
Oscar Nierstrasz
Software Composition Group

scg.unibe.ch

SCAM 2013

Agile Modeling
When can we have it?

Directions

Agile Software
Assessment

Roadmap

Agile Modeling

Agility Software
Assessment

4

Legacy code is hard to
understand

5

The architecture

... is not in the code

Legacy code is hard to understand

6

Developers spend more time
reading than writing code

Legacy code is hard to understand
The architecture is not in the code

Legacy code is hard to understand
The architecture is not in the code

Developers spend more time
reading than writing code

7

Specialized analyses
require custom tools

8

Legacy code is hard to understand
The architecture is not in the code

Developers spend more time
reading than writing code

Specialized analyses require custom tools

9

Moose is a platform for
software and data analysis

www.moosetechnology.org

http://www.moosetechnology.org
http://www.moosetechnology.org

10

Smalltalk

Navigation

Metrics

Querying

Grouping

Smalltalk

Java

C++

COBOL

…

MSEExternal
Parser

CodeCrawler

ConAn Van ...Hapax

Extensible meta model

Model repository

Nierstrasz et al. The Story
of Moose. ESEC/FSE 2005

11

System complexity

Lanza et al. Polymetric Views. TSE 2003

12

13

Smalltalk

Navigation

Metrics

Querying

Grouping

Smalltalk

Java

C++

COBOL

…

CodeCrawler

ConAn Van ...Hapax

Extensible meta model

Model repository

But, we have a huge
bottleneck for new

languages ...

A S A
A

A

14

What is Agile Software Assessment?

15

Challenge

“What will my code
change impact?”

16

Build a new assessment
tool in ten minutes

Challenge

17

Load the model in the morning,
analyze it in the afternoon

Challenge

Agile Modeling

19

Agile Modeling Lifecycle
Build a

coarse model

Build a custom
analysis

Refine the
model

20

Problems

Heterogeneous projects

Unknown
languages

Unstructured text

Ideas

Grammar
Stealing

Hooking into
an existing tool
of this phase will be a model of the Ruby software system. As the meta-model
is FAME compliant, also the model will be. Information about the ClassLoader,
an instance responsible for loading Java classes, is covered in section 4.7.

The Fame framework automatically extracts a model from an instance of an
Eclipse AST. This instance corresponds to the instance of the Ruby plugin AST
representing the software system. Automation is possible due to the fact that
we defined the higher level mapping. Figure 2.1 reveals the need for the higher
mapping to be restored. In order to implement the next phase independently
from the environment used in this phase we extracted the model into an MSE
file.

Figure 2.1: The dotted lines correspond to the extraction of a (meta-)model.
The other arrows between the model and the software system hierarchy show
which Java tower level corresponds to which meta-model tower element.

2.3 Model Mapping by Example phase

Our previously extracted model still contains platform dependent information
and thus is not a domain specific model for reverse engineering. It could be
used by very specific or very generic reverse engineering tools, as it contains
the concrete syntax tree of the software system only. However such tools do
not exist. In the Model Mapping by Example phase we want to transform the
model into a FAMIX compliant one. With such a format it will be easier to use
in several software engineering tools.

The idea behind this approach relies on Parsing by Example [3]. Parsing
by Example presents a semi-automatic way of mapping source code to domain

9

Recycling
Trees

Parsing by Example
Evolutionary

Grammar Generation

18 CHAPTER 3. GENETIC PROGRAMMING

Since biological evolution starts from an existing population of species, we need to
bootstrap an initial population before we can begin evolving it. This initial population
is generally a number of random individuals. These initial individuals usually don’t
perform well, although some will already be a tad better than others. That is exactly
what we need to get evolution going.

The final part is reproduction, i.e. to generate a new generation from the surviving pre-
vious generation. For that purpose an evolutionary algorithm usually uses two types
of genetic operators: point mutation and crossover (We will refer to point mutations as
mutations, although crossover is technically also a mutation). Mutations change an
individual in a random location to alter it slightly, thus generating new information.
Crossover1 however, takes at least two individuals and cuts out part of one of them, to
put it in the other individual(s). By only moving around information, Crossover does
not introduce new information. Be aware that every modification of an individual has
to result in a new individual that is valid. Validity is very dependent on the search
space - it generally means that fitness function as well as the genetic operators should
be applicable to a valid individual. A schematic view is shown in fig. 3.1.

generate new

random population

select most fit

individuals

 generate new

population with

genetic operators

fit enough?

mutation crossover

Figure 3.1: Principles of an Evolutionary Algorithm

There are alternatives to rejecting a certain number of badly performing individuals
per generation. To compute the new generation, one can generate new individuals
from all individuals of the old generation. This would not result in an improvement
since the selection is completely random. Hence the parent individuals are selected

1Crossover in biology is the process of two parental chromosomes exchanging parts of genes in the
meiosis (cell division for reproduction cells)

21

22

Hooking into an existing tool

Nice if you can
have it — but just

defers the problem
to another platform

23

24

Grammar Stealing

25

26

stance). Figure 2 shows the first two cases—
the third is just a combination. If you start
with a hard-coded grammar, you must re-
verse-engineer it from the handwritten code.
Fortunately, the comments of such code of-
ten include BNF rules (Backus Naur Forms)
indicating what the grammar comprises.
Moreover, because compiler construction is
well-understood (there is a known reference
architecture), compilers are often imple-
mented with well-known implementation al-
gorithms, such as a recursive descent algo-
rithm. So, the quality of a hard-coded parser
implementation is usually good, in which
case you can easily recover the grammar
from the code, the comments, or both. Ex-
cept in one case, the Perl language,14 the
quality of the code we worked with was al-
ways sufficient to recover the grammar.

If the parser is not hard-coded, it is gen-
erated (the BNF branch in Figure 2), and
some BNF description of it must be in the
compiler source code. So, with a simple tool
that parses the BNF itself, we can parse the
BNF of the language that resides in the com-
piler in BNF notation, and then extract it.

When the compiler source code is not
accessible (we enter the Language Refer-
ence Manual diamond in Figure 2), either a
reference manual exists or not. If it is avail-
able, it could be either a compiler vendor
manual or an official language standard.
The language is explained either by exam-

ple, through general rules, or by both ap-
proaches. If a manual uses general rules, its
quality is generally not good: reference
manuals and language standards are full of
errors. It is our experience that the myriad
errors are repairable. As an aside, we once
failed to recover a grammar from the man-
ual of a proprietary language for which the
compiler source code was also available
(so this case is covered in the upper half of
Figure 2). As you can see in the coverage
diagram, we have not found low-quality
language reference manuals containing
general rules for cases where we did not
have access to the source code. That is, to
be successful, compiler vendors must pro-
vide accurate and complete documenta-
tion, even though they do not give away
their compilers’ source code for economic
reasons. We discovered that the quality of
those manuals is good enough to recover
the grammar. This applies not only to com-
piler-vendor manuals but also to all kinds
of de facto and official language standards.

Unusual languages rarely have high-quality
manuals: either none exists (for example, if
the language is proprietary) or the company
has only a few customers. In the proprietary
case, a company is using its in-house lan-
guage and so has access to the source code;
in the other case, outsiders can buy the code
because its business value is not too high.
For instance, when Wang went bankrupt, its

8 2 I E E E S O F T W A R E N o v e m b e r / D e c e m b e r 2 0 0 1

No

Yes

Yes

Start

Hard-coded
parser

Recover the
grammar

Recover the
grammar

BNF

No cases known

Yes

One case:
perl

No

Language
reference
manual?

No

General
rules

Recover the
grammar

One case:
RPG

Constructions
by example

Yes

No cases
known

No

Compiler
sources?

Quality?

Quality?

Figure 2. Coverage diagram for grammar stealing.

Still takes a couple of weeks
and lots of expertise

27

Recycling Trees
of this phase will be a model of the Ruby software system. As the meta-model
is FAME compliant, also the model will be. Information about the ClassLoader,
an instance responsible for loading Java classes, is covered in section 4.7.

The Fame framework automatically extracts a model from an instance of an
Eclipse AST. This instance corresponds to the instance of the Ruby plugin AST
representing the software system. Automation is possible due to the fact that
we defined the higher level mapping. Figure 2.1 reveals the need for the higher
mapping to be restored. In order to implement the next phase independently
from the environment used in this phase we extracted the model into an MSE
file.

Figure 2.1: The dotted lines correspond to the extraction of a (meta-)model.
The other arrows between the model and the software system hierarchy show
which Java tower level corresponds to which meta-model tower element.

2.3 Model Mapping by Example phase

Our previously extracted model still contains platform dependent information
and thus is not a domain specific model for reverse engineering. It could be
used by very specific or very generic reverse engineering tools, as it contains
the concrete syntax tree of the software system only. However such tools do
not exist. In the Model Mapping by Example phase we want to transform the
model into a FAMIX compliant one. With such a format it will be easier to use
in several software engineering tools.

The idea behind this approach relies on Parsing by Example [3]. Parsing
by Example presents a semi-automatic way of mapping source code to domain

9

Daniel Langone. Recycling Trees:
Mapping Eclipse ASTs to Moose Models.

Bachelor's thesis, University of Bern

28

1.Infer AST implementation from IDE plugin
2.Extract metamodel from plugin
3.Map model elements to FAMIX (Moose)

29

Hard to recognize ASTs;
still need to map to

model elements

30

Parsing by Example

Nierstrasz et al. Example-
Driven Reconstruction of

Software Models. CSMR 2007

31

m..n

1
Model

Parser
Source code

1

import

2

specify
examples

5
parse

Example mappings

... :=
 |
 |
... :=
 |
 |
... :=
 |
 |

Grammar

3
infer

4

generate

5

6
export

32

CodeSnooper

33

34

result to that obtained with a robust parser we find that we
only miss five classes:

Precise Model Our Model
Number of Model Classes 366 361
Number of Abstract Classes 233 233

In a second iteration we give examples of methods in ab-
stract and concrete classes as well as interfaces. This leads
to three separate grammars which cannot easily be merged
since this would lead to an ambiguous grammar [12]. In-
stead we generate three parsers and apply them in parallel
to the source files. We now obtain the following results:

Precise Model Our Model
Number of Model Classes 366 316
Number of Abstract Classes 233 233
Total Number Of Methods 1887 1648

In addition to the two files we could not parse earlier,
we now have some problems due to (i) attributes being con-
fused with methods, (ii) language constructs (like static)
occurring in unexpected contexts, (iii) different kinds of
definitions of methods. Additional examples would help to
solve these problems.

In a third iteration we add examples to recognize at-
tributes. Once again we obtain three parsers based on three
sets of examples for abstract classes, concrete classes and
interfaces. We obtain the following results:

Precise Model Our Model
Number of Model Classes 366 346
Number of Abstract Classes 233 230
Total Number Of Methods 1887 1780
Total Number of Attributes 395 304

This process can be repeated to cover more and more of
the subject language. The question on when to stop can be
answered with “When the results are good enough”. Good
enough in this context means when we have enough infor-
mation for a specific reverse engineering task. For example,
a “System Complexity View” [18] is a visualization used to
obtain an initial impression of a legacy software system. To
generate such a view we need to parse a significant number
of the classes, identify subclass relations, and establish the
numbers of methods and attributes of each class. Even if we
parse only 80% of the code, we can still get an initial im-
pression of the state of the system. If on the other we would
want to display a “Class Blueprint” [17], a semantically en-
riched visualization of the internal structure of classes we
would need a refined grammar to extract more information.
The “good enough” is thus given by the reverse engineering
goals, which vary from case to case.

4.2 Ruby

As second case study we chose the language Ruby, be-
cause it is quite different from Java and it has a non-trivial
grammar. We took the unit testing library distributed with
Ruby version 1.8.2 released at the end of 2004. This part of
the library contains 22 files written in Ruby. We do not have
a precise parser for Ruby that can generate a FAMIX model
(actually, to our knowledge, for Ruby there is only one pre-
cise parser, namely the Ruby interpreter itself). Instead we
retrieve the reference model by inspecting the source code
manually.

In Ruby there are Classes and Modules. Modules are
collections of Methods and Constants. They cannot gen-
erate instances. However they can be mixed into Classes
and other Modules. A Module cannot inherit from anything.
Modules also have the function of Namespaces. Ruby does
not support Abstract Classes [22].

For the definition of the scanner tokens for identifiers and
comments we use the following regular expressions:

<IDENTIFIER>: [a�zA�Z $] \w⇤ (\? | \ !) ? ;
<comment>: \# [ˆ \ r \n]⇤ <eol> ;

Using just 2 examples each of namespaces, classes,
methods and attributes, we are able to parse 7 of the 22 files.

Precise Model 7 files Our Model
Number of
Namespaces 8 6 6
Number of
Model Classes 25 4 4
Total Number of
Methods 247 26 26
Total Number of
Attributes 136 9 9

Amongst the files we could not parse, there are 4 large files
containing GUI code. If we ignore these files, we are able
to detect about 25% of the target elements.

There are two main reasons that so few files can be suc-
cessfully parsed:

1. The comment character # occurs frequently in strings
and regular expressions, causing our simple-minded
scanner to fail. A better scanner would fix this prob-
lem. With some simple preprocessing (removing any
hash character that occurs inside a string and removing
all comments) we can improve recall to 65-85%.

2. Ruby offers a very rich syntax for control constructs,
allowing the same keywords to occur in many different
positions and contexts. One would need many more
examples to recognize these constructs.

result to that obtained with a robust parser we find that we
only miss five classes:

Precise Model Our Model
Number of Model Classes 366 361
Number of Abstract Classes 233 233

In a second iteration we give examples of methods in ab-
stract and concrete classes as well as interfaces. This leads
to three separate grammars which cannot easily be merged
since this would lead to an ambiguous grammar [12]. In-
stead we generate three parsers and apply them in parallel
to the source files. We now obtain the following results:

Precise Model Our Model
Number of Model Classes 366 316
Number of Abstract Classes 233 233
Total Number Of Methods 1887 1648

In addition to the two files we could not parse earlier,
we now have some problems due to (i) attributes being con-
fused with methods, (ii) language constructs (like static)
occurring in unexpected contexts, (iii) different kinds of
definitions of methods. Additional examples would help to
solve these problems.

In a third iteration we add examples to recognize at-
tributes. Once again we obtain three parsers based on three
sets of examples for abstract classes, concrete classes and
interfaces. We obtain the following results:

Precise Model Our Model
Number of Model Classes 366 346
Number of Abstract Classes 233 230
Total Number Of Methods 1887 1780
Total Number of Attributes 395 304

This process can be repeated to cover more and more of
the subject language. The question on when to stop can be
answered with “When the results are good enough”. Good
enough in this context means when we have enough infor-
mation for a specific reverse engineering task. For example,
a “System Complexity View” [18] is a visualization used to
obtain an initial impression of a legacy software system. To
generate such a view we need to parse a significant number
of the classes, identify subclass relations, and establish the
numbers of methods and attributes of each class. Even if we
parse only 80% of the code, we can still get an initial im-
pression of the state of the system. If on the other we would
want to display a “Class Blueprint” [17], a semantically en-
riched visualization of the internal structure of classes we
would need a refined grammar to extract more information.
The “good enough” is thus given by the reverse engineering
goals, which vary from case to case.

4.2 Ruby

As second case study we chose the language Ruby, be-
cause it is quite different from Java and it has a non-trivial
grammar. We took the unit testing library distributed with
Ruby version 1.8.2 released at the end of 2004. This part of
the library contains 22 files written in Ruby. We do not have
a precise parser for Ruby that can generate a FAMIX model
(actually, to our knowledge, for Ruby there is only one pre-
cise parser, namely the Ruby interpreter itself). Instead we
retrieve the reference model by inspecting the source code
manually.

In Ruby there are Classes and Modules. Modules are
collections of Methods and Constants. They cannot gen-
erate instances. However they can be mixed into Classes
and other Modules. A Module cannot inherit from anything.
Modules also have the function of Namespaces. Ruby does
not support Abstract Classes [22].

For the definition of the scanner tokens for identifiers and
comments we use the following regular expressions:

<IDENTIFIER>: [a�zA�Z $] \w⇤ (\? | \ !) ? ;
<comment>: \# [ˆ \ r \n]⇤ <eol> ;

Using just 2 examples each of namespaces, classes,
methods and attributes, we are able to parse 7 of the 22 files.

Precise Model 7 files Our Model
Number of
Namespaces 8 6 6
Number of
Model Classes 25 4 4
Total Number of
Methods 247 26 26
Total Number of
Attributes 136 9 9

Amongst the files we could not parse, there are 4 large files
containing GUI code. If we ignore these files, we are able
to detect about 25% of the target elements.

There are two main reasons that so few files can be suc-
cessfully parsed:

1. The comment character # occurs frequently in strings
and regular expressions, causing our simple-minded
scanner to fail. A better scanner would fix this prob-
lem. With some simple preprocessing (removing any
hash character that occurs inside a string and removing
all comments) we can improve recall to 65-85%.

2. Ruby offers a very rich syntax for control constructs,
allowing the same keywords to occur in many different
positions and contexts. One would need many more
examples to recognize these constructs.

JBoss case

Ruby case

Problems
• Ambiguity
• False positives
• False negatives
• Embedded languages

Markus Kobel. Parsing by
Example. MSc, U Bern, April 2005.

35

Evolutionary Grammar
Generation

18 CHAPTER 3. GENETIC PROGRAMMING

Since biological evolution starts from an existing population of species, we need to
bootstrap an initial population before we can begin evolving it. This initial population
is generally a number of random individuals. These initial individuals usually don’t
perform well, although some will already be a tad better than others. That is exactly
what we need to get evolution going.

The final part is reproduction, i.e. to generate a new generation from the surviving pre-
vious generation. For that purpose an evolutionary algorithm usually uses two types
of genetic operators: point mutation and crossover (We will refer to point mutations as
mutations, although crossover is technically also a mutation). Mutations change an
individual in a random location to alter it slightly, thus generating new information.
Crossover1 however, takes at least two individuals and cuts out part of one of them, to
put it in the other individual(s). By only moving around information, Crossover does
not introduce new information. Be aware that every modification of an individual has
to result in a new individual that is valid. Validity is very dependent on the search
space - it generally means that fitness function as well as the genetic operators should
be applicable to a valid individual. A schematic view is shown in fig. 3.1.

generate new

random population

select most fit

individuals

 generate new

population with

genetic operators

fit enough?

mutation crossover

Figure 3.1: Principles of an Evolutionary Algorithm

There are alternatives to rejecting a certain number of badly performing individuals
per generation. To compute the new generation, one can generate new individuals
from all individuals of the old generation. This would not result in an improvement
since the selection is completely random. Hence the parent individuals are selected

1Crossover in biology is the process of two parental chromosomes exchanging parts of genes in the
meiosis (cell division for reproduction cells)

Sandro De Zanet. Grammar Generation with
Genetic Programming — Evolutionary Grammar

Generation. MSc, U Bern, July 2009.

36

18 CHAPTER 3. GENETIC PROGRAMMING

Since biological evolution starts from an existing population of species, we need to
bootstrap an initial population before we can begin evolving it. This initial population
is generally a number of random individuals. These initial individuals usually don’t
perform well, although some will already be a tad better than others. That is exactly
what we need to get evolution going.

The final part is reproduction, i.e. to generate a new generation from the surviving pre-
vious generation. For that purpose an evolutionary algorithm usually uses two types
of genetic operators: point mutation and crossover (We will refer to point mutations as
mutations, although crossover is technically also a mutation). Mutations change an
individual in a random location to alter it slightly, thus generating new information.
Crossover1 however, takes at least two individuals and cuts out part of one of them, to
put it in the other individual(s). By only moving around information, Crossover does
not introduce new information. Be aware that every modification of an individual has
to result in a new individual that is valid. Validity is very dependent on the search
space - it generally means that fitness function as well as the genetic operators should
be applicable to a valid individual. A schematic view is shown in fig. 3.1.

generate new

random population

select most fit

individuals

 generate new

population with

genetic operators

fit enough?

mutation crossover

Figure 3.1: Principles of an Evolutionary Algorithm

There are alternatives to rejecting a certain number of badly performing individuals
per generation. To compute the new generation, one can generate new individuals
from all individuals of the old generation. This would not result in an improvement
since the selection is completely random. Hence the parent individuals are selected

1Crossover in biology is the process of two parental chromosomes exchanging parts of genes in the
meiosis (cell division for reproduction cells)

26 CHAPTER 4. COMBINATION OF PEGS AND GENETIC PROGRAMMING

C

A B

A B

Figure 4.4: Push a node up

Insertion ensures diversity in graph depth. Graph depth is important for the emergence
of more complex structures. The deletion, on the other hand, puts a counterweight
to it. This ensures that grammars do not grow too big and that is possible to simplify
structures.

4.1.2 Crossover

Crossover is the second, less often used modification. The term is borrowed from the
biological chromosomal crossover, where it describes the exchange of genes of two
paired up chromosomes (one from the mother and one from the father) in the process
of the Meiosis 1.

Applied to grammars, this results in copying a subgraph of one grammar into another
graph. If one has two grammars p1 and p2, a new grammar is created by selecting a
random node of p1 and adding it to random node of p2. Note that the parsers will
not be directly linked. Rather the subgraph of p1 is copied independently from its
parent.

The motivation for crossover is to preserve useful, more complex structures that have
already evolved. By combining two modestly performing parsers one can generate a
new one that combines the useful parts of the parents into a parser that performs well
in the two places of the parents.

1Process of generating reproductive cells like sperms and eggs

37

4.1. TUNING PEGS FOR GENETIC PROGRAMMING 25

Figure 4.2: Add back link node

...

...

Figure 4.3: Delete a node

To ensure the evolvability of more complex parsers we need more complex mutations.
After the initial population got sorted mostly only single character parsers were left
and couldn’t mutate to parsers with more nodes.

The following mutations add the possibility to insert nodes between the current parser
and the root parser:

deletion The selected parser first moves all its children to the parent parser, thus
replacing itself by its children (fig. 4.4)

insertion The selected parser is replaced by a composite parser (sequence or choice).
The selected parser is then added to the new parser. This results in the insertion
of a new parser in between the selected parser and its parser. If the selected
parser is the root, the new parser becomes the new root. (fig. 4.5)

PEG mutation and crossover

24 CHAPTER 4. COMBINATION OF PEGS AND GENETIC PROGRAMMING

To transform PEGs to evolvable structures, some adaptions have to be made. In
the definition by Bryan Ford [7] sequence and choice operators only have two child
parsers. Longer sequences (or choose statements) can be built by nesting them. To
make profitable changes more probable and to keep the number of nodes down (which
also increases the execution speed as well) they have been generalized to an arbitrary
length.

First we will look at the modifications that are possible for grammars and are commonly
used in evolutionary algorithms: mutation and crossover.

4.1.1 Mutation

A mutation of a grammar is the modification of one of its randomly chosen nodes.
Every parser node is different and therefore it has to change itself in a different way
according to its type. So for instance the character parser will mutate the character it
parser. Similarly a range parser alters its range.

There are though some more common mutations that affect the structure of the gram-
mar and are not dependent on the node. They will only affect not primitive and not
unary parser nodes:

add child A new randomly generated parser will be inserted in the list of children (fig.
4.1)

Figure 4.1: Add a node

add link Works similarly to adding a child. Although in this case the new parser is not
randomly generated but selected from one of the nodes of the already existing
PEG. This results in a link to this parser (like a CFG rule, fig. 4.2)

remove child A randomly selected child will be removed. No effect, if there is only
one child. Remark that we don’t allow composite parsers with no children, since
they don’t constitute a valid grammar (4.3)

The mutation has no effect on unary or primitive parsers like the character parser.

4.1. TUNING PEGS FOR GENETIC PROGRAMMING 25

Figure 4.2: Add back link node

...

...

Figure 4.3: Delete a node

To ensure the evolvability of more complex parsers we need more complex mutations.
After the initial population got sorted mostly only single character parsers were left
and couldn’t mutate to parsers with more nodes.

The following mutations add the possibility to insert nodes between the current parser
and the root parser:

deletion The selected parser first moves all its children to the parent parser, thus
replacing itself by its children (fig. 4.4)

insertion The selected parser is replaced by a composite parser (sequence or choice).
The selected parser is then added to the new parser. This results in the insertion
of a new parser in between the selected parser and its parser. If the selected
parser is the root, the new parser becomes the new root. (fig. 4.5)

4.1. TUNING PEGS FOR GENETIC PROGRAMMING 27

C

A B

C

A B

Figure 4.5: Insert a node

4.1.3 Fitness function

The fitness function is the most important part of the evolutionary algorithm by in-
directly defining the envisioned goal. It determines the quality of PEGs which is a
representation of the distance to the solution. Without an elaborate fitness function, the
search will head in the wrong direction. There is also the risk of finding non-intended
solutions or to be trapped in local extrema.

Normally the fitness function is defined as a number which stands for a better rating,
the higher it is. We decided to define the fitness function the other way around: worse
PEG have a higher fitness number; the fitness of 0 defines the best achievable solution.
This makes sense because we use the size metric of a PEG which is worse the bigger a
PEG gets. Furthermore, we have found a possible solution if all the characters of the
source code have been parsed. Hence we measure the number of characters to parse
which is better the smaller it is.

For our problem we first implemented the most straightforward solution. We let each
PEG parse every source code file. The number of characters that it cannot parse is
added to the final fitness. There is an additional penalty for not being able to parse a
file at all (parser fails on the first character). The reason behind this is that we wanted a
stronger differentiation between the grammars that could at least parse one character
and the completely useless grammars. In this way a better grammar is a grammar with
a lower fitness, a grammar with fitness zero being one that can fully parse every source
code. We don’t allow negative fitness (the reason is explained later).

38

([a-z] (‘_‘ | [0-9] | [a-z])*)

(([a-z] ({‘\n‘ | ‘_‘ | [0-9]})*))*

0 -> (‘c‘ ‘a‘ ‘t‘ ‘:‘ ‘ ‘ ([a-z])+ 1 -> {2 -> (‘\n‘ 0) | e})

(0 -> (‘c‘ ‘a‘ ‘t‘ ‘:‘ ‘ ‘ 2 -> (([a-z])+ ‘\n‘)))+

0 -> (‘+‘ | ‘-‘ | ‘<‘ | ‘>‘ | ‘,‘ | ‘.‘ | 1
-> (‘[‘ 2 -> (0)* ‘]‘))

(0 -> {‘<‘ | ‘]‘ | ‘.‘ | ‘,‘ | ‘>‘ | ‘-‘ | ‘[‘ | ‘+‘})*

Desired grammar:

Found grammar:

Desired grammar:

Found grammar:

Desired grammar:

Found grammar:

Slow and expensive.
Modest results for
complex languages.

Directions

Incrementally refine
island grammars

40

41

Progress

Global Islands are useful
Scoped Islands are useful

Verification of a
scope is expensive

Tokenization and
memoization help :-)

Recursive Islands and
Scoped Repeating
Islands lead to Left-
Recursion Problems

Composing parsers
from parts

42

Ideas

Exploit similarities between languages
(adapt and compose)

• similar syntax, similar constructs
• combine “reusable” islands?
• adapt with genetic algorithms?
• combine with parsing by example?

43

Automatic structure
recognition

44

Exploit indentation as a
proxy for structure

Ideas
catch, throw, try, bool, class, enum,

explicit, export, friend, inline, mutable,
namespace, operator, private, protected,

public, template, typename, using,
virtual, volatile, wchar_t, and, and_eq,
bitand, bitor, compl, const_cast, delete,
dynamic_cast, false, new, not, not_eq, or,

or_eq, reinterpret_cast, static_cast,
this, true, typeid, xor, xor_eq

Heuristics to automatically
detect keywords

• don’t parse; just recognize structure?
• combine with parsing by example?
• combine with grammar evolution?
• combine with parser composition?

45

Conclusions

Model construction is an obstacle
to agile software assessment

You don’t need precise
parsers to start analysis

Are there effective shortcuts to
building a parser/importer by hand?

