
Reflectivity Cheat Sheet

Defining Reflection...

• Casually connected. If the internal structures of a system
and the domain they represent are linked so that if one
of them changes, the other changes as well. A reflective
system is then a system which incorporates causally con-
nected structures representing itself.

• Introspection. The self-representation of a system can be
queried and analyzed.

• Intercession. The self-representation of a system can be
modified.

• Reflection = Introspection + Intercession

• Meta-objects describe behavior of base level (i.e., applica-
tion level) objects, they form a meta-level. For example,
meta-classes define method lookup.

Existing Approaches to Reflection

Java

• Structural introspection

• Limited structural intercession, classes not changeable

• Limited behavioral reflection, i.e., objects are wrapped,
no interception of method calls or variable access

Squeak

• Structural reflection, i.e., classes, methods are objects and
dynamically modifiable

• Behavioral reflection, i.e., current execution is reified in
thisContext

• But: Structural reflection stops at method level!

• But: Behavioral reflection limited, reifying execution
stack neither efficient nor expressive.

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..

Sub-Method Structural Reflection

Current situation

• No high-level model for sub-method elements such as
message sends, variable accesses

• Different tools use different representations to reason
about sub-method elements, but could benefit from a
common representation as they heavily communicate
with each other.

• Existing representations on the sub-method level are text,
bytecode and AST

Requirements

Casual connection high abstraction, extensibility, persistency,
efficiency in size and speed.

Text: low level (list of characters), no casual connection
Bytecode: low level (list of integers), not extensible, base level
and meta-level code mixed
AST: no casual connection, not extensible, not persistent
(generated by compiler, never stored)

Solution

• Annotated, persistent AST, bytecode generated on de-
mand

• Persephone: Implements reflective methods in Squeak

Annotations: either source visible or source invisible.
Every node in a method (e.g., message send, variable access,
assignment, return statement, ...) can be annotated

Partial Behavioral Reflection

Current situation

• Smalltalk: No model of execution below method body

• Smalltalk: Message sending, variable accessing hard-
coded in virtual machine

• MetaclassTalk: Reflection only controllable at class
boundaries

• MetaclassTalk: No fine-grained selection (e.g., a specific
message send)

• MetaclassTalk: Protocol between base and meta level
fixed

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..

Figure 1: Hooksets, links, metaobjects

Figure 2: Links as annotations

Reflex for Java

• Hooksets: collection of operation occurrences
• Links: bind hookset to meta-objects, define protocol be-

tween base and meta level
• Highly selective reification, flexible meta-level engineer-

ing
• Geppetto: Reflex in Squeak, based on bytecode transfor-

mation (see Figure 1)
• Problems: annotation performance (bytecode mungling),

execution transformation (stack manipulation), low-level
representation

Solution

• Model links as annotations on the AST (see Figure 2)
• Very fast annotations (no decompile)
• On-the-fly code generation
• Generated code is efficient, no stack manipulation

Reflectivity in Squeak

• Sub-method structural reflection
• Partial behavioral reflection
• http://scg.unibe.ch/Research/Reflectivity


