
Reflectivity Cheat Sheet

Defining Reflection...

• Casually connected. If the internal structures of a system
and the domain they represent are linked so that if one
of them changes, the other changes as well. A reflective
system is then a system which incorporates causally con-
nected structures representing itself.

• Introspection. The self-representation of a system can be
queried and analyzed.

• Intercession. The self-representation of a system can be
modified.

• Reflection = Introspection + Intercession

• Meta-objects describe behavior of base level (i.e., applica-
tion level) objects, they form a meta-level. For example,
meta-classes define method lookup.

Existing Approaches to Reflection

Java

• Structural introspection

• Limited structural intercession, classes not changeable

• Limited behavioral reflection, i.e., objects are wrapped,
no interception of method calls or variable access

Squeak

• Structural reflection, i.e., classes, methods are objects and
dynamically modifiable

• Behavioral reflection, i.e., current execution is reified in
thisContext

• But: Structural reflection stops at method level!

• But: Behavioral reflection limited, reifying execution
stack neither efficient nor expressive.
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Sub-Method Structural Reflection

Current situation

• No high-level model for sub-method elements such as
message sends, variable accesses

• Different tools use different representations to reason
about sub-method elements, but could benefit from a
common representation as they heavily communicate
with each other.

• Existing representations on the sub-method level are text,
bytecode and AST

Requirements

Casual connection high abstraction, extensibility, persistency,
efficiency in size and speed.

Text: low level (list of characters), no casual connection
Bytecode: low level (list of integers), not extensible, base level
and meta-level code mixed
AST: no casual connection, not extensible, not persistent
(generated by compiler, never stored)

Solution

• Annotated, persistent AST, bytecode generated on de-
mand

• Persephone: Implements reflective methods in Squeak

Annotations: either source visible or source invisible.
Every node in a method (e.g., message send, variable access,
assignment, return statement, ...) can be annotated

Partial Behavioral Reflection

Current situation

• Smalltalk: No model of execution below method body

• Smalltalk: Message sending, variable accessing hard-
coded in virtual machine

• MetaclassTalk: Reflection only controllable at class
boundaries

• MetaclassTalk: No fine-grained selection (e.g., a specific
message send)

• MetaclassTalk: Protocol between base and meta level
fixed
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Figure 1: Hooksets, links, metaobjects

Figure 2: Links as annotations

Reflex for Java

• Hooksets: collection of operation occurrences
• Links: bind hookset to meta-objects, define protocol be-

tween base and meta level
• Highly selective reification, flexible meta-level engineer-

ing
• Geppetto: Reflex in Squeak, based on bytecode transfor-

mation (see Figure 1)
• Problems: annotation performance (bytecode mungling),

execution transformation (stack manipulation), low-level
representation

Solution

• Model links as annotations on the AST (see Figure 2)
• Very fast annotations (no decompile)
• On-the-fly code generation
• Generated code is efficient, no stack manipulation

Reflectivity in Squeak

• Sub-method structural reflection
• Partial behavioral reflection
• http://scg.unibe.ch/Research/Reflectivity


