Py

or . HowEl Learned

. to Stop Worrying
- and Love OOP scg.unibe.ch

ECOOP 2013

Oscar Nierstrasz

1. Office O

bjects

How to build the
“electronic office”? =

e |
'

"= nny
B VA TYION W-cartry ke _— o e dn |
. j P \ s 2 /

..... 7 F / w 2

—— kS S peiv) WA —_ B4/ R QFTCE

TLA

MRS

Tsichritzis, et al. A System for Managing Structured
Messages. IEEE Transactions on Communications, 1982.

are the

{s?

jec

ob

Introducing the Smalltalk-80 System

It is rare when one can " T AT Yo M 3
G e, PN SR R

irafulge in one’s prejudices o

with relative impunity, .\'(‘ -
poking a bit of good
humored fun to make a
point

ith this statement,
Carl Helmers

Adele Goldberg
Manager, Learning Research Group
Xeren Palo Alto Rescarch Center
JXN) Coyote Hill Rd
Palo Alte CA 94304

}
-
£ - s

.
-

opened his remarks in the
"About the Cover” section
of the August 1978 isswe of
BYTE. The issue was a
special on the language
Pascal, so Helmers took
the opportunity to present
Pascal’s triangle as drawn
by artist Robert Tinney
The primary allegory of
the cover was the inver-
sion of the Bermuda
Triangle myth to show
smooth waters within the
arca labeled "Pascals
Triangle.” In explaining
the allegory, Helmers
guided the traveler
through the FORTRAN

then editor of
BYTE. This month's
cover design presents
ust such an opportuni-

¥ 1t depicts the clouds

clearing from around
the kingdom of Smalltalk,
and, with banners stream-
ing, the Smalltalk system
is taking flight into the
mainstream of the com-
puter programming com-
munity, This cover was
also executed by Robert

Ocean, the BASIC Sea,
around the Isle of BAL, and up to the Land of Smalltalk.

Traveling wrward (in the picture) through heavy seas
we come 10 the pinnacle, a snow white island rising like
an fvory tower out of the surrounding shark infested
waters. Here we find the fantastic kingdom of Smalltalk
where great and magical things happen. But alas the
craggy aloofmess of the kingdom of Smalltalk keeps it out
of the mainstream of things

It &5 rare when one can indulge in one’s fantasies to re
spond to so pointed a remark as that provided by the

M Aspen 1991 © BYTE Publcasons b

Tinney, to the delight of
the Learning Research Group (LRG) of the Xerox Palo
Alto Research Center. LRG is the group that has de-
signed, implemented, and evaluated several generations
of Smalltalk over the past ten years

The balloon on the cover symbolizes the Smalltalk-80
system that is being released this year for more general
access. The release is in the form of publications and a file
containing the Smalltalk-80 programming system
Twelve articles describing the system appear in this issue
of BYTE. Through such publication, LRG’s research will
become generally accessible, dispelling the clouds.

Smalltalk s the name LRG assigned to the software

CAN HAS
MALLTALKD |

nuUM\"uud- . e

vveid bell show fer e
cm, paste, ()

merdenyy

g Larry's views

window e format.ft diasa bt feemat. e Cean windows

Mitsfe commnder it tilenh -

, B, ket
filkn ‘pressf. dschl. @& pepersstike R e, chck
b, peess’, pf Mumap _ o, view
mm recungle. pf clese write ¥

hecdan expes
« hipwindow ‘covemse <ol b
Iecestoap
read rin Dikes
pow Anit
Clens's mods
wholuling « latayepts

rem D Ingaldls o0 b
febpe . Message symlax
Piled sa i UNCGALLI ST rpretses Deawy

This ir & sorking pogwr donhing the et
SMALLTALIN syswm M5 the rreglt o

SALY PG eals At ol e anpnp LEG ,
AN rrsount;
The cgoratsen of the hywcade (nerpestes |4

Dastribuuice of space 1o OOZE-5M '1. ,'.u,.‘..h x n.: ..,.y-l|" ..;-:w_...: ;..';-_-n,-:; ,

ch oA, dy @y 3, OF tarw Aass D

followed Ly a sedoCur Yyw., Eah of e dada

YA LN B gots resodved % A Mall (36)
. e a

= o PR .

Thersduy | I

Pebwary 5 2007
Ihifam

Oz: Objects with Rules

customer : office {
name, owner : string ;
set_name (n) {
~ : office ;
n : string ;
~.0whner = owner ;
name :=n;

Nierstrasz and Tsichritzis. An Object-Oriented
Environment for OIS Applications. VLDB 1985

Distribution

Concurrency \

/

Transactions

/

Persistence

N\

What | learned ...

Objects are
complicated

How to meld objects
and concurrency?

Tsichritzis, et al. KNOs: KNowledge Acquisition, Dissemination and Manipulation Objects. ACM TOOIS 1987

Hybrid

Domains & Activities

OO

O

00O

Delay Queues

)

[a]

O

Delegation
Nierstrasz. Active Objects in Hybrid. OOPSLA 1987

Semantics?

violation of ObleCt violation of

encapsulation Encapsulation encapsulation
/ poorly

! understood
Inheritance «+—-————————3p Concurrency

Inadequate
characterization

Types

Nierstrasz. Composing Active Objects — The Next 700 Concurrent Object-Oriented
Languages. Research Directions in Concurrent Object-Oriented Programming, 1993

Object calculi

[create,Bname,Alist] »
cmd
-

[created,|d]
[msg,ld,Msg] creates

/actor J \
(mq) [nextmsg,Msg]
\

env handler

[env,Name,Val] done
N /
/

.

Nierstrasz and Papathomas. Viewing Objects as Patterns
of Communicating Agents. OOPSLA/ECOOP 1990

Regular Types

put
buf1 = m faultystack = put, get
get
get
put put

stack2 =

put put, get,swap

swapstack=

put
var = m put, get get

Nierstrasz. Regular Types for Active Objects. OOPSLA 1993

delete

TS
s
' -

e

What | learned ...

Active objects
are very
complicated

3. Components

How to compose
applications from
“reusable” parts?

Ithaca

Existing Applications Application
and Domain Knowledge Requirements

Application
Engineering Application
Development

Generic Application ‘ Specific Application
Frame (GAF) Frame (SAF)
GAF Refinement

and Evolution -

Application Maintenance
and Evolution

Nierstrasz, et al. Component-Oriented
Software Development. CACM 1992

Existing Applications Application
and Domain Knowledge Requirements

Engineering Application
Development
Generic Application /_\ Specific Application
Frame (GAF) g Frame (SAF)
GAF Refinement
and Evolution { 5
Application Maintenance
—_—— - and Evolution
/ \

4 I / - (- <
Domain Knowledge - Requirements s

~_ - /\ \/_/~ -~
Requirements Models / SN
_ Component-Oriented
E// Generic Software Development is
ﬁ Architecture

Framework-Driven

RN

Components ﬁiﬁ I — %XXXXEXX
SR 2 U
Nierstrasz, et al. Component-Oriented

\ / SpeCiﬁC App”CatiOn Software Development. CACM 1992

Visual Scripting

Jan. 10, 1991

UNIVERSITY OF GENEVA Date: Jan. 10, 1991

To Mr/Mrs: fred smith
Fax Number: 12-376-12345

Nierstrasz, et al. Objects + Scripts = Applications. Esprit 1991 Conference |

21

What would be a pure
composition language?

arch Directions in Software Composition. ACM Computing Surveys 1995

Applications = Components
+ Scripts (+ Glue)

Scripts plug
Components components
both import and together
export services

A scripting language is a dedicated language for
for orchestrating a set of tasks (or components).

Schneider and Nierstrasz. Components, Scripts and Glue.
In Software Architectures — Advances and Applications, 1999.

Piccola

Define styles (f (eo) (= [_F

Script connections

Scripts

=]

Coordinate activities

Channels

Components

Piccola is a minimal language for
defining plugs, connectors and scripts

Piccola

Define styles

Agents

S S O3 [= 2 I

Script connections

Scripts

Coordinate activities

Adapt protocols

A B, C = ¢ empty form
€T bind
X variable

A; B sandbox
hide, hide

A - B extension
Ax.A abstraction
AB application

e R current root
L Inspect
A | B parallel
built on a process calculus ve.A restriction
with explicit environments c? input

C output

Franz Achermann and Oscar Nierstrasz. A Calculus for Reasoning
about Software Components. Theoretical Computer Science 331(2),
2005.

A B, C = ¢ empty form
€T— bind

x variable

A; B sandbox
hide, hide

A - B extension
Ax.A abstraction
Adapt protocols AB application

Definestyles Cr (¢ 0> [F

Script connections

Scripts

Coordinate activities

Components R current root
L inspect
A | B parallel
® O O AWT Demo ve. A restriction
' c? input
hello world
T — C Output

Piccola Console [/Volumes/Data/Users/oscar/Desktop/helloButton.picl)
File Edit Run Tools

NEEIEE

}
L

S s - - -~ -
. sri1imtln +tavs
do : println tex

for scripting e c
components — =)<
written in Java iy

'lVolumeslData/Users/oscar/Desktop/helloButton.picl 0:0

Achermann, et al. Piccola — a Small Composition Language.
Formal Methods for Distributed Processing, Cambridge, 2001

R98E

APl = Metamodel = DSL

Configuration = Model = Script

TS
s
' -

e

What | learned ...

Scripts, not
components, are the
key to composition

4. Legaéy OOP

na

4-‘

ORETROLLALRR
-t LI

How to reengineer
OO0 legacy systems
towards component-
based frameworks?

Refactoring

ABCD

ABCD

Y
e

ABCDE

initial situation final situation

Gibbs, et al. Class Management for Software Communities. CACM 1990

FAMOOS

metrics tools

layout tools

parser

g N
%g_gg

source directories

HBEEEEEEREE
Eack [Forward| Home Reload | Images | Open Frint Find Stop

L WWW

repositories

The Reengineering Life-Cycle

7
Requirements (‘ﬂ

C (D

7
ok

i
i
T
W

Lightweight
Reengineering Patterns

Migration Strategies

Detailed Model Capture

Initial Understanding Detecting Duplicated Code

Redistribute

First Contact Responsibilities

Transform Conditionals to

Setting Direction Polymorphism

Demeyer, et al. Object-Oriented Reengineering
Patterns, Morgan Kaufmann, 2002

Initial Understanding

Top down
Recover
design

Speculate about Design

understand =
Obtain a higher-level model

Study the Exceptional

;T Analyze the

Persistent Data Entities

Read it Compile it

Bottom up

System Complexity View

00 | DDDUDDD i
i It
B \
0
FH R
gob
— o
System Complexity View Width Metric
Nodes = Classes Feight l
Edges = Inheritance Relationships
Width = Number of Attributes Position
Height = Number of Methods Metrics

———— P —
P S

.

Color = Number of Lines of Code

Color
Metric

Smalltalk

ConAn Van Hapax

CodeCrawler

Java

COBOL

C++

External
Parser

MSE

Extensible meta model

Model repository

Navigation

Metrics

Querying

Grouping

Smalltalk

Nierstrasz, et al. The Story of Moose: an Agile
Reengineering Environment. ESEC/FSE 2005

(Re)discovering Smalltalk

Everything

is an object

«instanceOf»

2@3

Behavior

i

ClassDescription

Class

BN

>

Behavior class

i

ClassDescription class

Object

Point

V

Object class

i

\7\

Class class Metaclass class

i

Point class

> Vetaclass

/

006

(2@3) class.
(2@3) class
(2@3) class
(2@3) class
(2@3) class
(2@3) class

Shout Workspace O

"Point"
superclass. "Object"
class. "Point class"
class superclass. "Object class”
class class. "Metaclass"
class class class. "Metaclass class”

o
f

What | learned ...

Less 1s more

How to gracefully
evolve running
software systems?

"Té))ﬂ 1 P

G)):Q); 1‘4

*6))310))'1
‘4 ‘A ﬁ“ii‘]"‘ "

Traits

Class = superclass + state + traits + glue

Tt

Traits provide and Object
require methods f
ColoredCircle
TCircle

, ‘\ TColor
area radius —> O— r
bounds |[radius: > 4 TCircle
diameter |center —> y
hash center: >

The composing

class retains control

Ducasse, et al. Traits: A Mechanism
for fine-grained Reuse. TOPLAS 2006

Talents

Ressia, et al. Talents: an environment for dynamically composing
units of reuse. Software: Practice and Experience, 2012

Context-Oriented Programming

- R)—[m ¥ () (R)—[me 3
) ") ¥ RS
1D: procedural 2D: OOP 3d: subject-oriented

my %1
N / —

A ﬁ
H&—» — | m;:Sg:C,,

n- D . C O P Hirschfeld, et al. Context-Oriented

Programming. JOT 2008

First-class contexts enable dynamic updates

Page
Html

First-class contexts enable dynamic updates

bidirectional
transformation

———””——————

Method

/M/ e Shared object
ethod T aPage has one identity

//E// ""‘ bUt tWO StateS

Method

el

;- Page Page
Title

|__—==="7" Html
) (Body ..

-
-
-
-

Wernli, et al. Incremental Dynamic Updates
with First-class Contexts. TOOLS Europe 2012

TS
s
' -

e

What | learned ...

Explicit context supports
software evolution

-
-

6. The end »

Embrace Objects

Everything is an Object
(Keep it Simple)

Scripts are the flip
side of objects

Context is the other
flip side of objects

SCG Present and Past

