
1

or ... How I Learned
to Stop Worrying

and Love OOP

I Object

Oscar Nierstrasz
scg.unibe.ch

ECOOP 2013

2

1. Office Objects

3

MRS

OFS
TLA

Tsichritzis, et al. A System for Managing Structured
Messages. IEEE Transactions on Communications, 1982.

How to build the
“electronic office”?

4

Uh, where
are the

objects?

5

I CAN HAS
 SMALLTALK?

6

Uh, what’s a
Dorado?

7

Oz: Objects with Rules

customer : office {
" name, owner : string ;
" set_name (n) {
" " ~ : office ;
" " n : string ;
" " ~.owner = owner ;
" " name := n ;
" }
}

Nierstrasz and Tsichritzis. An Object-Oriented
Environment for OIS Applications. VLDB 1985

8

Concurrency

Distribution

Persistence

Transactions

9

What I learned ...

Objects are
complicated

10

2. Active Objects

11

How to meld objects
and concurrency?

= ?

Tsichritzis, et al. KNOs: KNowledge Acquisition, Dissemination and Manipulation Objects. ACM TOOIS 1987

12

Hybrid
Composing Active Objects 9.

University of Geneva

Concurrency and Communication

∅

[α] α

β

Delay Queues

Delegation

Domains & Activities

Nierstrasz. Active Objects in Hybrid. OOPSLA 1987

13

Composing Active Objects 13.

University of Geneva

Interference of OO Features

Object/client contracts are poorly understood,
and are not well-supported by existing languages.

Object
Encapsulation

Inheritance Concurrency

Types

violation of
encapsulation

poorly
understood

violation of
encapsulation

inadequate
characterization

Semantics?

Nierstrasz. Composing Active Objects — The Next 700 Concurrent Object-Oriented
Languages. Research Directions in Concurrent Object-Oriented Programming, 1993

14

From Objects to Agents 6.

Universität Bern  Oscar Nierstrasz, 2004

Abacus

Motivation:
☞ A formal semantic foundation is needed to reason about integration of OO

language features
Approach:

☞ Develop a “core language” based on CCS
Problems:

☞ Hard to model object creation, mobility, higher-order software abstractions

env handler cleanup

actor

beh

cmd

[msg,Id,Msg]

[create,Bname,Alist]

[created,Id]

[nextmsg,Msg]

done[env,Name,Val]

mq

factory

creates

Object calculi

Nierstrasz and Papathomas. Viewing Objects as Patterns
of Communicating Agents. OOPSLA/ECOOP 1990

15

Regular Types for Active Objects 15.

Oscar Nierstrasz University of Geneva

Some Subtype Relationships
put

get

buf1 =

put
put, getvar =

put
put, get

get

stack1 =

put, get

put

get

stack2 =

put

get

put

get

buf2 =

put

get

put put, get,swap

get

swapstack=

delete

put, getfaultystack =

get

Regular Types

Nierstrasz. Regular Types for Active Objects. OOPSLA 1993

16

What I learned ...

Active objects
are very

complicated

17
3. Components

18

How to compose
applications from
“reusable” parts?

19

Active Objects, Reusability and Class Management 17.

Oscar Nierstrasz University of Geneva

ITHACA Software Life-Cycle

Application
Engineering

Application Maintenance
and Evolution

GAF Refinement
and Evolution

Application
Development

Generic Application
Frame (GAF)

Specific Application
Frame (SAF)

Application
Requirements

Existing Applications
and Domain Knowledge

Ithaca

Nierstrasz, et al. Component-Oriented
Software Development. CACM 1992

20

Active Objects, Reusability and Class Management 17.

Oscar Nierstrasz University of Geneva

ITHACA Software Life-Cycle

Application
Engineering

Application Maintenance
and Evolution

GAF Refinement
and Evolution

Application
Development

Generic Application
Frame (GAF)

Specific Application
Frame (SAF)

Application
Requirements

Existing Applications
and Domain KnowledgeIthaca

Nierstrasz, et al. Component-Oriented
Software Development. CACM 1992

Object-Oriented Software Composition 15.

TOOLS USA 96 © Oscar Nierstrasz 1996

Component-Oriented Development

Generic

Components

Domain Knowledge

Requirements Models

Architecture

Requirements

Specific Application

Component-Oriented
Software Development is
Framework-Driven

21
Nierstrasz, et al. Objects + Scripts = Applications. Esprit 1991 Conference

Visual Scripting

22

What would be a pure
composition language?

Nierstrasz and Meijler. Research Directions in Software Composition. ACM Computing Surveys 1995

23

Components
both import and
export services

Scripts plug
components
together

A scripting language is a dedicated language for
for orchestrating a set of tasks (or components).

Applications = Components
+ Scripts (+ Glue)

Schneider and Nierstrasz. Components, Scripts and Glue.
In Software Architectures — Advances and Applications, 1999.

24

Piccola is a minimal language for
defining plugs, connectors and scripts

Piccola

25

A,B,C ::= ✏ empty form

| x

7!
bind

| x variable

| A;B sandbox

| hide
x

hide

| A · B extension

| �x.A abstraction

| AB application

| R current root

| L inspect

| A | B parallel

| ⌫c.A restriction

| c? input

| c output

built on a process calculus
with explicit environments

Franz Achermann and Oscar Nierstrasz. A Calculus for Reasoning
about Software Components. Theoretical Computer Science 331(2),
2005.

Piccola

26

A,B,C ::= ✏ empty form

| x

7!
bind

| x variable

| A;B sandbox

| hide
x

hide

| A · B extension

| �x.A abstraction

| AB application

| R current root

| L inspect

| A | B parallel

| ⌫c.A restriction

| c? input

| c output

for scripting
components
written in Java

Achermann, et al. Piccola — a Small Composition Language.
Formal Methods for Distributed Processing, Cambridge, 2001

27

API = Metamodel = DSL

Configuration = Model = Script

28

What I learned ...

Scripts, not
components, are the
key to composition

29

4. Legacy OOP

30

How to reengineer
OO legacy systems

towards component-
based frameworks?

31

Active Objects, Reusability and Class Management 27.

Oscar Nierstrasz University of Geneva

Reorganizing Class Hierarchies

initial situation final situation

REF: Casais, CUI 89, 90; Gibbs et al., CACM 90

ABCD

ABC

AB

ABCDE

AD

ADE

AB

ABC

ABCD

A

Refactoring

Gibbs, et al. Class Management for Software Communities. CACM 1990

32

Dagstuhl WS on Generic Programming 3.

Universität Bern Piccola

A Composition Scenario
FAMOOS: configuring available tools to analyse & reengineer OO software

parser

source directories

metrics tools layout tools

visualization tools

WWW
repositories

ad hoc programs

FAMOOS

33

Designs

Code

Requirements

The Reengineering Life-Cycle

34

Tests: Your Life Insurance

Detailed Model Capture

Initial Understanding

First Contact

Setting Direction

Migration Strategies

Detecting Duplicated Code

Redistribute
Responsibilities

Transform Conditionals to
Polymorphism

Demeyer, et al. Object-Oriented Reengineering
Patterns, Morgan Kaufmann, 2002

Lightweight
Reengineering Patterns

35

Top down

Speculate about Design

Recover
design

Analyze the
Persistent Data

Study the Exceptional
Entities

Read it Compile it

Bottom up

understand ⇒
Obtain a higher-level model

Initial Understanding

36

Color
Metric

Position
Metrics

Width Metric

Height
MetricNodes = !Classes

Edges = !Inheritance Relationships

Width = !Number of Attributes
Height = !Number of Methods
Color = ! Number of Lines of Code

System Complexity View

System Complexity View

37

Smalltalk

Navigation

Metrics

Querying

Grouping

Smalltalk

Java

C++

COBOL

…

MSEExternal
Parser

CodeCrawler

ConAn Van ...Hapax

Extensible meta model

Model repository

Nierstrasz, et al. The Story of Moose: an Agile
Reengineering Environment. ESEC/FSE 2005

Everything
is an object

(Re)discovering Smalltalk

39

What I learned ...

Less is more

40

5. Software Evolution

41

How to gracefully
evolve running

software systems?

42

The composing
class retains control

Traits provide and
require methods

Class = superclass + state + traits + glue

Traits

Ducasse, et al. Traits: A Mechanism
for fine-grained Reuse. TOPLAS 2006

43

Talents

Ressia, et al. Talents: an environment for dynamically composing
units of reuse. Software: Practice and Experience, 2012

44

Context-Oriented Programming

18Robert Hirschfeld (hirschfeld@hpi.uni-potsdam.de) 2006

Context-oriented Programming

4-D Dispatch / NO IHS

m2

m3

m1

m1

1D: procedural

8Robert Hirschfeld (hirschfeld@hpi.uni-potsdam.de) 2006

Context-oriented Programming

4-D Dispatch / NO IHS

SA

m1
SB

m1:*:*

m1:SB:CCaaRY

RX

C! CC""

SSAA

m1

SB

m1:*

m1:SBRY

RX

m1

m1

m1RY

RX

SA

m1

SSBB

m1:*

m1:SSBBRY

RX
m1:*:CCbb

m1:*

m1:**

m2

m3

m1

m1

2D: OOP

16Robert Hirschfeld (hirschfeld@hpi.uni-potsdam.de) 2006

Context-oriented Programming

4-D Dispatch / NO IHS

SA

m1
SB

m1:*:*

m1:SB:CCaaRY

RX

C! CC""

SSAA

m1

SB

m1:*

m1:SBRY

RX

m1

m1

m1RY

RX

SA

m1

SSBB

m1:*

m1:SSBBRY

RX
m1:*:CCbb

m1:*

m1:**

m2

m3

m1

m1

3d: subject-oriented

18Robert Hirschfeld (hirschfeld@hpi.uni-potsdam.de) 2006

Context-oriented Programming

4-D Dispatch

SA

m1
SB

m1:*:*

m1:SB:C!RY

RX

C! CC""

m1:**:CC""

SA

m1

SB

m1:*:*

m1:SB:C!RY

RX

C! CC""

m1:**:CC""

b

a

n-D: COP Hirschfeld, et al. Context-Oriented
Programming. JOT 2008

45

First-class contexts enable dynamic updates

Page
Html

Page
Title
Body ...

46

Shared object
has one identity
but two states

bidirectional
transformation

First-class contexts enable dynamic updates

…

Method

Method
Old context

aPage

New context

…

Method

Method

Page
Html

Page
Title
Body ...

Wernli, et al. Incremental Dynamic Updates
with First-class Contexts. TOOLS Europe 2012

47

What I learned ...

Explicit context supports
software evolution

48

6. The end

... or is it?

49

Embrace Objects

Everything is an Object
(Keep it Simple)

Context is the other
flip side of objects

Scripts are the flip
side of objects

SCG Present and Past

50

51

