
1

Great Moments in
the History of OOP

A Saga in 4 Parts
Oscar Nierstrasz

Software Composition Group
scg.unibe.ch

50 years anniversary of Simula

http://scg.unibe.ch

This talk was given at the 50 years anniversary of Simula
celebration held in Oslo on September 26, 2017. In it, I present a
personal tour of some of the milestones in the history of OOP.

http://simula67.at.ifi.uio.no/50years/

The wild hunt: Asgårdsreien (1872) by Peter Nicolai Arbo
https://en.wikipedia.org/wiki/Wild_Hunt

2

In which our hero begins his quest

Prologue

Lawren Harris, Baffin Island, 1931
https://www.wikiart.org/en/lawren-harris/baffin-island-1931

3

MRS

OFS
TLA

How to build the
“electronic office”?

3

1980

Back in 1980, when I started my Masters thesis at the University
of Toronto, I was tasked, together with John Hogg, with
developing “automated procedures” for OFS, a prototype of an
“Office Forms System” implemented in C. OFS was built on top
of MRS, a Micro Relational System for Unix, developed within
the Office Systems Group led by Prof. Dennis Tsichritzis.

4

Uh,
where are the

objects?

I did not have much programming experience, and C was new to
me, but I thought the task seemed pretty clear. However I was
very surprised to open the box and discover that the domain
objects of OFS were very hard to find in the code, as they were
smeared across many different levels.
I had the nagging feeling that we were using the wrong
technology to implement prototypes of advanced office
information system tools.

Jackson Pollock, Convergence, 1952
https://www.jackson-pollock.org/convergence.jsp

5

Part 1. A Call to Arms

In which we witness the origins
of object-oriented programming

Frank Dicksee, The Funeral of a Viking, 1893
https://www.wikiart.org/en/frank-dicksee/the-funeral-of-a-viking-1893

6

Queues vs stacks

“Process” (object)
as unifying concept

Inheritance
(“prefixing”) — adding

layers to classes

1962-1967 The Birth of Object Orientation:
the Simula Languages. 2004

Back in 1962, Ole-Johan Dahl and and Kristen Nygaard became
convinced of the need for explicit support for simulation in
programming languages. Over a period of four years, they
identified three core ideas. First, queues were needed to model
events over time. Second, an explicit notion of a (quasi-parallel,
communicating) process (or “object”) was needed as a unifying
concept. Finally, “prefixing” (inheritance) added to allow sharing
of properties.

The Birth of Object Orientation: the Simula Languages. 2004
http://www.olejohandahl.info/old/birth-of-oo.pdf

The History of Simula, 1995, Jan Rune Holmevik
http://campus.hesge.ch/daehne/2004-2005/langages/simula.htm

Photo:
https://history-computer.com/ModernComputer/Software/Simula.html
http://www.jot.fm/issues/issue_2002_09/eulogy/

7

Programming
is simulation

Simula was designed as an extension to Algol to support
programming of simulation applications. As it turned out, this
was useful for more than just simulation programming. In a
sense, Dahl and Nygaard were saying that “Programming is
simulation” since any software system could be seen as a set of
cooperating objects.

8

Programming
is modeling

Reading between the lines, we could also say that a simulation is
a model, hence “Programming is modeling.”

9

Programming is
understanding

But what Kristen Nygaard is actually credited with saying is that
“Programming is understanding,” which is arguably a more
succinct way of expressing the same thing.

10

1970-1980

It’s objects all the
way down

“Dynabook” mockup ca. 1970

Around this time Alan Kay came to the realization that increasing
computing power and decreasing costs would soon lead to a new
generation of “personal” computers. He envisioned a hand-held
multimedia device that he code-named the “Dynabook”. He was
convinced that in order to build such systems, we would need not
just object-oriented languages, but systems that would consist of
objects all the way down to the lowest levels.
When pressed on this, he is told to have explained, “Look, it’s all
objects all the way down. Until you reach turtles.”

The Dynabook of Alan Kay
http://history-computer.com/ModernComputer/Personal/Dynabook.html

A Brief, Incomplete, and Mostly Wrong History of Programming Languages
http://www.cvaieee.org/html/humor/programming_history.html

11

1977

Computation is
simulation

Microelectronics and the
Personal Computer, 1977

Inspired by Simula, Kay was saying that not just programming,
but “Computation is simulation.”

“The social impact of simulation — the central property of computing — must also be
considered.” Alan Kay, 1977, “Microelectronics and the Personal Computer”

http://mnielsen.github.io/notes/kay/micro.pdf

12

Programming
is objects talking to

objects

In Smalltalk,
everything happens

somewhere else

Kay assembled a team at Xerox PARC and over a period of ten years developed
the Smalltalk system, which was not just a language, but also an operating
system (virtual machine) and a development environment, including multimedia
hardware.
Dan Ingalls, explaining the design principles behind Smalltalk, “Instead of a
bit-grinding processor … plundering data structures, we have a universe of
well-behaved objects that courteously ask each other to carry out their various
desires.”
Adele Goldberg interestingly is credited with saying that, “In Smalltalk,
everything happens somewhere else.” On one hand, this expresses nicely the
principle of delegation in good OO design, but it also points out some of the
difficulties inherent in understanding complex OO systems.
Countering this, Alan Knight advises: “One of the great leaps in OO is to be
able to answer the question “How does this work?” with “I don’t care”.”

Design Principles Behind Smalltalk, Byte Magazine, August 1981.
https://archive.org/details/byte-magazine-1981-08

Escher, Relativity, 1953
https://en.wikipedia.org/wiki/File:Escher%27s_Relativity.jpg

13

Uh, what’s a
“Dorado”?

Reading the August 1981 issue of Byte magazine, I was blown
away by the description of the Smalltalk 80 system. I was
convinced that this was what we needed for developing our
advanced OIS prototypes. Unfortunately it only seemed to run on
the experimental workstations, known as the “Dorado”,
developed within Xerox PARC.
I spoke to my boss, Dennis, about it, and he said, “Why don’t you
grab a couple of Masters students and build yourself an object-
oriented system.” I started to do that, but that’s another story ...

Using Objects to Implement Office Procedures, Nierstrasz, Mooney, Twaites, 1983
http://scg.unibe.ch/scgbib?query=Nier83b&display=abstract

Byte Magazine, August 1981.
https://archive.org/details/byte-magazine-1981-08

14

Part 2. The Golden Age
In which OOP flourishes and blooms

Ängsälvor (Swedish “Meadow Elves”) by Nils Blommér (1850)
https://en.wikipedia.org/wiki/Elf

15

1979

OOP is
programming using

inheritance.

“C with classes” initially added
classes and inheritance to C, just
like Simula added them to Algol.

Decide which classes you
want; provide a full set of
operations for each class;
make commonality explicit
by using inheritance.

What is "Object-Oriented
Programming?" ECOOP 1987,
revised 1991

As legend goes, Bjarne Stroustrup, an experienced Simula
programmer was tasked with developing some simulation
programs while working at AT&T Labs. Not having a Simula
compiler available, (and finding Simula too slow for his
purposes), he decided to follow in the footsteps of Dahl and
Nygaard and add object-oriented features to C, using C’s macro
facilities. “C with classes” gradually evolved into C++, a much
more profound extension of C that fundamentally changed the
way you program with the language.
Stroustrup epitomized OOP as “programming with inheritance”,
that is, he saw sharing of features between classes as the most
radical feature of OOP.

What is “Object-Oriented Programming?” ECOOP 1987, revised 1991
http://www.stroustrup.com/whatis.pdf

16

1990 …

C++ is a
multi-paradigm

language

Gradually C++ evolved into more than just an extension of C to
support simulation. Improvements in C++, such as a more robust
type system, eventually led to changes in the C standard itself.
Stroustrup did not see C++ as just an object-oriented extension of
C, but rather as a “multi-paradigm” language that supported
various programming styles. (This was epitomized in the 1998
book and 2000 PhD thesis by James Coplien.)
Presumably in response to criticisms of the complexity of C++,
Stroustrup is quoted as saying “There are only two kinds of
languages: the ones people complain about and the ones nobody
uses.”

Multi-Paradigm Design, PhD thesis, James Coplien, 2000
http://tobeagile.com/wp-content/uploads/2011/12/CoplienThesis.pdf

17

1985

OOSC is based on the
objects manipulated rather than

the functions performed

Eiffel introduces
“Design by Contract” as
an OO language feature

One of the most influential innovations in OOP was “Design by
Contract”, which is both a methodology for designing classes that
adhere to well-defined contracts for client/supplier relationships,
as well as a set of programming language features to specify
contracts as preconditions, postconditions and invariants in the
code. While these features were originally introduced in Bertrand
Meyer’s “Eiffel” language, variants have found their way into
virtually every modern object-oriented language.
BM argued that OO design is fundamentally different since it
focuses on the objects manipulated rather than the functions
performed. As an application evolves, the function it performs
may change, but the objects (domain concepts) tend to stay the
same.

1980-…OOPLs proliferate

Dozens of new object-oriented languages were designed starting
in the early 80s. Some, like CLOS and Objective C, added
object-oriented features or layers to existing languages, while
others were completely new. Python was conceived as OO
scripting language. Beta reinvented Simula by reducing all
language features to a single construct called a “pattern.” Self
reinvented Smalltalk, replacing classes and inheritance by
prototypes and delegation, leading to a much more dynamic
language.
Dozens of research languages were also developed, particularly to
experiment with different models of concurrency.

19

So, what is “OOP” anyway?

OOP = Objects +
Classes + Inheritance

Dimensions of Object-Based
Language Design, OOPSLA 1987

1987

Given the increasing number of OO languages and the diverse
interpretations OOP, Peter Wegner tackled the problem of trying
to define OOP and classify OO languages. He drew a distinction
between “object-based” languages, “class-based” ones, and fully
“object-oriented” ones that support all three of objects, classes
and inheritance. He also proposed a taxonomy of the different
forms that inheritance found in OO languages.

Dimensions of Object-Based Language Design, OOPSLA 1987
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.127.3742&rep=rep1&type=pdf

20

Inheritance is an
incremental modification

mechanism

Inheritance as an Incremental
Modification Mechanism or What Like
Is and Isn’t Like. ECOOP 1988

Principle of substitutability: An instance of a subtype can always be
used in any context in which an instance of a supertype was expected.

1988

In another influential paper, Peter Wegner and Stanley Zdonik
surveyed the different forms of inheritance in OO languages and
studied how they impact diverse notions of compatibility.
Interestingly, they proposed a “principle of substitutability”
several years before Barbara Liskov and Jeannette Wing
formulated what is now known as the “Liskov substitution
principle”.

Inheritance as an Incremental Modification Mechanism or What Like Is and Isn't Like.
ECOOP 1988

https://www.researchgate.net/publication/221496346

21

There are three views of OOP:
the Scandinavian view, the Mystical view,

and the Software Engineering view:

Programming is modeling

Programming is data abstraction
+ polymorphism + inheritance

Programming is objects
sending messages to objects

2007

Ralph Johnson sees it like this:
“I explain three views of OO programming. The Scandinavian view is that an
OO system is one whose creators realise that programming is modelling. The
mystical view is that an OO system is one that is built out of objects that
communicate by sending messages to each other, and computation is the
messages flying from object to object. The software engineering view is that
an OO system is one that supports data abstraction, polymorphism by late-
binding of function calls, and inheritance.”

You are free to guess which programming languages are referred
to here …

Attributed to Ralph Johnson in “The Myths of Object-Orientation”, James Noble,
ECOOP 2009

https://doi.org/10.1007/978-3-642-03013-0_29

Program to an Interface, not an Implementation

22

OO Principles proliferate

Encapsulation,
Abstraction and

Information Hiding

The open-closed principle

Law of Demeter
Single

Responsibility
Principle

Separate interface from

implementation

1980s

Many of these principles have been reformulated and repackaged
over the years, but they all have their origins in the 80s.

23

OO Methods
proliferate It’s objects all

the way down!

Modeling is
programming

1988-1993

Starting in the late 80s, a number of very influential books attempted
to crystallize methodologies for object-oriented analysis and design.
Amongst the more famous of them, my favourite is “Designing
Object-Oriented Software”, which lays down the principles of
“responsibility-driven design.” I still use this in teaching today. My
next favourite is “Object-Oriented Software Engineering” which
explains the role of use cases in the OOSE process.
Taken as a whole, these books make clear that OO does not just mean
programming, but that the act of modeling is fundamental to OOP.
Furthermore, they send the message that it is “objects all the way
down,” not in the sense that Alan Kay meant, but in the SE process
from domain modeling and requirements specification down to
implementation.

Object Oriented Systems Analysis: Modeling the World in Data, 1988; Designing Object-Oriented
Software, 1990; Object-Oriented Modeling and Design, 1991; Object-Oriented Analysis and Design, 1991;
Object Oriented Analysis, 1991; Object-Oriented Software Engineering: A Use Case Driven Approach,
1992; Object-Oriented Development: The Fusion Method, 1993

24

OO Diagrams proliferate
Late 1980s

In the mid to late 80s, dozens of different ways to represent class
diagrams were invented. Classes were drawn as boxes, ellipses,
clouds and even hexagons, with arrows going in all sorts of
directions. By some counts, there were over 100 different styles
of diagrams defined by 1992.
Bertrand Meyer said that at the time he was puzzled why people
were so fascinated by diagrams when OO languages themselves
worked perfectly well as modeling languages. (I.e., programming
is modeling.)
One day when he was in the shower it hit him: “Bubbles and
arrows don’t crash!”

[Figures are mostly drawn from various OOPSLA 1986 papers.]

25

Part 3. Rebellion
In which battle lines are drawn

Programming
is instantiating
design patterns

26

Programming
is configuring
components

Objects are not enough!
(Inheritance is not enough)

Programming
is specializing
frameworks

late 80s, early 90s

In the early days of OOP, there was a great deal of hype about how
objects and especially inheritance would simplify development
through reuse. Quickly people discovered that this was not so simple,
and they started to look for more. Already in the mid to late 80s the
idea of an “application framework” started to emerge.
Norman Meyrowitz (OOPSLA 86) and later Erich Gamma (OOPSLA
88) were among the first to show how this could be realized.
Then in the late 80s the idea of “software components” started to take
hold. Although it was never clear exactly what a “component” was,
everyone agreed that components had interfaces that could be plugged
in to clients, without necessarily depending on inheritance.
The design pattern community started to grow around this time, and
emerged from these same ideas, as the first patterns nicely expressed
the key ideas behind frameworks and components.

https://www.quora.com/How-important-are-design-patterns-in-software-development

27

Programming is
testing, refactoring and

pair programming

1999You need to be “agile”

Kent Beck and others argued that we should pay more attention to
the software practices in place. They identified a number of best
practices that, they argued, would make software development
more responsive to stakeholder needs. From unit testing to scrum,
these practices have had a huge influence over the past twenty
years on how object-oriented software is developed.

28

Modeling is
programming

software
developer

Platform
Independent
Model

automatic
translation

2001Model transformation
takes off

UML, the Unified Modeling Language, was developed at
Rational Software by the “three amigos” (Booch, Rumbaugh and
Jacobsen) partly in response to the profileration of OO diagrams
(but also as a way to market its own tools and views on “round-
trip engineering”). UML was handed over to the Object
Management Group for standardization.
The focus on UML as a modeling tool led to the idea that models
could be transformed (or compiled) to running systems. (Actually
an old idea followed by CASE tools in the 1980s.) In essence, the
proponents of model-driven engineering were saying not that
programming is modeling but that “modeling is programming”.

29

Programs
must be statically

type-checked!

We don’t need
no stinkin’ types!

While all this was happening, new OOPLs and variants were
being developed. Richer and more expressive type systems were
being developed for statically typed languages at the same time as
new dynamically typed languages were being invented and
reinvented. Although the jury is still out on which approach
allows programmers to be more productive, a lot of research is
devoted to type inference for dynamically typed languages,
whether it be for compiler optimization or to support program
understanding.

Johannes Flintoe, Egill Skallagrímsson engaging in holmgang with Berg-Önundr
https://en.wikipedia.org/wiki/File:Johannes-flintoe-egil-skallarimsson.jpg

30

Part 4. Peace
In which we realize the
true meaning of OOP

The jetty at Feste near Moss - Hans Gude - Kaien på Feste i nær Moss (1898)
https://commons.wikimedia.org/wiki/File:Hans_Gude_-_Kaien_på_Feste_i_nær_Moss_(1898).jpg

31

API = Metamodel = DSL

Configuration = Model = Script

If we step back and consider what all the different camps are
trying to achieve, I would argue that the differences are more
cosmetic than profound. At the “framework” level, an API or a
metamodel or a language are really the same thing. An internal
domain specific language is just a “fluent API”, and a meta model
defines the language of its models.
At the instance level we speak of configurations of components,
or platform specific models, or scripts.
What is remarkable about object-oriented programming is that it
is so good at helping you define the framework level.

32

Programming is modeling

The lesson I draw from this is that object-oriented programming
(and programming in general) is indeed modeling. Object-
oriented languages are especially good at this because they allow
you to define your own meta-model in terms of the classes of
your system, their interfaces, and the relationships between them,
while this is not the focus (or strength) of other programming
paradigms.

33

Programming is understanding

But why do we care about modeling? I would say that the ability
to model domain concepts in the code of object-oriented software
systems helps us as software developers understand better the
impact of changes in both the real world and in the code. In other
words, as Kristen Nygaard put it: “Programming is
understanding.”

34

Programming is understanding

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

