Task why the visualization is needed (e.g., testing)
Need which questionsmotivated the visualization
Audience whowill use the visualization (e.g., analyst)
Data source what source of data is visualized (e.g., source code)
Representation what technique is used to represent the data (e.g., pixel-oriented)
Medium where to render the visualization (e.g., wall-disp.)
Tool which tool is used for evaluation (e.g., lviz)

We scanned the papers and identified recurrent sections that are likely to contain the data we sought. In our experience, attributes such as task,
need, audience and data source are frequently described in the evaluation section, while the representation, medium and tool are typically found
in another section dedicated to describe the architectural decisions and implementation of the prototype. Consequently, we extracted the task by
identifying frequent terms used to describe development concerns such as programming, testing, debugging, maintenance, reverse-engineering.
For the need we looked for questions that are used to specify what can be answered with the visualization.When there were no explicit questions,



5

FIGURE 3 Evolution of SOFTVIS/VISSOFT papers by type. From the bottom upwards: Design Study, Evaluation, Model, System, and Technique.

we extracted the goal thatmotivated the need for a proposed visualization. The audiencewas detected by identifying roles that users play in devel-
opment such as programmer, engineer, tester. We extracted the data source by identifying the origin of the software artifacts that are visualized,
such as source code and running system. For the representation we reflected on the description of visualization techniques, analyzed figures, and
looked for their description. We extracted the medium by recognizing in the description the technology required to display the visualization such
as wall display, standardmonitor.We also extracted attributes of tools from the description of the artifact used in the evaluation such as tool name,
and availability. When we were not able to identify an attribute, we searched for common terms already found in other studies. When we still did
not find a description, we reported it as not identified.
We validated the quality of the extracted data by asking the authors of the included studies to review the data of their papers. In particular, for

each study we prepared a message that includes the extracted data and classification. We sent the message to the main author of each study, and
when their addresswas not longer valid orwe did not receive an answer after someweeks, we sent themessage to co-authors. In the few cases that
the same person was the main author of several studies, we only sent the message to the co-authors to balance the workload. Unfortunately, we
could not contact the authors of 10 studies as their reported e-mail addresseswere no longer valid (dash-marked in Tables 2 and3 ). Among the 76
remaining studies, 43 of them (i.e., 57%) contributed to our survey (check-marked in Tables 2 and 3 ). Eight studies (S1, S3, S19, S30, S55, S62, S67,
S68) completely agreed with our classification (we appreciate the rigorous feedback from S30, S55, S67, and S68, which effectively improved this
work); nine studies (S5, S17, S31, S37, S46, S47, S48, S57, S81) agreed with the extracted data and also provided further information e.g., specified
a category for the data that we classified as not identified; and twenty-six studies (S2, S6, S9, S10, S11, S14, S16, S20, S23, S24, S25, S27, S33, S41,
S42, S43, S44, S45, S50, S59, S61, S70, S71, S73, S75, S77) partially agreed and reclassified some attributes. We observe that the classification of
the representation used in studies is the greatest source of disagreement.Most authorswere not aware of the proposed classification, and preferred
to specify a category such as graph, tree, glyph.



6

FIGURE 4 Overview of the complete publication record of SOFTVIS/VISSOFT. The 86 selected papers (out of 368) correspond to design studies.

3 RESULTS

In this section we describe various characteristics of the 86 papers. A complete set of extracted data in our study is available online 1.

3.1 Task
Table 4 shows the classification of the papers based on the type of tasks 7 they tackled. Figure 5 shows the distribution of the types of tasks pre-
sented in each edition of the venues. We sorted the venues chronologically starting by SOFTVIS editions followed by VISSOFT ones. We think it
provides a better understanding of their various contribution. We observe that even though we selected papers from all editions of SOFTVIS and
VISSOFT,we included only fewpapers from thefirst editions of VISSOFT. This can be a consequence of the lower percentage of design study papers
in VISSOFT than in SOFTVIS (see Figure 1 ). We also detected that papers tackling testing appear for the first time only in the two last editions of



7

TABLE 2 The included papers in the study [S1-S50] (the ones reviewed by their authors have a checkmark).
Id Reference Year Rev.
[S1] Merge-tree: Visualizing the integration of commits into Linux,Wild, E. et al. 2016 X
[S2] Visualizing Project Evolution Through Abstract Syntax Tree Analysis, Feist, M.D. et al. 2016 X
[S3] Visually Exploring ObjectMutation, Schulz, R. et al. 2016 X
[S4] Jsvee &Kelmu: Creating and Tailoring ProgramAnimations for Computing Education, Sirkiae, T. 2016
[S5] Towards Visualization of Feature Interactions in Software Product Lines, Illescas, S. et al. 2016 X
[S6] Perquimans: A Tool for Visualizing Patterns of Spreadsheet Function Combinations,Middleton, J. et al. 2016 X
[S7] Metrics visualization technique based on the origins and function layers for OSS-based development, Ishizue, R. et al. 2016
[S8] DAHLIA 2.0: A Visual Analyzer of Database Usage in Dynamic andHeterogeneous Systems,Meurice, L. et al. 2016
[S9] A Visualization Framework for Parallelization,Wilhelm, A. et al. 2016 X
[S10] An InteractiveMicroarray Call-Graph Visualization, Shah,M.D. et al. 2016 X
[S11] On using Tree Visualisation Techniques to support Source Code comprehension,Bacher, I. et al. 2016 X
[S12] VisualizingModules andDependencies of OSGi-based Applications, Seider, D. et al. 2016
[S13] vizSlice: Visualizing Large Scale Software Slices,Alomari, H. et al. 2016
[S14] Visualization Tool for 3DGraphics ProgramComprehension andDebugging, Podila, S. et al. 2016 X
[S15] CuboidMatrix: Exploring Dynamic Structural Connections in Software Components., Schneider, T. et al. 2016
[S16] Walls, Pillars and Beams: A 3DDecomposition of Quality Anomalies, Tymchuk, T. et al. 2016 X
[S17] Critical Section Investigator: Building Story Visualizations with Program Traces, Shah,M.D. et al. 2016 X
[S18] Visualizing the Evolution ofWorking Sets,Minelli, R. et al. 2016
[S19] MetaVis: Exploring Actionable Visualization,Merino, L. et al. 2016 X
[S20] Kayrebt: An Activity Diagram Extraction and Visualization Toolset Designed for the Linux Codebase,Georget, L. et al. 2015 X
[S21] XVIZIT: Visualizing Cognitive Units in Spreadsheets,Hodnigg, K. et al. 2015
[S22] Vestige: A Visualization Framework for Engineering Geometry-Related Software, Schneider, T. et al. 2015
[S23] Hierarchical Software Landscape Visualization for SystemComprehension: A Controlled Experiment, Fittkau, F. et al. 2015 X
[S24] Interactive Tag Cloud Visualization of Software Version Control Repositories,Greene, G.J. et al. 2015 X
[S25] Blended, Not Stirred:Multi-concern Visualization of Large Software Systems,Dal Sasso, T. et al. 2015 X
[S26] Pixel-Oriented Techniques for Visualizing Next-Generation HPC Systems,Cottam, J. et al. 2015
[S27] SMNLV: A Small-Multiples Node-Link Visualization Supporting Software Comprehension,Abuthawabeh, A. et al. 2015 X
[S28] Live Visualization of GUI Application Code Coverage with GUITracer,Molnar, A.J. 2015
[S29] Advancing Data Race Investigation and Classification through Visualization,Koutsopoulos, N. et al. 2015 —
[S30] Visual Clone Analysis with SolidSDD,Voinea, L. et al. 2014 X
[S31] Polyptychon: AHierarchically-Constrained ClassifiedDependencies Visualization,Daniel, D.T. et al. 2014 X
[S32] ChronoTwigger: A Visual Analytics Tool for Understanding Source and Test Co-evolution, Ens, B. et al. 2014
[S33] Visualizing the Evolution of Systems and Their Library Dependencies,Kula, R.G. et al. 2014 X
[S34] The visualizations of code bubbles,Reiss, S.P. et al. 2013 —
[S35] Visualizing software dynamicities with heat maps ,Benomar, O. et al. 2013
[S36] DEVis: A tool for visualizing software document evolution, Junji Zhi et al. 2013 —
[S37] SourceVis: Collaborative software visualization for co-located environments ,Anslow, C. et al. 2013 X
[S38] SYNCTRACE: Visual thread-interplay analysis,Karran, B. et al. 2013 —
[S39] Automatic categorization and visualization of lock behavior,Reiss, S.P. et al. 2013
[S40] Chronos: Visualizing slices of source-code history, Servant, F. et al. 2013
[S41] Visual support for porting large code bases,Broeksema, B. et al. 2011 X
[S42] Visualising concurrent programswith dynamic dependence graphs, Lonnberg, J. et al. 2011 X
[S43] Visual exploration of program structure, dependencies andmetrics with SolidSX,Reniers, D. et al. 2011 X
[S44] MosaiCode: Visualizing large scale software: A tool demonstration ,Maletic, J.I. et al. 2011 X
[S45] An interactive ambient visualization for code smells,Murphy-Hill, E. et al. 2010 X
[S46] Exploring the inventor’s paradox: applying jigsaw to software visualization,Ruan, H. et al. 2010 X
[S47] Towards anomaly comprehension: using structural compression to navigate profiling call-trees, Lin, S. et al. 2010 X
[S48] Heapviz: interactive heap visualization for program understanding and debugging,Aftandilian, E.E. et al. 2010 X
[S49] Trevis: a context tree visualization analysis framework.,Adamoli, A. et al. 2010
[S50] Dependence cluster visualization, Islam, S.S. et al. 2010 X

SOFTVIS and then reappear in VISSOFT’14. Althoughmost of the reviewed studies tackled programming tasks (as shown in Table 4 ) they concen-
trate on SOFTVIS’03 and VISSOFT’15-’16, showing little presence in the rest of the editions.We reflect that the result provides a good overview of
the degree of attention that each development concern has had, but since many different visualization techniques are proposed within each type,
it provides little help to practitioners to find a suitable visualization for their specific needs. The authors of just two studies considered multiple
categories to classify the task ([S43], [S61]). The authors of three other studies proposed to include software comprehension as a category ([S67],
[S27], [S68]). The authors of one study—although disagreeing with our classification (programming)— proposed system design and architecture as
subcategories.

3.2 Need
In Table 8 and 9 we present the developer needs that we identified from studies. Although some studies tackle more than one need we report
the most representative one (the complete set of needs is available online1). On the one hand, we found that 90% of studies (i.e., 77) describe
envisioned user needs by explicitly posing questions that can be answered using the proposed visualization, such as “what is the software doing when
performance issues arise?” [S69], “what does this called method do?” [S76]. On the other hand, in 10% of studies (i.e., 9) there was no explicit question
formulation. In such cases, we identified the goals that the proposed visualization achieve, examples of them being “to assist designers of scheduling-
based, multi-threaded, out-of-core algorithms” [S59], “to get a better insight into the control or data flow inside a program” [S20]. Although questions allow
users to assess whether a visualization is useful, we observe that uncategorized questions hinder the reuse of visualization. We tackle this issue
with a classification of needs based on problem domains. A detailed analysis is provided in Section 4.

1http://scg.unibe.ch/research/visualisation-review

http://scg.unibe.ch/research/visualisation-review


8

TABLE 3 The included papers in the study [S51-S86] (the ones reviewed by their authors have a checkmark).
Id Reference Year Rev.
[S51] Embedding spatial software visualization in the IDE: an exploratory study,Kuhn, A. et al. 2010
[S52] Visualizing windows system traces,Wu, Y. et al. 2010 —
[S53] Zinsight: a visual and analytic environment for exploring large event traces, de Pauw,W. et al. 2010
[S54] Representing development history in software cities, Steinbrückner, F. et al. 2010
[S55] Case study: Visual analytics in software product assessments, Telea, A. et al. 2009 X
[S56] Representing unit test data for large scale software development,Cottam, J.A. et al. 2008
[S57] A catalogue of lightweight visualizations to support code smell inspection, Parnin, C. et al. 2008 X
[S58] Streamsight: a visualization tool for large-scale streaming applications, de Pauw,W. et al. 2008
[S59] Stacked-widget visualization of scheduling-based algorithms,Bernardin, T. et al. 2008 X
[S60] “A Bug’s Life” Visualizing a BugDatabase,D’Ambros,M. et al. 2007
[S61] Visualizing DynamicMemory Allocations,Moreta, S. et al. 2007 X
[S62] A Visualization for Software Project Awareness and Evolution ,Ripley, R.M. et al. 2007 X
[S63] Experimental evaluation of animated-verifying object viewers for Java, Jain, J. et al. 2006 —
[S64] Execution patterns for visualizing web services, de Pauw,W. et al. 2006
[S65] Visualizing live software systems in 3D,Greevy, O. et al. 2006
[S66] Visual exploration of function call graphs for feature location in complex software systems,Bohnet, J. et al. 2006
[S67] Multiscale andmultivariate visualizations of software evolution,Voinea, L. et al. 2006 X
[S68] CVSscan: visualization of code evolution,Voinea, L. et al. 2005 X
[S69] Jove: Java as it happens,Reiss, S.P. et al. 2005
[S70] Methodology and architecture of JIVE,Gestwicki, P. et al. 2005 X
[S71] Visual Exploration of Combined Architectural andMetric Information, Termeer, M. et al. 2005 X
[S72] Visual datamining in software archives,Burch,M. et al. 2005
[S73] Thewar room command console: shared visualizations for inclusive team coordination,O’Reilly, C. et al. 2005 X
[S74] Visualizing structural properties of irregular parallel computations,Blochinger,W. et al. 2005
[S75] Visualization of mobile object environments, Frishman, Y. et al. 2005 X
[S76] Towards understanding programs throughwear-based filtering,DeLine, R. et al. 2005
[S77] Program animation based on the roles of variables, Sajaniemi, J. et al. 2003 X
[S78] Visualizing Java in action,Reiss, S.P. 2003
[S79] EVolve: an open extensible software visualization framework,Wang, Q. et al. 2003 —
[S80] Visualization of program-execution data for deployed software,Orso, A. et al. 2003
[S81] A system for graph-based visualization of the evolution of software,Collberg, C. et al. 2003 X
[S82] Interactive locality optimization onNUMA architectures,Mu, T. et al. 2003 —
[S83] Graph visualization for the analysis of the structure and dynamics of extreme-scale supercomputers, Zhou, C. et al. 2003 —
[S84] KScope: AModularized Tool for 3DVisualization of Object-Oriented Programs,Davis, T.A. et al. 2003
[S85] Self-OrganizingMaps Applied in Visualising Large Software Collections,Brittle, J. et al. 2003 —
[S86] Revision Towers, Taylor, C.M.B. et al. 2002

TABLE 4 Classification of papers based on the tasks.

Task Reference #

Debugging S14, S22, S29, S34, S42, S48, S50, S53, S59, S66, S69-S70, S75,
S78, S80 15

Maintenance S2-S3, S5, S8-S9, S13, S30, S33, S35, S37-S38, S41, S43-S46,
S57, S60-S61, S64, S67-S68 22

Programming S4, S6-S7, S11, S17-S19, S21, S24, S26, S28, S39, S51-S52, S61,
S63, S71, S74, S76-S77, S79, S81-S83, S86 25

Reverse Engineering S10, S12, S15, S20, S23, S25, S27, S31, S40, S43, S47, S54, S65,
S67, S72, S84-S85 17

Software Process
Management S1, S16, S36, S55, S62, S73 6
Testing S32, S49, S56, S58 4

3.3 Audience
Software developers play specific roles such as interaction designer, solution architect, GUI designer, requirements analyst, release coordinator. In con-
trast, as shown in Table 5 , 85% of the studies (i.e., 73) envisioned a generic audience described as developer (42), user (19), programmer (17) and
engineer (5). In the remaining studies the role of the user was more specific such as project manager (9), architect (7), maintainer (5), tester (4), or
designer (2). Less frequent roles were bug triager, HPX developer, operation staff, performance analyst, quality assurance engineer, and reviewer. Some
studies envisioned roles of users from other fields such as business owner and student. One study envisioned managers as well as developers pursu-
ing the same questions “(1) whenwere the changesmade? (2) what kind of changes have beenmade? and (3) how does visit / download time vary over time?”
[S36]. Another study envisioned that their tool would be suitable for “everyone involved in software development” [S62]. We observed that a better
understanding of the scope of the role that an audience plays would (1) help researchers to propose solutions focused on the particular problems
that roles copewith and (2) facilitate adoption of visualization by practitioners.

3.4 Data source
Table 6 presents various sources of data that are visualized in the studied papers. Themost frequent data were gathered from:



9

FIGURE 5 Distribution of papers by task in each venue. Bottom-up: Debugging, Programming, Reverse Engineering, Maintenance, Software
ProcessManagement and Testing.

1. Running systems from which studies visualized traces of execution, metrics (e.g., CPU usage) and user interactions. Some studies visual-
ized events among applications to analyze operating systems and distributed architectures. A few studies visualized memory accesses and
behavior of live objects.

2. Source code that provided the input to build models of systems for the visualization of dependencies, metrics, structure and inheritance.
A few studies visualized annotations used to define features, the scope of variables and program slices. We found that the most frequent
language supported was Java, followed by C/C++, which was supported by half of the studies. Other languages with little support include
Smalltalk and Pascal.

3. Version control systems fromwhich studies visualizedmeta-data from the commit (e.g., author, date, message), and less frequently changes of
code (e.g., added and removed files).

Less frequently we found non-traditional sources such as spreadsheets, bug tracking systems (e.g., Bugzilla), build automation tools (e.g., Maven),
databases and documentation.
We observe that visualizations have focused on sources of complex data that are difficult to analyze by other means, but this also shows that

sources of complex data are not limited to the traditional ones. We also noticed that studies focus mainly on describing how they modeled data
rather than specifying the source and type of data. We observe that detailed descriptions of data that include not only the source but the format
as well as other characteristics can facilitate developers to adopt visualizations. For instance, users who are aware of a technique for visualizing a
stack trace gathered from a running system can decide whether their context is similar enough to adopt the visualization.



10

TABLE 5 Classification of papers based on the audience.

Audience Reference #

Developer
S2, S5, S8-S9, S11-S13, S18-S19, S22-S23, S25-S26, S30-S31,
S33, S35-S37, S40-S41, S43-S44, S46-S47, S49-S51, S54,
S56-S58, S60, S64-S68, S71, S73, S75-S76, S80

42

User S1, S5, S8, S12-S13, S15, S17-S18, S21, S34, S38, S52, S60,
S74, S78-S79, S82-S83, S85 19

Programmer S3-S4, S7, S10, S14, S24, S39, S45, S48, S59, S61, S64, S69-S70,
S75, S81, S86 17

ProjectManager S2, S12, S32, S44, S54-S55, S57, S68, S73 9
Architect S9, S30, S31, S44, S55, S68, S71 7
Manager S7, S16, S24, S36, S62, S86 6
Student S4, S14, S28, S42, S63, S77 6
Engineer S5, S50, S65, S70, S72 5
Maintainer S13, S33, S50, S68, S80 5
Analyst S13, S16, S53, S75 4
Leader S7, S41, S43, S73 4
Tester S7, SS60, S64, S68 4
Researcher S2, S6, S84 3
Designer S7, S64 2
New TeamMember S20, S68 2
Practitioner S6, S28 2
Quality Assurance
Engineer S29, S60 2
Bug Triager S2 1
Business Owner S64 1
Coders S62 1
End-User S60 1
Everyone involved
in development S62 1
HPXDeveloper S26 1
Linux Kernel Developer S20 1
Operation Staff S64 1
Performance Analyst S53 1
Reviewer S7 1
SoftwareManager S36 1
TestManager S32 1

3.5 Representation
Describing the representation used in a visualization is a complex task. Authors proposing a visualization use various strategies to describe the
applied techniques. Some used verbose descriptions [S62, S65] by specifying dimensions, metaphors, marks, and properties of them. Others [S68,
S71] opted for concise but sometimes vague descriptions. We classify the visualization techniques used in the studies according to the popular
taxonomy proposed by Keim 28. This taxonomy provides a concise list of categories upon which abundant research has relied. In it, visualization
techniques can belong to one of four categories (examples are shown in Figure 6 ): 1) Stacked techniques that are tailored to present data in a hier-
archical fashion (e.g., Treemaps and Cone Trees); 2) Iconic techniques that map the data attributes to the features of an icon (e.g., CocoViz [S46]);
3) Geometrically-Transformed techniques that aim at finding interesting transformations of data attributes (e.g., Scatter-plots and Parallel Coordi-
nates); 4)Dense Pixel techniques thatmap each data attribute to a colored pixel and group the pixels belonging to each attribute into adjacent areas
(e.g., Vampir [S7]) ; and 5) Standard 2D/3D techniques such as Bar Charts, X-Y Plots;



11

TABLE 6 Classification of papers based on the data source.

Data Source Reference #

Running
System
(41)

Trace
Execution

S3, S9-S10, S14-S15, S17, S20, S22, S28-S29,
S38-S39, S42, S49, S56, S59, S65, S69-S70, S74,
S78-S80

22

Metric S17, S47, S66, S71 4
Interaction S62, S76 2

Application events S23, S52, S53, S58, S64, S75, S83 7
Memory accesses S9, S20, S48, S61, S80, S82 6
Live objects S9, S18-S19, S63 4

Source
Code
(31)

Dependency S4, S8, S12-S13, S27-S28, S31, S37, S43-S44, S46,
S50, S54-S55, S63, S65-S66, S77, S81, S84-S85 22

Metric S3, S12, S30, S37, S41, S43-S46, S51, S55, S71 12
Structure S8, S27, S31, S37, S43, S44, S46, S55, S65-S66, S79 11
Inheritance S81, S84-S85 3
Annotation [S5], Scope [S11], Slice [S13] 1

Version
Control
System (16)

Meta-data S1-S2, S26, S32, S34-S36, S40, S67-S68, S72-S73,
S86 13

Code
Changes S2, S8, S16, S32, S34-S36, S55, S67-S68 10

Spreadsheet (2) S6, S21 2
Bug Tracking System [S60], Build Automatic Tool [S33], Database [S8],
Documentation [S71] 4

FIGURE 6 Examples of visualizations for each type 1) Stacked, 2) Iconic, 3) Geometrically-Transformed, and 4) Dense Pixel.

Table 7 presents these categories. We note that approximately half of the studies (i.e., 44) combine techniques from several categories. The
most frequent combination occurred betweenTreemaps andNode-link diagrams (Stacked andGeometrically-Transformed). Combinations of other
types of techniques occurred with less frequency (less than four studies). Frequent types are Geometrically-Transformed (GT), Dense Pixel (DP)
and Stacked (ST). We observe that GT is frequent since node-link techniques, that belong to this category, are commonly used by visualizations
that explore relationships. The DP type contains techniques suitable for depicting massive data sets such as Heatmap. ST also includes popular
techniques for hierarchical data such as Treemap.



12

TABLE 7 Classification of papers based on the representation.

Representation
Reference #

Type Technique

Geometrically-
Transformed

Node-link diagram
(Tree Layout)

S1, S6, S9, S11, S14, S17, S23, S27, S31,
S36-S38, S40, S42-S43, S48, S55-S56, S64 16

Node-link diagram
(Force-directed Layout)

S5, S10, S12, S18-S19, S31-S32, S65,
S69, S72, S74, S81 11

Hierarchical Edge
Bundle S30, S41, S43, S55 4
Parallel Coordinate S13, S46 2
Scatter-plot S32, S46 2

Stacked
Treemap S1, S5, S11, S12, S13, S35, S43, S55, S80 9
Icicle Treemap S11, S17 2
Sunburst S49 1

Dense Pixel
Heatmap S22, S26, S34-S35, S39, S50, S53, S57, S59,

S60-S61, S67-S68, S73 14
Matrix S3, S15-S16, S44, S52, S72, S82 7
Table Lens S41, S43, S50, S80 4

Iconic
S4, S7, S8, S15-S16, S19, S24-S25, S35-S36,
S45-S47, S51, S56, S60, S62, S67, S69, S71,
S83, S85

22

Standard S3-S4, S9, S14, S21, S28, S33, S58, S59,
S63-S64, S66, S70, S75-S77, S79 17

3.6 Tool
Tables 8 and 9 summarize the tools collected from the papers. Normally, they are developed as prototypes to evaluate a proposed visualization.
All studies, among the 77 that explicitly identified a tool (i.e., 90%), introduced a newvisualization tool. Notice that the tool named Jive thatwas used
in two studies [S70, S78] corresponds to a different tool. A few (i.e., 26%) made their tool and source code publicly available. As one can expect, few
prototypes were maintained and extended over time. The most notable cases are Jive [S70], and two tools used for teaching programming: jGrasp
[S63] and PlanAni [S77]. If we consider tools for which current information is available, their average lifespan is 3.7 years2. We acknowledge that
this value represents only a lower bound, since it does not consider possible earlier presentations of the tools. Various studies often used different
visualization frameworks. The most frequent ones are OpenGL (11) used over multiple years, and D3.js (9) and Roassal (6) used only recently. Also,
three studies used Java3D in more than a decade ago. GraphViz was used in four studies. The rest of the studies use multiple frameworks, and in
twenty-three there is no explicit information about any frameworks used.

3.7 Medium
In our previous work 20, we included the medium as one of the dimensions of the proposed software visualization taxonomy. Although the authors
of a previous taxonomy 7 envisioned a future where software visualizations would use a variety of media (e.g., head-mounted displays 29), Table 10
shows that only few studies that we found exploited this dimension (and that we analyzed in detail in a recent experiment 30). Almost 56% of the
reviewed studies do not mention the expected medium on which the visualization should be displayed (labeled as not identified). Among the 44%
that explicitly mentioned a medium the majority (i.e., 87%) specified the standard PC display. However, there were other studies that indicated
diverse media, from a small window in a standard monitor to a wall-display, large multi-touch tables, tablets, 3D glasses, and an immersive 3D
environment.

2Wemeasured lifespan as the time between a tools’ first appearance in a publication and the last update to the projects’ repository.



13

TABLE 8 Visualization tools and needs extracted from papers [S1-S50].
Ref. Tool Year Framework Questions and Goals thatMotivate Visualization
[S1] Linvis 2016 Python, Flask How and bywhom commits arrive andmerge into the Linux repository?
[S2] TypeV 2016 JavaScript, TypeScript, D3.js What is a developer’s contribution to a repository?
[S3] Object Evolution

Blueprint 2016 Smalltalk, Roassal How the value of variables change during the execution of a program?
[S4] Jsvee 2016 JavaScript How program code behaves when it is executed?
[S5] ECCO 2016 JavaScript, D3.js How features are implemented and interact?
[S6] Perquimans 2016 JavaScript, D3.js How are spreadsheet users building formulae?
[S7] MAF andOC 2016 JavaScript, HTML5 To show the origins and function layers in development
[S8] DAHLIA 2016 Not identified How the database elements aremapped in the Java code?
[S9] Parceive 2016 JavaScript, D3.js To assist users in identifying scenarios that benefit from parallelization
[S10] Not identified 2016 Java, Processing How execution time is spent in the program?
[S11] Not identified 2016

JavaScript, D3.js, ace.js,
esprima.js, estraverse.js,
escope.js

What is the static structure of a source code document?
[S12] Not identified 2016 JavaScript, D3.js To analyze software structure and dependencies
[S13] vizSlice 2016 JavaScript, D3.js What parts of the software can be affected by a change?
[S14] Not identified 2016 JavaScript, D3.js Is the data transferred correctly fromCPU to GPU?
[S15] CuboidMatrix 2016 Smalltalk, Pharo, Roassal How code critiques are distributed in the software?
[S16] A Roassal 3D

visualization 2016 Smalltalk, Pharo, Roassal3D What are quality evolution anomalies andwhat caused them?
[S17] CSI 2016 Java, Processing How call trees behave for critical sections in a Java program?
[S18] Not identified 2016 Smalltalk, Pharo, Roassal How developers navigate and interact with code during development?
[S19] MetaVis 2016 Smalltalk, Pharo, Roassal What visualizations are suitable to answer development questions?
[S20] Kayrebt 2015 C, C++, GraphViz, Qt What is actually compiled by the compiler?
[S21] XVIZIT 2015 Java FX, Control FX,

GraphStream What would be affected if I were to change a cell?
[S22] Vestige 2015 C++OpenGL How the computation reached that result?
[S23] ExploreViz 2015 JavaScript, tree.js What are the consequences of a failure in a certain application?
[S24] ConceptCloud 2015 Play web framework How often and bywhom certain files have changed together?
[S25] Blended City 2015 Smalltalk, Pharo, Roassal What happened to a software system in a given time frame?
[S26] Vampir 2015 Not identified How different are work queues on different threads?
[S27] SMNLV 2015

Java 8, Graphisto Toolkit,
abego TreeLayout,
NetBeans Visual Library

To check guidelines and re-engineering of existing software,
[S28] GUITracer 2015 Java 6 using AWT, Swing What source code runs once a GUI event is fired?
[S29] RaceView 2015 C, Eclipse Visualization Zest How a specific code location can be reached via function calls?
[S30] SolidSDD 2014 C, C++ , OpenGL How are clones distributed across system structure?
[S31] Polyptychon 2014 JavaScript, D3.js Are there any patterns in the dependency structure?
[S32] ChronoTwigger 2014 OpenGL, GLUT, VR Juggler How source and test files develop together over time?
[S33] Not identified 2014 R, GGPlot2 When should I updatemy library dependencies
[S34] Code Bubbles 2013 Not identified How are Java programs based onworking sets developed?
[S35] VERSO 2013 Not identified How programmers behave during the evolution of a program?
[S36] DEVis 2013 Java, G4P When andwhat kind of changes have beenmade?
[S37] SourceVis 2013 Java, MT4j, OpenCloud,

JFreeChart What is the structure and properties of software?
[S38] SYNCTRACE 2013 Not identified Where andwhen a threadwaits or releases?
[S39] Not identified 2013 Not identified Which locks interact with one another and how complex is it?
[S40] Chronos 2013 Java When, how, by whom, andwhywas this code changed or inserted?
[S41] PortAssist 2011 C++, Qt, OpenGL Which rewrite activities conflict with each other?
[S42] Atropos 2011

Java, Apache Commons BCEL,
Matrix software visualisation
framework

How do operations executed in a Java program relate to each other?

[S43] SolidSX 2011 OpenGL, GLUT, FTGL,
wxWidgets Howmetrics correlate with the dependencies in the system?

[S44] MosaiCode 2011 C++, Qt Howmetrics have changed?Where are run time bottlenecks?
[S45] Stench Blossom 2010 Java, Eclipse What code smells are present in the code I amworking with?
[S46] Jigsaw 2010 Not identified What entities are likely to depend on this package?
[S47] ProfVis 2010 Java, HProf, Processing What parts of the program could bemodified to improve performance?
[S48] Heapviz 2010 Prefuse toolkit What is the shape of the data structures, and how are they connected?
[S49] Trevis 2010 Trevis, GraphViz To study the calling contexts where the program spent most time
[S50] Decluvi 2010 Java What is the dependence structures/clusters in your program?

4 DISCUSSION

In this sectionwe discuss our findings, andwe provide recommendations to practitioners and researchers, respectively, for adopting visualizations,
and for identifying domains that require more attention.
A majority of studies do not follow a specific structure for describing their proposed techniques. We believe that following a specific structure

encourages researchers to reflect on important dimensions that should drive the design of a visualization tool 7,9. Moreover, we believe that provid-
ing a clear description of a research problem, and formulating explicit research questions ease tool adoption by practitioners. For instance, instead
of a fuzzy description like “provides an analysis of Java programs” [84] which does not reflect an exact goal, we suggest a reformulation to “analyze
class dependency for validation of experimental software visualization techniques.”
In section 3.1we classified the papers into six high-level software development tasks (shown in Table 4 ).Wenote that a different visualization is

proposed to tackle developer needs that are classified in the same task. Hence, we argued that such a classification does not provide an appropriate
support for practitioners tofindandadopt a suitable visualization for their specific needs.Weobserve that practitioners require amorefine-grained
classification that links existing visualization techniques to their concrete needs.
We observe that researchers who focused on the questions that developers ask during software development have classified the type of ques-

tions using diverse criteria. We rely on that research to (1) identify the used categories to classify the design study papers and (2) evaluate how
important are those categories based on the number of different type of questions and their frequency.
We classify the studies into (1) subject-oriented 19, (2) process-oriented 17, and (3) problem-oriented 31. We believe mapping such classifications of

developer needs to the visualization techniques proposedby studies provides a better support for practitioners to adopt a visualization in their daily
tasks and allows us to analyze how well a proposed visualization supports developers to answer questions that actually arise during development.



14

TABLE 9 Visualization tools and needs extracted from papers [S51-S86].
Ref. Tool Year Framework Questions and Goals thatMotivate Visualization
[S51] CodeMap 2010 Not identified What is the purpose of the application?Who are the collaborators?
[S52] lviz 2010 OpenJDK 1.6.0 How the operating systemworks?
[S53] Zinsight 2010 Not identified How did we get to these events?
[S54] CrocoCosmos 2010 jMonkeyEngine How the component content changes over time?
[S55] Not identified 2009 Not identified Howmetrics evolve in time over the entire software system?
[S56] SeeTest 2008 Stencil visualization

environment How did the changes from yesterday affect project’s stability?
[S57] NosePrints 2008 Not identified Howwidespread and how difficult a problemmay be to fix?
[S58] Streamsight 2008 dot How the system and applications evolve?
[S59] Lumiere 2008 OpenGL, C++ How are concurrent tasks scheduled by the algorithm?
[S60] BugWatch 2007 Not identified How the bugs are distributed in the system over time?
[S61] MemoView 2007 C++, OpenGL, FLTK How does fragmentation depend on time and pool?
[S62] Palantír 2007 Java Whenwas the artifact changed?
[S63] jGrasp 2006 Not identified To understand concepts of dynamic programming implementation
[S64] IBMWeb Services

Navigator tool 2006 Not identified How different IT resources interact sequentially with one another?
[S65] TraceCrawler 2006 CCJun How the system behaved during the execution of a feature?
[S66] Call Graph Analyzer 2006 GraphViz Which the important functions for feature understanding are?
[S67] CVSgrab 2006 Python, wxWidgets,

OpenGL, C Howmetrics correlate during evolution of a given set of items?
[S68] CVSscan 2005 Python, wxWidgets,

OpenGL, C What code lines were added, removed, or altered, when and bywhom?
[S69] Jove 2005 Not identified What the software is doing when performance issues arise?
[S70] Jive 2005 Not identified What is the runtime object structure of a Java program?
[S71] MetricView 2005 C++, OpenGL, FreeType,

wxWindows Where are components having certain properties?
[S72] EPOSee 2005 Not identified What items have been changed at the same time?
[S73] War RoomCommand

Console 2005 Java, C++ Who is currently working onwhat?
[S74] DOT 2005 Java, yFiles library What are optimal parameters to distribute the work on the processors?
[S75] Mobile Object

Visualization 2005 Java, Java3D, GraphViz How does the architecture supports object mobility behavior over time?
[S76] FAN 2005 Not identified Whichmethod in the source code implements certain behavior?
[S77] PlanAni 2003 Tcl/Tk How the successive values of the variable relate to each other and to

other variables?
[S78] Jive 2003 Not identified What threads are in the program?
[S79] EVolve 2003 Not identified When and for how long particular events occur?
[S80] Gamma/Gammatella 2003 Java, Swing,

TreeMap Java Library How often the statement is executed?
[S81] GEVOL 2003 Not identified How and bywhom the parts of the programwere created?
[S82] Not identified 2003 Not identified Howmuch of the data is dominantly accessed by the local nodes?
[S83] Flatland 2003 OpenGL To analyzemassively parallel supercomputer architectures
[S84] Kscope 2003 Java3D To provide an analysis of Java programs
[S85] GENISOM 2003 Java3D To aid programmers in the process of reverse engineering
[S86] Revision Towers 2002 Not identified How often, and how, changes aremade?

TABLE 10 Classification of papers based on themedium.

Medium Reference #

Not Identified
S1-S3, S5, S7-S8, S12-S13, S15, S17-S18, S21-S22, S25-S26,
S28-S29, S31, S34-S36, S38-S40, S46, S48-S49, S51-S56, S58, S60,
S63-S64, S66, S69, S72, S74, S76, S78-S80, S82, S85-S86

48

Standard screen
S4, S6, S9-S11, S14, S16, S19-S20, S23-S24, S27, S30 ,S41-S43, S45,
S47, S50, S57, S59, S61-S62, S65, S67-S68, S70-S71, S75, S77, S81,
S83-S84

33

Wall-display S27, S33, S57, S62, S73 5
3D glasses S71 1
Immersive 3D
Environment S32 1
Multi-Touch Table S37 1
Multi-Monitor S44 1
Tablet S4 1

According to our investigation, these classifications offer an appropriate granularity to accommodate the questions from other studies too. Hence,
we classified the 86 included papers by identifying categories in each classification that contain similar types of questions to the needs extracted
from the papers (shown in Tables 8 and 9 ). In studies for which we extracted a goal instead of a question, we inferred the category from other
types of questions that would help users to achieve that goal. In the following we present the classification of studies based on the classifications:
subject, process and problem-oriented.
Subject-oriented.Fritz et al. 19 proposeda classification inwhichquestions canbelong tooneof the following categories:people (e.g., who isworking

on what), code (e.g., changes to the code), progress (e.g., work item progress), build (e.g., broken builds), test (e.g., test case analysis), web (e.g., web
related concerns), and other questions. The result of the classification of the studies is shown in Table 11 . We found that visualizations that we



15

classified as dealing with i) code particularly focused on subjects such as architecture, commits, critiques, features, memory management, threads,
andworking sets, ii) other spanned subjects such as databases, event traces, failure reports, and visualization examples, iii) people subjects addressed
ownership, iv) test subjects focused on GUI and compiler, and v) build subjects were related to compiler optimizations and build configurations.

TABLE 11 Subject-oriented classification of studies.

Category References #

Code S2, S5-S7, S11-S13, S21, S23-S25, S27-S37, S40-S41, S43-S46, S50-S51,
S54-S57, S60, S62, S67-S68, S71-S72, S76, S81, S84-S86 45

Other S1, S3-S4, S8-S10, S14-S20, S22, S26, S38-S39, S42, S47-S49, S52-S53,
S58-S59, S61, S63-S66, S69-S70, S73-S75, S77-S80, S82-S83 41

People S2, S6, S24, S34-S35, S40, S51, S54-S55, S68, S81, S86 12
Test S28, S32, S56, S57 4
Build S25 1
Progress - 0
Web - 0

Process-oriented. Introduced by Sillito et al. 17. This classification focuses on understanding the cognitive process of moving from questions to
answers. Their classification of type of questions includes the following categories: i) finding initial software entities that might lead developers
to formulate a concrete question, ii) building on those points by identifying relationships between entities, iii) understanding a group of entities and
relationships, and iv)questioning howvarious groups relate eachother. InTable12 wepresent the results of the classificationof studies.Weobserve
that as the cognitive process increases in complexity (finding→ building→ understanding→ questioning) the number of proposed visualization
decreases.

TABLE 12 Process-oriented classification of studies.

Category References #
Finding S1-S86 86
Building S1-S2, S4-S18, S20-S26, S28-S61, S63-S66, S68-S71, S74-S81, S83-S86 78
Understanding S2, S4-S9, S12-S18, S20-S23, S25-S26, S28-S33, S38-S39, S42, S44-S47,

S49-S53, S55-S57, S59, S63-S65, S68-S71, S76-S78, S81, S85-S86 55

Questioning S2, S8, S13-S17, S20-S21, S23, S28-S29, S32-S33, S39, S51, S53,
S55-S56, S59, S65, S69, S76-S77, S86 25

Problem-oriented classification proposed by LaToza et al. 31 comprises 21 problem domains which they used to categorize 94 types of questions.
Table 13 presents the obtained results of the classification of the 86 studies.
In summary, we observe that in the subject-oriented classification the majority of questions supported by visualizations relate to the code cate-

gory. There is also a moderate number of visualizations that support questions that focus on people. Certainly, both represent the main subjects of
software visualization. Indeed, Figure 8 shows that both code and people are balanced. The chart also shows that there are a few subjects such as
Builds, Progress, andWeb that even though they represent developer needs have less attention from the proposed visualizations.
In the process-oriented classification, we notice that visualization provides a good fit to the mental process of developers (i.e., the more com-

plex the mental process, the more visualizations are available). Typically, visualizations provide developers with an overview that help them to find
interesting patterns. Developers can reflect on those patterns and build hypotheses. Developers can test hypotheses by getting details on demand
of elements that lead to a deeper understanding of the system artifact. Finally, developers are able to answer complex questions by combining their
understanding onmultiple findings.
We observe that in the problem-oriented classification there is a more fine-grained granularity that facilitates the analysis to understand the

relationships between the needs of developers and the proposed visualization.
In the following section we revisit our research questions that we analyze based on the described classifications.



16

TABLE 13 Problem-oriented classification of the 86 design studies.

Problem domain Reference #

Changes

Building
and branching - 0

Debugging S3, S14, S22, S34, S42, S48, S51, S53, S58, S59, S66,
S69, S70, S78, S80 15

History S1, S2, S16, S24, S25, S35, S36, S40, S44, S54, S56, S60,
S62, S67, S68, S72, S86 17

Implementing S6, S7, S11, S18, S19, S22, S30, S44, S58, S59, S63, S68 12
Implications S4, S6, S33, S41, S44, S47, S51, S71, S73, S76, S79 11
Policies - 0
Rationale S11, S81 2
Refactoring S6, S11, S45 3
Teammates S2, S24, S35, S37 4
Testing S22, S44, S51, S57, S60, S84 6

Element
relationship

Architecture S5, S8, S11, S12, S16, S23, S30, S32, S45, S51, S55, S83,
S85 13

Contracts S27 1
Control flow S10, S11, S20, S42, S59, S65 6
Data flow S8, S20, S42, S59 4
Dependencies S5, S8, S13, S15, S21, S27, S31, S42, S43, S46, S50, S75,

S76 13
Type
relationships S27 1

Elements

Concurrency S9, S17, S26, S29, S38, S39, S42, S59 8
Intent
and implication S4, S51, S73, S76 4
Location S5, S28, S44, S51, S65, S77 6
Method
properties S16, S44 2
Performance S49, S52, S53, S58, S61, S64, S74, S82 8

4.1 RQ1.What are the characteristics of visualization techniques that support developer needs?
While few problem domains in the classification (like debugging and testing) seem to be a task by themselves, they also occur very often in the
context of addressing different tasks. That is, a visualization proposed to support questions regarding performance during a reverse engineering
task (e.g., “where is most of the time being spent?” [S10]) may differ from the one proposed for performance questions that arise during a debugging
session (e.g., “how did we get to these events?” [S53]). Figure 7 shows the mapping between the problem domains and the types of visualization
techniques. In it, problem domains are labeled. The ones in the same category are vertically aligned (left-to-right changes, element relationships,
and elements). The colors of the tiles encode the type of visualization technique used by studies tackling that domain. Problemdomains that did not
match any studies are shown in black. The size of a tile is proportional to the number of studies classified in that domain. Looking at the distribution
of visualization techniques across the types of problem domains (i.e., changes, element relationships and elements) we do not perceive a preferred
one. Instead, we observe that dense pixel and geometrically-transformed are themost frequent techniques used in themain problem domains such
as history, debugging, performance. In contrast, iconic techniques are present in only a few domains, but when present they predominate over
other techniques such as history, implications and testing. Iconic techniques enforce comparison of multivariate data by mapping their properties
to the various dimensions of a glyph (including its position). Questions regarding the history domain frequently involve the time, which is commonly
mapped to the position. We think that this is the reason why most visualizations proposed to tackle needs in the history domain include iconic
techniques.



17

FIGURE 7 Mapping type of visualization used by studies to problem domains.

4.2 RQ2. Howwell are developer needs supported by visualization?
Since there is a large number of questions that developers need to answer during development, we analyze them at a higher-level by using classifi-
cations proposed by research in the field. For each classification, we estimate the importance of categories for practitioners based on the number of
type of questions (and frequencies) that they contain. Themore questions a category contains, the more important that category is for developers.
Themetric is then normalized to enabling comparison.



18

Figures 8 , 9 and 10 compare the importance of developer needs (red bar) versus the number of visualization techniques proposed to address
those needs (blue bar). They show that (1) when analyzing the subjects associatedwith a need 19 (see Figure 8 ) questions related to code and people
are of high relevance for developers. Although researchers invest an adequate attention to the code category, many proposed visualization are
classified in the others category. The inspection of those questions shows that they relate to runtime analysis. That (2) the analysis of the importance
of questions by the process 17 (see Figure 9 ) in which they are involved shows that developer needs and the proposed visualization are almost in
sync.Most questions that developers pose, involve building on initial findings. However, visualizations have focused slightly more on understanding
than purely building. Finally, (3) we analyze the needs of developers by grouping questions at problem domain 31 (see Figure 10 ). We observe that
practitioners are more concerned about changes, while existing visualizations distribute their attentions among all three categories. Some problem
domains (e.g., rationale, intent, implementation, and refactoring) are very important for developers but have little visualization support. In contrast,
several less important problem domains (e.g., architecture, concurrency and dependencies) received a good degree of attention. We wonder why
someare not supported?Weconjecture that lesswell-supporteddomains tackle problems that require hidden semantics tobe inferred fromsoftware
artifacts, so proposing a visualization is difficult.

FIGURE 8 Subject-oriented analysis of importance of developer needs vs. their visualization support. The large number of visualizations in the
others category exposes limitations of this classification.

FIGURE9 Process-oriented analysis of importance of developer needs vs. their visualization support. The focus on eachmental process seemswell
balanced.

4.3 Threats to Validity
The main threat to the validity of our study is bias in paper selection. We did not include papers from other venues. We mitigated this threat by
selecting peer-reviewed papers from themost cited venues dedicated to software visualization.Moreover, we included design studies and excluded
other types of papers. However, since most of papers do not specify their types, we may have missed some. We mitigated this threat by defining



19

FIGURE 10 Problem-oriented analysis of importance of developer needs vs. their visualization support. Ideally, both charts would be symmetrical.
However, we observe several unbalanced domains.

a cross-checking procedure and criteria for paper type classification. Finally, the data extraction process could be biased. We mitigated this by
establishing a protocol to extract the data of each paper equally; and by maintaining a spreadsheet to keep records, normalize terms, and identify
anomalies.

5 CONCLUSION

In this paperwe studied 86 publications in academia that describe how visualization techniques can help developers to carry out their tasks, andwe
investigated how well practitioner needs are supported by existing visualization techniques. On the one hand, we analyze research that describes
complex questions that practitioners often ask during software development. On the other hand, we reviewed the literature looking for the needs
that benefit from particular visualizations. We compared the degree of importance of needs grouped by subject, process and problem domains for
practitioners to the visualization support available for them. Although the developer needs grouped by subject and process seem well supported
by visualization, we found a disconnect between the problem domains on which visualizations have focused and the domains that get the most
attention from practitioners. The results of our literature study suggest that some problem domains such as rationale, refactoring, contracts and
policies require more attention from the visualization community, while a considerable amount of work is devoted to dependencies, architecture
and concurrency. This paper makes the following contributions:
• A study of the characteristics of existing research in the field of software visualization.
• An analysis of the relation between practitioner needs and current visualization techniques.



20

In the future we plan to explore how software visualization is used in industry by characterizing open source software visualization tools.

ACKNOWLEDGMENTS

We thank all the authors of papers that kindly reviewed our classification and gave insightful comments, and in special to Alexandru Telea. We
gratefully acknowledge the financial support of the Swiss National Science Foundation for the project “Agile Software Analysis” (SNSF project No.
200020-162352, Jan 1, 2016 - Dec. 30, 2018). Merino has been partially funded by CONICYT BCH/Doctorado Extranjero 72140330.

References

1. Theron Roberto, Gonzalez Antonio, Garcia Francisco J. Supporting the understanding of the evolution of software items. In: :189–192ACM;
2008.

2. De PauwWim, Krasikov Sophia, Morar John. Execution Patterns for VisualizingWeb Services. In: ACMPress; 2006; NewYork NY.
3. Merino Leonel, LunguMircea,NierstraszOscar. Explora: AVisualisation Tool forMetric Analysis of SoftwareCorpora. In: :195–199IEEE; 2015.
4. Park Yunrim, Jensen Carlos. Beyond pretty pictures: Examining the benefits of code visualization for open source newcomers. In: :3–10IEEE;
2009.

5. Faltin Nils. Structure and constraints in interactive exploratory algorithm learning. In: Springer 2002 (pp. 213–226).
6. Reiss Steven P.. JOVE: Java as it happens. In: :115–124; 2005.
7. Maletic Jonathan I., Marcus Andrian, CollardMichael. A TaskOriented View of Software Visualization. In: :32–40IEEE; 2002.
8. SchotsMarcelo,Werner Claudia. Using a Task-Oriented Framework to Characterize Visualization Approaches. In: :70–74IEEE; 2014.
9. StoreyMargaret-AnneD., Čubranić Davor, GermanDanielM.. On the use of visualization to support awareness of human activities in software
development: a survey and a framework. In: :193–202ACMPress; 2005.

10. Kienle Holger M., Muller Hausi A.. Requirements of Software Visualization Tools: A Literature Survey. VISSOFT 2007. 4th IEEE International
Workshop on Visualizing Software for Understanding and Analysis. 2007;:2–9.

11. Padda Harkirat, Seffah Ahmed, Mudur Sudhir. Visualization Patterns: A Context-Sensitive Tool to Evaluate Visualization Techniques. In: :88–
91IEEE; 2007.

12. SensalireMariam, Ogao Patrick, Telea Alexandru. Classifying desirable features of software visualization tools for corrective maintenance. In:
:87–90ACM; 2008.

13. Merino Leonel, Ghafari Mohammad, Nierstrasz Oscar, Bergel Alexandre, Kubelka Juraj. MetaVis: Exploring Actionable Visualization. In: IEEE;
2016.

14. Gallagher Keith, Hatch Andrew,MunroMalcolm. A Framework for Software Architecture Visualization Assessment. In: :76–81IEEE CS; 2005.
15. Paredes Julia, AnslowCraig, Maurer Frank. Information visualization for agile software development. In: :157–166IEEE; 2014.
16. Shahin Mojtaba, Liang Peng, Babar Muhammad Ali. A systematic review of software architecture visualization techniques. Journal of Systems

and Software. 2014;94:161–185.
17. Sillito Jonathan, Murphy Gail C., De Volder Kris. Questions programmers ask during software evolution tasks. In: SIGSOFT ’06/FSE-14:23–

34ACM; 2006; NewYork, NY, USA.
18. Ko Andrew J., DeLine Robert, Venolia Gina. Information Needs in Collocated Software Development Teams. In: ICSE ’07:344–353IEEE

Computer Society; 2007;Washington, DC, USA.



21

19. Fritz Thomas, Murphy Gail C.. Using information fragments to answer the questions developers ask. In: ICSE ’10:175–184ACM; 2010; New
York, NY, USA.

20. Merino Leonel, Ghafari Mohammad, Nierstrasz Oscar. Towards Actionable Visualisation in Software Development. In: IEEE; 2016.
21. Keele Staffs.Guidelines for performing systematic literature reviews in software engineering. : Technical report, EBSE Technical Report EBSE-2007-

01; 2007.
22. SoftVis. 2016.
23. VISSOFT. 2016.
24. CORE. 2016.
25. Munzner Tamara. Process and pitfalls in writing information visualization research papers. In: Springer 2008 (pp. 134–153).
26. Merino Leonel, Seliner Dominik, Ghafari Mohammad, Nierstrasz Oscar. CommunityExplorer: A Framework for Visualizing Collaboration

Networks. In: :2:1–2:9; 2016.
27. Schulz Rodrigo, Beck Fabian, Felipez JhonnyWilder Cerezo, Bergel Alexandre. Visually Exploring ObjectMutation. ;.
28. KeimDaniel A. Information visualization and visual datamining. Visualization and Computer Graphics, IEEE Transactions on. 2002;8(1):1–8.
29. Merino Leonel, Ghafari Mohammad, AnslowCraig, Nierstrasz Oscar. CityVR: Gameful Software Visualization. In: :633–637IEEE; 2017.
30. Merino Leonel, Fuchs Johannes, Blumenschein Michael, et al. On the Impact of theMedium in the Effectiveness of 3D Software Visualization.

In: :11–21IEEE; 2017.
31. LaToza Thomas D., Myers Brad A.. Hard-to-answer Questions About Code. In: PLATEAU ’10:8:1–8:6ACM; 2010; NewYork, NY, USA.

How to cite this article:Merino L., Ghafari M., and Nierstrasz O. (2016), Towards Actionable Visualization for Software Developers, J Softw Evol
Proc., 2017;e1923, https://doi.org/10.1002/smr.1923.


	Towards Actionable Visualization for Software Developers
	Abstract
	Introduction
	Methodology
	Data sources and search strategy
	Included and excluded studies
	Data Extraction

	Results
	Task
	Need
	Audience
	Data source
	Representation
	Tool
	Medium

	Discussion
	RQ1. What are the characteristics of visualization techniques that support developer needs?
	RQ2. How well are developer needs supported by visualization?
	Threats to Validity

	Conclusion
	Acknowledgments
	References


