
Oscar Nierstrasz

PEGs, Packrats and Parser Combinators

Thanks to Bryan Ford for his
kind permission to reuse and
adapt the slides of his POPL
2004 presentation on PEGs.
http://www.brynosaurus.com/

Roadmap

2

> Part 1: Introduction to PEGs
> Parsing Expression Grammars
> Packrat Parsers
> Parser Combinators

> Part 2: live demo with PetitParser 2

Sources

> Parsing Techniques — A Practical Guide
— Grune & Jacobs, Springer, 2008
— [Chapter 15.7 — Recognition Systems]

> “Parsing expression grammars: a recognition-based syntactic
foundation”
— Ford, POPL 2004, doi:10.1145/964001.964011

> “Packrat parsing: simple, powerful, lazy, linear time”
— Ford, ICFP 02, doi:10.1145/583852.581483

> The Packrat Parsing and Parsing Expression Grammars Page:
— http://pdos.csail.mit.edu/~baford/packrat/

> Dynamic Language Embedding With Homogeneous Tool Support
— Renggli, PhD thesis, 2010, http://scg.unibe.ch/bib/Reng10d

3

http://pdos.csail.mit.edu/~baford/packrat/

Roadmap

4

> Part 1: Introduction to PEGs
> Parsing Expression Grammars
> Packrat Parsers
> Parser Combinators

> Part 2: live demo with PetitParser 2

Designing a Language Syntax

5

Textbook Method
1. Formalize syntax via a context-free grammar
2. Write a parser generator (.*CC) specification
3. Hack on grammar until “nearly LALR(1)”
4. Use generated parser

Hierarchy of grammar classes

6

LL(k):
—Left-to-right, Leftmost

derivation, k tokens
lookahead, top-down

LR(k):
—Left-to-right, Rightmost

derivation, k tokens
lookahead, bottom-up

SLR:
—Simple LR (uses “follow

sets”)
LALR:
—LookAhead LR (uses

“lookahead sets”)

http://en.wikipedia.org/wiki/LL_parser …

There exist many different sub-categories of context-free
grammars. For practical purposes it is important that a grammar
be unambiguous, i.e., that it always produces a unique parse for a
given valid input.

Although parsers read their input Left to Right (the first “L” in
most of these categories), they may work either top-down —
producing a leftmost derivation — or bottom-up — producing a
rightmost derivation.

They may also require some number of tokens of “lookahead” to
decide which production rule to apply at any point without
backtracking.

LL(1) and LR(1) are “sweet spots” that allow interesting
languages to be specified, but can also be parsed efficiently.

What exactly does a CFG describe?

7

Short answer: a rule system to generate language strings

S → aaS
S → ε

S

aaaaS

ε aaS

aa

aaaa …

start symbol

output strings

Example CFG

Noam Chomsky introduced CFGs as a way to describe how all
the strings of a language might be generated.

https://en.wikipedia.org/wiki/Noam_Chomsky#Transformational-generative_grammar

Recognition systems

8

“Why do we cling to a generative mechanism for the
description of our languages, from which we then
laboriously derive recognizers, when almost all we
ever do is recognizing text? Why don’t we specify
our languages directly by a recognizer?”

Some people answer these two questions by “We
shouldn’t” and “We should”, respectively.

— Grune & Jacobs, 2008

Chomsky-style grammars define a language by the set of strings
that they generate. Parsing then must go backwards to reverse
engineer a parse for a given sentence in the language.

What exactly do we want to describe?

9

Proposed answer: a rule system to recognize language strings

Parsing Expression Grammars (PEGs) model
recursive descent parsing best practice

S ← aaS / ε
Example PEG

a a a a ε

a a S
a a S

S

input string

derive structure

Unlike the CFG in the previous slide that generates sentences in a
language, this PEG specifies rules to recognize sentences in a top-
down fashion.

The “/” symbol represents an ordered choice. First we recognize
“aa”. This succeeds, so then we try to recognize S. Again we
recognize “aa” and again recurse in S. This time “aa” fails, so we
try to recognize ε. This succeeds, so we are done.

(In general we may fail and have to backtrack.)

Key benefits of PEGs

> Simplicity, formalism of CFGs
> Closer match to syntax practices

—More expressive than deterministic CFGs (LL/LR)
—Natural expressiveness:

– prioritized choice
– syntactic predicates

—Unlimited lookahead, backtracking
> Linear time parsing for any PEG (!)

10

As we shall see, linear parse time can be achieved with the help
of memoization using a “packrat parser”.

Key assumptions

Parsing functions must
1. be stateless — depend only on input string
2. make decisions locally — return one result or fail

11

Parsing Expression Grammars

> A PEG P = (Σ, N, R, eS)
—Σ : a finite set of terminals (character set)
—N : finite set of non-terminals
—R : finite set of rules of the form “A ← e”,  

where A ∈ N, and e is a parsing expression
—eS : the start expression (a parsing expression)

12

Parsing Expressions

ε the empty string
a terminal (a ∈ Σ)
A non-terminal (A ∈ N)

e1 e2 sequence
e1 / e2 prioritized choice

e?, e*, e+ optional, zero-or-more, one-or-more
&e, !e syntactic predicates

13

This looks pretty similar to a CFG with some important
differences.

Choice is prioritized: e1 / e2 means first try e1, then try e2.

The syntactic predicates do not consume any input. &e succeeds
if e would succeed, and !e succeeds if e would fail.

NB: “.” is considered to match anything, so “!.” matches the end
of input.

How PEGs express languages

> Given an input string s, a parsing expression e either:
—Matches and consumes a prefix s’ of s, or
—Fails on s

14

S ← bad
S matches “badder”
S matches “baddest”
S fails on “abad”
S fails on “babe”

Prioritized choice with backtracking

15

S ← A / B means: first try to parse an A.  
If A fails, then backtrack and try to parse a B.

S ← if C then S else S
/ if C then S

S matches “if C then S foo”
S matches “if C then S1 else S2”
S fails on “if C else S”

NB: Note that if we reverse the order of the sub-expressions, then
the second sub-expression will never be matched.

Greedy option and repetition

16

A ← e? is equivalent to A ← e / ε
A ← e* is equivalent to A ← e A / ε
A ← e+ is equivalent to A ← e e*

I ← L+

L ← a / b / c / …
I matches “foobar”
I fails on “123”

Syntactic Predicates

17

&e succeeds whenever e does, but consumes no input
!e succeeds whenever e fails, but consumes no input

A ← foo &(bar)
B ← foo !(bar)

A matches “foobar”
A fails on “foobie”
B matches “foobie”
B fails on “foobar”

Example: nested comments

Comment ← Begin Internal* End
Internal ← !End (Comment / Terminal)
Begin ← /**
End ← */
Terminal ← [any character]

C matches “/**ab*/cd”
C matches “/**a/**b*/c*/”
C fails on “/**a/**b*/

18

A comment starts with a “begin” marker. Then there must be
some internal stuff and an end marker.

The internal stuff must not start with an end marker: it may be a
nested comment or any terminal (single char).

Formal properties of PEGs

> Expresses all deterministic languages — LR(k)
> Closed under union, intersection, complement
> Can express some non-context free languages

—e.g., anbncn

> Undecidable whether L(G) = ∅

19

What can’t PEGs express directly?

> Ambiguous languages
—That’s what CFGs are for!

> Globally disambiguated languages?
—{a,b}n a {a,b}n

> State- or semantic-dependent syntax
—C, C++ typedef symbol tables
—Python, Haskell, ML layout

20

Roadmap

21

> Part 1: Introduction to PEGs
> Parsing Expression Grammars
> Packrat Parsers
> Parser Combinators

> Part 2: live demo with PetitParser 2

Top-down parsing techniques

22

Predictive parsers
•use lookahead to decide which rule to trigger
• fast, linear time

Backtracking parsers
• try alternatives in order; backtrack on failure
•simpler, more expressive (possibly exponential time!)

A Java PEG

23

public class SimpleParser {
final String input;
SimpleParser(String input) {
this.input = input;

}
class Result {
int num; // result calculated so far
int pos; // input position parsed so far
Result(int num, int pos) {
this.num = num;
this.pos = pos;

}
}
class Fail extends Exception {
Fail() { super() ; }
Fail(String s) { super(s) ; }

}
...
protected Result add(int pos) throws Fail {
try {
Result lhs = this.mul(pos);
Result op = this.eatChar('+', lhs.pos);
Result rhs = this.add(op.pos);
return new Result(lhs.num+rhs.num, rhs.pos);

} catch(Fail ex) { }
return this.mul(pos);

}
...

NB: This is a
scannerless parser
— the terminals are
all single characters.

Add ← Mul + Add / Mul
Mul ← Prim * Mul / Prim
Prim ← (Add) / Dec
Dec ← 0 / 1 / … / 9

We hand-write a PEG as a Java class with rules as methods.

Alternative choices are expressed as a series of try/catch blocks.
Each rule takes as an argument the current position in the input
string. The new position is returned as part of the partial result
computed thus far.

You can find the code for this example in:

https://github.com/onierstrasz/course-compiler-construction

See examples/cc-SimplePackrat

NB: Instead of using exceptions, we could encode failure in the
Result instances. Then instead of putting alternatives in try/catch
blocks, we would have to test each result for failure.

Parsing “6*(3+4)”

24

Add <- Mul + Add
Mul <- Prim * Mul
Prim <- (Add)
Char (
Prim <- Dec [BACKTRACK]
Dec <- Num
Char 0
Char 1
Char 2
Char 3
Char 4
Char 5
Char 6
Char *
Mul <- Prim * Mul
Prim <- (Add)
Char (
Add <- Mul + Add
Mul <- Prim * Mul
Prim <- (Add)
Char (
Prim <- Dec [BACKTRACK]
Dec <- Num
Char 0
Char 1
Char 2
Char 3
Char *
Mul <- Prim [BACKTRACK]
Prim <- (Add)
Char (
Prim <- Dec [BACKTRACK]
Dec <- Num
Char 0
Char 1
Char 2
Char 3
Char +
Add <- Mul + Add
Mul <- Prim * Mul
Prim <- (Add)

Add <- Mul + Add
Mul <- Prim * Mul
Prim <- (Add)
Char (
Prim <- Dec [BACKTRACK]
Dec <- Num
Char 0
Char 1
Char 2
Char 3
Char 4
Char 5
Char 6
Char *
Mul <- Prim * Mul
Prim <- (Add)
Char (
Add <- Mul + Add
Mul <- Prim * Mul
Prim <- (Add)
Char (
Prim <- Dec [BACKTRACK]
Dec <- Num
Char 0
Char 1
Char 2
Char 3
Char *
Mul <- Prim [BACKTRACK]
Prim <- (Add)
Char (
Prim <- Dec [BACKTRACK]
Dec <- Num
Char 0
Char 1
Char 2
Char 3
Char +
Add <- Mul + Add
Mul <- Prim * Mul
Prim <- (Add)

Add ← Mul + Add / Mul
Mul ← Prim * Mul / Prim
Prim ← (Add) / Dec
Dec ← 0 / 1 / … / 9

[...]
Prim <- (Add)
Char (
Prim <- Dec [BACKTRACK]
Dec <- Num
Char 0
Char 1
Char 2
Char 3
Char 4
Char +
Add <- Mul [BACKTRACK]
Mul <- Prim * Mul
Prim <- (Add)
Char (
Prim <- Dec [BACKTRACK]
Dec <- Num
Char 0
Char 1
Char 2
Char 3
Char 4
Char *
Mul <- Prim [BACKTRACK]
Prim <- (Add)
Char (
Prim <- Dec [BACKTRACK]
Dec <- Num
Char 0
Char 1
Char 2
Char 3
Char 4
Char)
Eof
312 steps
6*(3+4) -> 42

The SimpleParser class reports whenever an alternative
choice fails, as this will trigger backtracking to try a further
alternative.

Here we see that the Prim rule fails initially as its first choice is to
look for a parenthesized expression, but instead it finds a digit.

The parse backtracks 13 times and takes a total of 312 steps.

Memoized parsing: Packrat Parsers

25

public class SimplePackrat extends SimpleParser {
Hashtable<Integer,Result>[] hash;
final int ADD = 0;
final int MUL = 1;
final int PRIM = 2;
final int HASHES = 3;

SimplePackrat (String input) {
super(input);
hash = new Hashtable[HASHES];
for (int i=0; i<hash.length; i++) {
hash[i] = new Hashtable<Integer,Result>();

}
}

protected Result add(int pos) throws Fail {
if (!hash[ADD].containsKey(pos)) {
hash[ADD].put(pos, super.add(pos));

}
return hash[ADD].get(pos);

}
...
}

By memoizing
parsing results, we
avoid having to
recalculate partially
successful parses.

> Formally developed
by Birman in 1970s

Introducing a cache in any program is usually straightforward.
When you compute a result, first check if you already have a
cached value. If so, return it; if not, compute it and save it.

Here we use a hash table to store the results of recognizing a
particular non-terminal at a given position in the input. Our
packrat parser subclasses the SimpleParser class, overrides
every method implementing a parse rule with a new one that
performs the cache lookup, and defaults to the super method in
case there is no cached value.

Memoized parsing “6*(3+4)”

26

Add <- Mul + Add
Mul <- Prim * Mul
Prim <- (Add)
Char (
Prim <- Dec [BACKTRACK]
Dec <- Num
Char 0
Char 1
Char 2
Char 3
Char 4
Char 5
Char 6
Char *
Mul <- Prim * Mul
Prim <- (Add)
Char (
Add <- Mul + Add
Mul <- Prim * Mul
Prim <- (Add)
Char (
Prim <- Dec [BACKTRACK]
Dec <- Num
Char 0
Char 1
Char 2
Char 3
Char *
Mul <- Prim [BACKTRACK]
PRIM -- retrieving hashed result

Char +
Add <- Mul + Add
Mul <- Prim * Mul
Prim <- (Add)
Char (
Prim <- Dec [BACKTRACK]
Dec <- Num
Char 0
Char 1
Char 2
Char 3
Char 4
Char *
Mul <- Prim [BACKTRACK]
PRIM -- retrieving hashed result
Char +
Add <- Mul [BACKTRACK]
MUL -- retrieving hashed result
Char)
Char *
Mul <- Prim [BACKTRACK]
PRIM -- retrieving hashed result
Char +
Add <- Mul [BACKTRACK]
MUL -- retrieving hashed result
Eof
56 steps
6*(3+4) -> 42

Add ← Mul + Add / Mul
Mul ← Prim * Mul / Prim
Prim ← (Add) / Dec
Dec ← 0 / 1 / … / 9

A “packrat parser” is a PEG that memoizes (i.e., caches)
intermediate parsing results so they do not have to be recomputed
while backtracking.

In our grammar this is useful in two places. In the Add rule we
may successfully recognize a Mul and then fail on “+ Add”. This
would cause the PEG to backtrack and try the second alternative
of the Add rule, forcing it to recognize Mul again. With a packrat
parser we will see that we already recognized a Mul at position 0
in the input, so we simply retrieve that result instead of
recomputing it.

The second case is the Mul rule, which would cause Prim to be
parsed again in case the first alternative fails.

What is Packrat Parsing good for?

> Linear cost
—bounded by size(input) × #(parser rules)

> Recognizes strictly larger class of languages than
deterministic parsing algorithms (LL(k), LR(k))

> Good for scannerless parsing
—fine-grained tokens, unlimited lookahead

27

Note that we must cache at most # positions for each parser rule.

Scannerless Parsing

> Traditional linear-time parsers have fixed lookahead
—With unlimited lookahead, don’t need separate lexical analysis!

> Scannerless parsing enables unified grammar for entire
language
—Can express grammars for mixed languages with different lexemes!

28

What is Packrat Parsing not good for?

> General CFG parsing (ambiguous grammars)
—produces at most one result

> Parsing highly “stateful” syntax (C, C++)
—memoization depends on statelessness

> Parsing in minimal space
—LL/LR parsers grow with stack depth, not input size

29

Roadmap

30

> Part 1: Introduction to PEGs
> Parsing Expression Grammars
> Packrat Parsers
> Parser Combinators

> Part 2: live demo with PetitParser 2

Parser Combinators

> Parser combinators in functional languages are higher
order functions used to build parsers
—e.g., Parsec, Haskell

> In an OO language, a combinator is a (functional) object
—To build a parser, you simply compose the combinators
—Combinators can be reused, or specialized with new semantic

actions
– compiler, pretty printer, syntax highlighter …

—e.g., PetitParser, Smalltalk

31

The examples we saw so far implemented PEGs in Java using one
method per parser rule.

With parser combinators, each parse rule is a first class value. In
functional languages, these values are higher-order functions,
which are composed to build more complex parser combinators.

In an OO language, parser combinators are objects. A complex
parser is just a tree of objects.

PetitParser — a PEG parser combinator library
for Smalltalk

32

PEG expressions are
implemented by
subclasses of PPStrategy.
PEG operators are
messages sent to parsers

https://petitparser.github.io/

PetitParser has been implemented in many languages.

https://petitparser.github.io/

The original PetitParser in Smalltalk was implemented by Lukas
Renggli. We will be using the newer PetitParser2 by Jan Kurš.

https://kursjan.github.io/petitparser2/

Composing PetitParser parsers in a script

33

mul := PP2UnresolvedNode new.
add := PP2UnresolvedNode new.
prim := PP2UnresolvedNode new.

dec := #digit asPParser.
add def: (mul , $+ asPParser , add) / mul.
mul def: (prim , $* asPParser , mul) / prim.
prim def: ($(asPParser , add , $) asPParser) / dec.

goal := add end.

Add ← Mul + Add / Mul
Mul ← Prim * Mul / Prim
Prim ← (Add) / Dec
Dec ← 0 / 1 / … / 9

goal parse: '6*(3+4)'  #($6 $* #($(#($3 $+ $4) $)))

Here we define a toy expression parser as a script. Each rule is a
parser defined as a PEG. Since the grammar is recursive, we first
define the recursive rules with placeholder parsers and then
replace them with the recursive definition.

PetitParser overloads Smalltalk syntax to define a DSL for
writing parser combinators.

The dollar sign denotes a character in Smalltalk. To obtain a
parser for a character, we send it the message asParser.

The comma is used to sequentially compose parsers and the slash
creates a prioritized choice.

Semantic actions in PetitParser

34

mul := PP2UnresolvedNode new.
add := PP2UnresolvedNode new.
prim := PP2UnresolvedNode new.

dec := #digit asPParser
==> [:node | node asString asNumber].

add def: ((mul , $+ asPParser , add)
==> [:node | node first + node third])

/ mul.
mul def: ((prim , $* asPParser , mul)

==> [:node | node first * node third])
/ prim.

prim def: (($(asPParser , add , $) asPParser)
==> [:node | node second])

/ dec.

goal := add end.

Add ← Mul + Add / Mul
Mul ← Prim * Mul / Prim
Prim ← (Add) / Dec
Dec ← 0 / 1 / … / 9

goal parse: '6*(3+4)'  42

By default, a PP parser just returns a parse tree. In this example,
we add semantic actions to parsers. Each action is a block
(anonymous function) that takes the parse result and transforms
it. The rules here simply evaluate the recognized expressions.

Extracting a parser class

35

Once you have a parser working as a script, you can
(automatically) extract a class in which each parser rule is a
method, and also a first class object stored in a slot (AKA field).

You can then define tests for the class and its methods, and you
can define subclasses that add actions to inherited rules, or refine
and add rules.

Parser Combinator libraries

36

Roadmap

37

> Part 1: Introduction to PEGs
> Parsing Expression Grammars
> Packrat Parsers
> Parser Combinators

> Part 2: live demo with PetitParser 2

Implementing an SPL Interpreter with PetitParser

38

Download gtoolkit.com
and go to the
“PetitParser SPL case
study” notebook page
to explore the demo.

http://gtoolkit.com

39

What you should know!

✎ Is a CFG a language recognizer or a language
generator? What are the practical implications of this?

✎ How are PEGs defined?
✎ How do PEGs differ from CFGs?
✎ What problem do PEGs solve?
✎ How does memoization aid backtracking parsers?
✎ What are scannerless parsers? What are they good for?
✎ How can parser combinators be implemented as objects?

40

Can you answer these questions?

✎Why is it critical for PEGs that parsing functions be
stateless?

✎Why do PEG parsers have unlimited lookahead?
✎Why are PEGs and packrat parsers well suited to

functional programming languages?
✎What kinds of languages are scannerless parsers good

for? When are they inappropriate?

http://creativecommons.org/licenses/by-sa/4.0/

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

 

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

