
Dagstuhl Seminar 12511, Dec 2012

Oscar Nierstrasz

Software Composition Group
scg.unibe.ch

Compositional Programming

http://www.dagstuhl.de/en/program/calendar/semhp/?
semnr=12511



Roadmap

2

Early history

Objects

Components

Features

Metaprogramming

Conclusions



Roadmap

3

Early history

Objects

Components

Features

Metaprogramming

Conclusions



Subroutines (1949)

Repeatedly invoke common 
code sequences

call

return

4

David Wheeler is credited with the invention of the “closed subroutine”. Dijkstra points to this 
as one of the most fundamental contributions to PL design.

Wheeler is often quoted as saying "Any problem in computer science can be solved with 
another layer of indirection. But that usually will create another problem." 
Another quotation attributed to him is "Compatibility means deliberately repeating other 
people's mistakes.”

http://en.wikipedia.org/wiki/Subroutine#cite_note-2
http://en.wikipedia.org/wiki/David_Wheeler_(computer_scientist)

EDSAC computer



Libraries — FORTRAN II (1958)

Large reusable libraries 
of scientific functions led 
to the long-term success 

of FORTRAN

5

User subroutines are introduced in FORTRAN II (1958).



Recursion — ALGOL (1958)

ALGOL brought 
recursion into the 

mainstream

6

FORTRAN did not support reentrant procedures. ALGOL introduced a run-time stack to 
support recursive procedures, but the impact was only realized later.



Modules — COBOL (1959)

Modules enabled the 
stepwise decomposition 

of large software systems

7

Cobol tried to be readable (for managers) but ended up just being verbose.
Still the most widely used PL today.
Main innovation was in supporting modular programming.



Summary

Paradigm: procedural composition

Motivation: code reuse, managing complexity

call

return

8



Roadmap

9

Early history

Objects

Components

Features

Metaprogramming

Conclusions



Data Abstraction

Abstraction = elimination of inessential detail

Encapsulation = bundling operations to 
access related data as a data abstraction

Information hiding = providing only the 
information a client needs to know

In object-oriented languages we can 
implement data abstractions as classes.

10
Edward V. Berard, “Abstraction, Encapsulation, and Information 
Hiding” in Essays On Object-Oriented Software Engineering, 1993.

These three concepts are often confused, but in fact any one may be 
present without the other two.
See also: William Cook, OOPSLA 2009 for a discussion on the distinction 
between data abstractions and abstract data types.



Object-Oriented Programming (1962)

OOP was introduced in Simula as an 
extension to ALGOL to model simulations.

11

Subclass

Method
...

Attribute
...

Class

Attribute
...

Object

instance-of

Subobject

sends-messages-to

specializes
is-composed-of

*

OOP introduces objects, class and inheritance.
Objects are composed of subobjects, and subclasses specializations of superclasses.



Smalltalk (1972)

12

Integer»factorial
! self = 0 ifTrue: [^ 1].
! self > 0 ifTrue: [^ self * (self - 1) factorial].
! self error: 'Not valid for negative integers'

5 factorial ! 120

Everything is an object

Everything happens by 
sending messages

self = 0 ifTrue: [^ 1]
self > 0 ifTrue: [^ self * (self - 1) factorial].

In “pure” OOP, objects are used to model all aspects of design

Alan C. Kay. The Early History of Smalltalk. ACM SIGPLAN Notices, March 1993.
http://www.smalltalk.org/smalltalk/TheEarlyHistoryOfSmalltalk_Abstract.html

Smalltalk was the first language to use objects as the only basis for programming.
It was inspired by the need for a new language and run-time system needed for the next 
generation of interactive workstations.

http://www.smalltalk.org/smalltalk/TheEarlyHistoryOfSmalltalk_Abstract.html
http://www.smalltalk.org/smalltalk/TheEarlyHistoryOfSmalltalk_Abstract.html


The open / closed principle

13

Bertrand Meyer, Object-Oriented Software Construction, 1988.
See also: http://www.objectmentor.com/resources/articles/ocp.pdf

Software entities should be open for 
extension, but closed for modification.

“In other words, we want to be able to 
change what the modules do, without 
changing the source code of the modules.”

Example: Class — instantiate as an encapsulated object; extend as a subclass
Component — fixed interface; hooks to plug in new behaviour (cf eclipse)

http://www.objectmentor.com/resources/articles/ocp.pdf
http://www.objectmentor.com/resources/articles/ocp.pdf


Design by Contract

14

“If you promise to call S with the precondition 
satisfied, then I, in return, promise to deliver a final 
state in which the post-condition is satisfied.”

Services should specify clear contracts

If the precondition fails, it is the client’s fault.

If the postcondition fails, it is the supplier’s fault. 
If the class invariant fails, it is the supplier’s fault.

Bertrand Meyer, Object-Oriented Software Construction, 1988.
See also: http://www.objectmentor.com/resources/articles/ocp.pdf

DbC is one of the foundations of OO design. It simplifies design decisions, and leads to the 
development of more robust software by formalizing the expectations of clients and 
suppliers of services.

http://www.objectmentor.com/resources/articles/ocp.pdf
http://www.objectmentor.com/resources/articles/ocp.pdf


Principle of Substitutability

15

Peter Wegner, Stanley Zdonik. Inheritance as an Incremental 
Modification Mechanism or What Like Is and Isn't Like. ECOOP 1988.
http://www.ifs.uni-linz.ac.at/~ecoop/cd/tocs/t0322.htm

An instance of a subtype can always be 
used in any context in which an instance 
of a supertype was expected.

substitutable?

Wegner and Zdonik made a first attempt to formulate the notion of “plug compatibility” 
between objects. The notion is still rather informal — Is a Circle an Ellipse? Depends on the 
contract clients expect! (Ditto for Square and Rectangle.)

http://www.ifs.uni-linz.ac.at/~ecoop/cd/tocs/t0322.htm
http://www.ifs.uni-linz.ac.at/~ecoop/cd/tocs/t0322.htm


Liskov substitution principle

16

Barbara Liskov, Jeannette M. Wing. A behavioral notion of 
subtyping. ACM TOPLAS, 1994.
http://www.cse.ohio-state.edu/~neelam/courses/788/lwb.pdf

Let q(x) be a property provable about objects x of type T. 
Then q(y) should be true for objects y of type S, where S 
is a subtype of T.

Restated in terms of contracts, a derived class is substitutable 
for its base class if:
• Its preconditions are no stronger than the base class method.
• Its postconditions are no weaker than the base class method. 

Note that Liskov and Wing actually refer to a much stronger notion of behavioral 
substitutability than Uncle Bob (or Wegner and Zdonik do), and is much stronger than what 
OO programs usually require. It all depends on how strong your type system is!

http://www.cse.ohio-state.edu/~neelam/courses/788/lwb.pdf
http://www.cse.ohio-state.edu/~neelam/courses/788/lwb.pdf


Polymorphism

17
Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction, 
and Polymorphism. ACM Computing Surveys 17(4) p. 471—522, 1985

> Universal:
—Parametric: map function in Haskell
—Inclusion: subtyping — graphic objects

> Ad Hoc:
—Overloading: integer vs real addition
—Coercion: automatic conversion from ints to floats

Polymorphic client code does not depend 
on the concrete type of the service provider

Polymorphism is often confused with “dynamic binding”.
It simply means that entities may have many types, whereas in monomorphic languages (like 
Pascal or C) entities have unique types.
Universal polymorphism means one function accepts many types. With ad hoc polymorphism, 
there are actually many functions with the same name.
Java and C++ support all four kinds of polymorphism.
Polymorphism is useful because it enables generic client code to be written that does not 
depend on the concrete type of the service provided.



Covariant subtyping

18

DX CXfX
DY

CY

fY

A client who expects the behaviour of fX, and applies 
fY to a value in DX might get a run-time type error.

Anthony J. H. Simons, “The Theory of Classification”, Parts 1-3, 
Journal of Object Technology, 2002-2003, www.jot.fm.

Covariance intuitively makes sense but is unsafe.
It is supported in Eiffel, but is caught at runtime (“CAT-calls” — covariant argument type).



Contravariant subtyping

19

A contravariant result type guarantees that 
the client will receive no unexpected results.

DX CXfX

DY

CY

fY

Anthony J. H. Simons, “The Theory of Classification”, Parts 1-3, 
Journal of Object Technology, 2002-2003, www.jot.fm.

But contravariance runs counter to intuition, so is rarely used in real languages.
Java requires that overridden methods have the same signature. Methods with the same name 
but different signatures are actually overloaded, opening a whole other can of worms.



Types vs Classes

20

class Number

class Integer

type Number

type Integer

Anthony J. H. Simons, “The Theory of Classification”, Parts 4-8, 
Journal of Object Technology, 2002-2003, www.jot.fm.

“Classes are 
nested volumes in 
the space of types. 
Types are points at 
the apex of each 
bounded volume.”

Classes are generators of types.

Classes are generators of types, and represent families of types.
A specific object has a given, specific type. A class may instantiate a given object, but may also be used 
to generate subclasses, so it represents a whole family of types.



Frameworks

White box frameworks define a generic 
application that you instantiate by subclassing.

21
Ralph E. Johnson & Brian Foote. Designing Reusable Classes.
Journal of Object-Oriented Programming, June/July 1988.
http://www.laputan.org/drc.html

+ void runBare() 
# void runTest()
# void setUp() 
# void tearDown()
...

TestCase
abstract

+ run(TestResult)

«interface»
Test

+ addTest(Test)

TestSuite

+ assertTrue(boolean) 
...

«utility»
Assert

# void run(TestCase) 
+ addError(Test, Throwable)
+ addFailure(Test, Throwable)
...

TestResult

Frameworks reverse the usual flow of control: you don’t call them; they call you!
The problem with white box frameworks is that the contracts for subclassing the Framework 
classes are implicit

http://www.laputan.org/drc.html
http://www.laputan.org/drc.html


Design Patterns

22

Patterns document 
common language-
independent solutions 
to design problems.

Most of the GOF 
patterns achieve 
flexibility by adding 
a level of indirection.

Erich Gamma, et al. Design Patterns: Elements of Reusable 
Object-Oriented Software, Addison Wesley, 1995.

Most patterns define a set of collaborating roles, which are to be played by objects of your 
concrete design.



Summary

Paradigm: object composition + incremental refinement

Motivation: domain modeling

23



Roadmap

24

Early history

Objects

Components

Features

Metaprogramming

Conclusions



Software Product Lines

25

Software asset 
inputs

Product 
decisions

Production

Software product 
outputs

A SPL is a way to 
produce a range of 
similar systems 
from a shared set of 
software assets

http://www.sei.cmu.edu/productlines/

A SPL is a domain specific framework for producing a range of related applications.
Key concern: managing variation. Can use a range of techniques.

http://www.sei.cmu.edu/productlines/
http://www.sei.cmu.edu/productlines/


Software components

26

A software component is a unit of composition 
with contractually specified interfaces and 
explicit context dependencies only.

A software component can be deployed 
independently and is subject to composition 
by third parties. 

Clemens Szyperski, Component Software: Beyond Object-Oriented 
Programming, 2nd ed.. Boston, MA: Addison-Wesley, 2002. 

NB: This definition emphasizes composition, not refinement.



But what is a software component?

27

an object
a class

a template
a method

a procedure
a mixin
a trait

a module
a package

a subsystem
a framework

a script
a service

a metaobject
a metaclass

a design pattern
...
?

it depends ...



Applications = Components + Scripts

28

Components 
both import and 
export services

Scripts plug 
components 
together

A scripting language  is a dedicated language for 
for orchestrating a set of tasks (or components).

Jean-Guy Schneider, Oscar Nierstrasz. Components, Scripts and Glue.
In Software Architectures — Advances and Applications, Springer-Verlag, 1999.

This definition emphasizes the need to configure components.
Components should be plug-compatible, so they are plugged — not wired — together.
Sometimes “glue” is additionally needed to adapt components to fit together.



DSLs

29

cat Notes.txt
| tr -c '[:alpha:]' '\012'
| sed '/^$/d’
| sort
| uniq –c
| sort –rn
| head -5

14 programming
14 languages
 9 of
 7 for
 5 the

SELECT * 
! FROM Book

WHERE price > 100.00
ORDER BY title;

A DSL is a dedicated 
programming or 
specification language for 
a specific problem domain

SQL is dedicated to the domain of manipulating tables.
The Bourne shell is dedicated to scripting Unix commands.
Neither language can be used without the components it is intended to script.



mail()
  .from("build@example.com")
  .to("example@example.com")
  .subject("build notification")
  .message("some details about build status")
  .send();

Internal DSLs

30
Michael Meyer et al. Mondrian: An Agile 
Visualization Framework. SoftVis 2006.

Mondrian is a tool for scripting visualizations of software models.
In fact it is a component framework, and scripts are simply Smalltalk code using the 
framework API, but have the flavor of a DSL. This is an “internal” or “embedded” DSL.



“Fluent interfaces”

31Martin Fowler. Domain-Specific 
Languages, Addison-Wesley, 2010.

mail()
  .from("build@example.com")
  .to("example@example.com")
  .subject("build notification")
  .message("some details about build status")
  .send();

An internal DSL leverages 
host language syntax to 
make an API look like a DSL.

Smalltalk used 
as a DSL

Java used 
as a DSL

The API is designed as a “fluent interface” so code that uses it resembles a DSL.
The second example shows how this can be done in Java.



Piccola

32

Piccola is a minimal language for 
defining plugs, connectors and scripts

Piccola was designed as a “pure composition language” for defining “styles” (fluent 
interfaces), and scripts using those styles. The core paradigm is of communicating agents. 
Forms are first-class environments to control the scope of scripts.



Piccola

33

A,B,C ::= ✏ empty form

| x

7!
bind

| x variable

| A;B sandbox

| hide
x

hide

| A · B extension

| �x.A abstraction

| AB application

| R current root

| L inspect

| A | B parallel

| ⌫c.A restriction

| c? input

| c output

built on a process calculus 
with explicit environments

Franz Achermann and Oscar Nierstrasz. A Calculus for Reasoning about 
Software Components. Theoretical Computer Science 331(2), 2005.

Piccola is an extension of the pi calculus with first class environments.



Piccola

34

A,B,C ::= ✏ empty form

| x

7!
bind

| x variable

| A;B sandbox

| hide
x

hide

| A · B extension

| �x.A abstraction

| AB application

| R current root

| L inspect

| A | B parallel

| ⌫c.A restriction

| c? input

| c output

for scripting 
components 
written in Java

http://scg.unibe.ch/research/piccola

Piccola is implemented in Java, and can be used to script Java components (objects) adhering 
to a particular fluent interface.
In the “hello world” example, a button widget is bound to an action that prints “hello world”.

http://scg.unibe.ch/research/piccola
http://scg.unibe.ch/research/piccola


Plug-in Architectures

35

Plug-ins allow you to extend and (sometimes) 
configure the host application.

Best known examples: web browsers and IDEs.



Service-oriented architecture

36

SOA enables composition of distributed, 
heterogeneous web-based services.

Presentation

Business

Services

Enterprise 
Components

Operational 
Systems

Integration A
rchitecture

Q
oS, Security, M

gt &
 M

onitoring

SOA requires adherence to certain principles (like stateless services).
In many ways a throwback to libraries, but can be very effective.



Summary

Paradigm: configuration of interacting components

Motivation: manage variation

37



Roadmap

38

Early history

Features

Metaprogramming

Conclusions

Objects

Components



Mixins (1980)

39

Mixins are “abstract subclasses”

asString
    �super asString, '  ',
            self rgb asString

asString
    �super asString, '  ', 
           self borderWidth asString

asString
serializeOn:

Rectangle

asString
serializeOn: 

Rectangle + MColor

asString
serializeOn: 

Rectangle + MColor + MBorder

asString
serializeOn:

MColor

MyRectangle

asString
serializeOn:

MBorder

inherits from
applies mixin

Mixins are 
sensitive to 
the order in 
which they are 
composed.

David A. Moon. Object-Oriented 
Programming with Flavors. OOPSLA 1986

Mixins were introduced in “Flavors”, an early Lisp dialect.
A mixin is a fragment of a class that can be mixed in to an existing class to add new features.
Mixins avoid the need for multiple inheritance or code duplication in single-inheritance 
systems.
The key drawback is that systems that make heavy use of mixins cannot easily be modified 
since a change to a mixin can percolate to many classes.



Traits

40
Stéphane Ducasse, et al. Traits: A Mechanism 
for fine-grained Reuse. ACM TOPLAS, 2006

The composing 
class retains control

Traits provide and 
require methods

Class = superclass + state + traits + glue

Unlike mixins, traits are insensitive to the order of composition.
Glue takes the form of explicit aliasing and exclusion of features.
Traits are purely static and can be flattened away.
“Talents” are dynamic traits for objects.



Feature-Oriented Programming

41

FOP is a SPL paradigm for 
synthesizing programs from features

Transformations are used to 
add features to base programs. Don Batory and Sean O'Malley. The Design and 

Implementation of Hierarchical Software Systems 
With Reusable Components.  ACM TOSEM, 1992

The diagram is a “feature model”, or “feature diagram”.



Generative Programming

42

template <int N>
struct Factorial 
{
    enum { value = N * Factorial<N - 1>::value };
};

template <>
struct Factorial<0> 
{
    enum { value = 1 };
};

// Factorial<4>::value == 24
// Factorial<0>::value == 1
void foo()
{
    int x = Factorial<4>::value; // == 24
    int y = Factorial<0>::value; // == 1
}

Template meta-programming 
is a form of compile-time code 
generation.

Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative 
programming: methods, tools, and applications, ACM 
Press/Addison-Wesley Publishing, 2000.

Template meta-programming can be used to select features at compile-time. 
C++ templates are actually Turing-complete.
In this example, a factorial is computed at compile-time by composing C++ templates.



Subject-Oriented Programming

43
William Harrison and Harold Ossher. Subject-Oriented 
Programming (A Critique of Pure Objects). OOPSLA 1993

SOP adds a “third 
dimension” to 

method dispatch.

Procedural invocation is single dispatch;
OOP is doubly-dispatched, since it takes the receiver of the message into account;
SOP is triply dispatched, by taking the sender into account.



Context-Oriented Programming

44

COP offers multi-dimensional dispatch, with multiple 
“layers” triggered by contextual information.

Base layer

Layer 1

Layer 2

Layer 3

Robert Hirschfeld, et al. Context-Oriented Programming. 
Journal of Object Technology, March 2008.
http://dx.doi.org/10.5381/jot.2008.7.3.a4

Each layer may define a number of class extensions (additions, modifications).

http://dx.doi.org/10.5381/jot.2008.7.3.a4
http://dx.doi.org/10.5381/jot.2008.7.3.a4


Summary

Paradigm: model and compose elementary features

Motivation: features represent domain concepts

45



Roadmap

46

Early history

Features

Metaprogramming

Conclusions

Objects

Components

Objects

Components



Reflection

47

Reflection is the ability of a 
program to manipulate as data 
something representing the 
state of the program during its 
own execution. 

Daniel G. Bobrow, et al. CLOS in Context — The Shape of 
the Design. In “Object-Oriented Programming: the CLOS 
perspective”, MIT Press, 1993.

A metaprogram is a program 
that manipulates a program 
(possibly itself)



Reflection and reification

48

Introspection is the ability for a program to 
observe and therefore reason about its own state. 

Intercession is the ability for a program to modify its own 
execution state or alter its own interpretation or meaning.

“A system having itself as application domain and that is causally connected with this domain 
can be qualified as a reflective system” — Maes, OOPSLA 1987.
NB: Java “reflection” is actually just intercession.



Structural and behavioral reflection

49

Malenfant et al., A Tutorial on Behavioral 
Reflection and its Implementation, 1996

Structural reflection lets you reflect 
on the program being executed

Behavioral reflection 
lets you reflect on the 
language semantics 
and implementation 

Behavioural reflection is especially interesting for realizing language extensions.



Applications of metaprogramming

50

IDE tools
— debugging
— profiling
— refactoring

Dynamic applications
— UI generation
— Modeling tools

Mostly compiler and development tools can benefit from metaprogramming, but some highly 
dynamic applications make use of it too.



Three approaches to reflection

51

The tower of 
meta-circular 
interpreters

Reflective 
languages Open 

Implementation 
(MOP)

1. Towers of interpreters are reified on need in practice
2. Reflective languages like Smalltalk are often written in themselves
3. Open implementations like CLOS offer an API (MOP) to the implementation



Aspect-Oriented Programming

52

AOP improves modularity by supporting 
the separation of cross-cutting concerns.

An aspect 
packages cross-
cutting concerns

A pointcut specifies a 
set of join points in the 
target system to be 
affected

Gregor Kiczales, et al. Aspect-Oriented Programming. ECOOP'97

“Weaving” is the process of 
applying the aspect to the 
target system

factor out cross-cutting concerns
pointcuts apply aspects to joinpoints in code
joinpoints may be static or dynamic



AspectJ

53

public class Demo {
!static Demo d;
!public static void main(String[] args){
!!new Demo().go();
!}
!void go(){
!!d = new Demo();
!!d.foo(1,d);
!!System.out.println(d.bar(new Integer(3)));
!}
!void foo(int i, Object o){
!!System.out.println("Demo.foo(" + i + ", " + o + ")\n");
!}
!String bar (Integer j){
!!System.out.println("Demo.bar(" + j + ")\n");
!!return "Demo.bar(" + j  + ")";
!}
}

Demo.foo(1, tjp.Demo@939b78e)
Demo.bar(3)
Demo.bar(3)

http://www.eclipse.org/aspectj/downloads.php

aspect GetInfo {
!pointcut goCut(): cflow(this(Demo) && execution(void go()));
!pointcut demoExecs(): within(Demo) && execution(* *(..));
!Object around(): demoExecs() && !execution(* go()) && goCut() 
{
 println("Intercepted message: " + 
!!thisJoinPointStaticPart.getSignature().getName());
!!...
!} ...
}

Intercept execution within control flow of Demo.go()

Identify all methods within Demo

Wrap all methods except Demo.go()

Intercepted message: foo
in class: tjp.Demo
Arguments: 
  0. i : int = 1
  1. o : java.lang.Object = tjp.Demo@c0b76fa
Running original method: 

Demo.foo(1, tjp.Demo@c0b76fa)
  result: null
Intercepted message: bar
in class: tjp.Demo
Arguments: 
  0. j : java.lang.Integer = 3
Running original method: 

Demo.bar(3)
  result: Demo.bar(3)
Demo.bar(3)

This (rather lame) foobar example shows how pointcuts can be used to specify not only static 
locations in the code, but also dynamic locations (ie within the execution of Demo.go()).



Dependency injection

54

Dependency injection externalizes 
dependencies to be configurable

Key techniques:
— parameterization
— code generation
— reflection

Typical application: 
injecting mocks

Martin Fowler. Inversion of Control Containers 
and the Dependency Injection pattern. 
http://martinfowler.com/articles/injection.html

Dependency injection refers to techniques to make internal dependencies externally 
configurable. A good example is to inject mock objects for testing purposes.

http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html


Model-Driven Engineering

55

software
developer

Platform
Independent
Model

automatic
transformation

MDE makes sense especially when you have the same application running on many platforms.
Slide courtesy Colin Atkinson, Universität Mannheim



The OMG / MDA Stack 

56

the UML MetaModel

Class Attribute*
1

a UML Model

Client

Name : String

M2

M1

the MOF

Class Association

source

destination

M3

c2

c2

c2

µµ µ

µµ

metamodel

model

"the real world"

meta-meta
model

The MOF

The UML metamodel ++

Some UML Models ++

Various usages
of these modelsM0

M1

M2

M3

µ

µ

Slide courtesy Jean Bézivin, INRIA/U Nantes



Summary

Paradigm: composition as metaprogramming

Motivation: separation of base and meta-levels

57



Roadmap

58

Early history

Features

Metaprogramming

Conclusions

Objects

Components

Objects

Components



Mechanisms

59

call

return

invocation messages

binding code generation



Dimensions

60
coarse grain

dynamic

meta 
level

static

base 
level

fine 
grain

The core composition 
paradigm is component-
based, but it varies along 
several dimensions.



Conclusion: Trends

61

procedural
technology 

component
technology  

object
technology 

Objects, Classes,
Smalltalk,

C++,
...

Procedures,
Pascal,

C,
...

Components,
Frameworks,

Patterns,
…

1970 1990 2000

model 
technology 

Models,
Transformations,
UML, MOF, QVT 

…

1960 20101980

procedural
refinement 

object
composition 

model
 transformation 

component
composition 



http://creativecommons.org/licenses/by-sa/2.5/

Attribution-ShareAlike 2.5
You are free:

▪ to copy, distribute, display, and perform the work
▪ to make derivative works
▪ to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or 
licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the 
resulting work only under a license identical to this one.

▪ For any reuse or distribution, you must make clear to others the license terms of this work.
▪ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

