
9. Guidelines, Idioms and Patterns

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.2

Roadmap

>  Idioms, Patterns and Frameworks

—  Programming style: Code Talks; Code Smells

>  Basic Idioms

—  Delegation, Super, Interface

>  Some Design Patterns

—  Adapter, Proxy, Template Method, Composite, Observer, Visitor, State

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.3

Roadmap

>  Idioms, Patterns and Frameworks

—  Programming style: Code Talks; Code Smells

>  Basic Idioms

—  Delegation, Super, Interface

>  Some Design Patterns

—  Adapter, Proxy, Template Method, Composite, Observer, Visitor, State

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.4

Sources

Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides,
Design Patterns, Addison Wesley, Reading, MA, 1995.

Frank Buschmann, et al., Pattern-Oriented Software Architecture
— A System of Patterns, Wiley, 1996

Mark Grand, Patterns in Java, Volume 1, Wiley, 1998

Kent Beck, Smalltalk Best Practice Patterns, Prentice Hall, 1997

“Code Smells”, http://c2.com/cgi/wiki?CodeSmell

 or http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.5

Style

Code Talks

>  Do the simplest thing you can think of (KISS)

—  Don't over-design

—  Implement things once and only once

—  First do it, then do it right, then do it fast 

(donʼt optimize too early)

>  Make your intention clear

—  Write small methods

—  Each method should do one thing only

—  Name methods for what they do, not how they do it

—  Write to an interface, not an implementation

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.6

Refactoring

Redesign and refactor when the code starts to “smell”

Code Smells (http://sis36.berkeley.edu/projects/streek/agile/bad-smells-in-code.html)

>  Methods too long or too complex

—  decompose using helper methods

>  Duplicated code

—  factor out the common parts 
(e.g., using a Template method Pattern)

>  Violation of encapsulation

—  redistribute responsibilities

>  Too much communication (high coupling)

—  redistribute responsibilities

Many idioms and patterns can help you improve your design ...

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.7

Refactoring Long Methods

short is good!

If I need to comment then

extract as method

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.8

What are Idioms and Patterns?

Idioms

Idioms are common programming techniques and
conventions. They are often language-specific.

(http://c2.com/ppr/wiki/JavaIdioms/JavaIdioms.html)

Patterns
 Patterns document common solutions to design
problems. They are language-independent.

Libraries

Libraries are collections of functions, procedures
or other software components that can be used in
many applications.

Frameworks

Frameworks are open libraries that define the
generic architecture of an application, and can be
extended by adding or deriving new classes.

(http://martinfowler.com/bliki/InversionOfControl.html)

Frameworks typically make use of common idioms and patterns.

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.9

Roadmap

>  Idioms, Patterns and Frameworks

—  Programming style: Code Talks; Code Smells

>  Basic Idioms

—  Delegation, Super, Interface

>  Some Design Patterns

—  Adapter, Proxy, Template Method, Composite, Observer, Visitor, State

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.10

Delegation

✎  How can an object share behaviour without inheritance?

✔  Delegate some of its work to another object

Inheritance is a common way to extend the behaviour of a
class, but can be an inappropriate way to combine
features.

Delegation reinforces encapsulation by keeping roles and
responsibilities distinct.

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.11

Delegation

Example

>  When a TestSuite is asked to run(), it delegates the

work to each of its TestCases.

Consequences

>  More flexible, less structured than inheritance.

Delegation is one of the most basic object-oriented idioms,
and is used by almost all design patterns.

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.12

Delegation example

public class TestSuite implements Test {

...

public void run(TestResult result) {

for(Enumeration e = fTests.elements();

e.hasMoreElements();)

{

if (result.shouldStop())

break;

Test test = (Test) e.nextElement();

test.run(result);

}

}

}

delegate

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.13

Super

✎  How do you extend behavior inherited from a
superclass?

✔  Overwrite the inherited method, and send a message to
“super” in the new method.

Sometimes you just want to extend inherited behavior,
rather than replace it.

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.14

Super

Examples

>  Place.paint() extends Panel.paint() with specific painting

behaviour

>  Constructors for many classes, e.g., TicTacToe, invoke their

superclass constructors.

Consequences

>  Increases coupling between subclass and superclass: if you change

the inheritance structure, super calls may break!

Never use super to invoke a method different than the one being
overwritten — use “this” instead!

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.15

Super examples

public class Place extends Panel {

...

public void paint(Graphics g) {

super.paint(g);

Rectangle rect = g.getClipBounds();

int h = rect.height;

int w = rect.width;

int offset = w/10;

g.drawRect(0,0,w,h);

if (image != null) {

g.drawImage(image, offset, offset, w-2*offset, h-2*offset, this);

}

}

 ...

public class TicTacToe extends AbstractBoardGame {

public TicTacToe(Player playerX, Player playerO)

{

super(playerX, playerO);

}

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.16

Interface

✎  How do you keep a client of a service independent of
classes that provide the service?

✔  Have the client use the service through an interface
rather than a concrete class.

If a client names a concrete class as a service provider,
then only instances of that class or its subclasses can be
used in future.

By naming an interface, an instance of any class that
implements the interface can be used to provide the
service.

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.17

Interface

Example

>  Any object may be registered with an Observable if it

implements the Observer interface.

>  Consequences

>  Interfaces reduce coupling between classes.

>  They also increase complexity by adding indirection.

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.18

Interface example

public class GameGUI extends JFrame implements Observer {

…

public void update(Observable o, Object arg) {

Move move = (Move) arg;

showFeedBack("got an update: " + move);

places_[move.col][move.row].setMove(move.player);

}

…

}

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.19

Roadmap

>  Idioms, Patterns and Frameworks

—  Programming style: Code Talks; Code Smells

>  Basic Idioms

—  Delegation, Super, Interface

>  Some Design Patterns

—  Adapter, Proxy, Template Method, Composite, Observer, Visitor,

State

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.20

Adapter Pattern

✎  How do you use a class that provide the right features
but the wrong interface?

✔  Introduce an adapter.

An adapter converts the interface of a class into another
interface clients expect.

>  The client and the adapted object remain independent.

>  An adapter adds an extra level of indirection.

Also known as Wrapper

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.21

Adapter Pattern

Examples

>  A WrappedStack adapts java.util.Stack, throwing

an AssertionException when top() or pop() are
called on an empty stack.

>  An ActionListener converts a call to
actionPerformed() to the desired handler method.

>  Consequences

>  The client and the adapted object remain independent.

>  An adapter adds an extra level of indirection.

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.22

Adapter Pattern example

public class WrappedStack implements StackInterface {

private java.util.Stack stack;

public WrappedStack() {

this(new Stack());

}

public WrappedStack(Stack stack) {

this.stack = stack;

}

public void push(Object item) {

stack.push(item);

assert this.top() == item;

assert invariant();

}

delegate

request to

adaptee

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.23

Proxy Pattern

✎  How do you hide the complexity of accessing objects
that require pre- or post-processing?

✔  Introduce a proxy to control access to the object.

Some services require special pre or post-processing.
Examples include objects that reside on a remote
machine, and those with security restrictions.

A proxy provides the same interface as the object that it
controls access to.

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.24

Proxy Pattern - UML

Client

«interface»

Subject

Proxy
 RealSubject
delegate

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.25

Proxy Pattern Example (1)

Client

«interface»

Image

ProxyImage
 RealImage

delegate

package proxyPattern;

public interface Image {

public void displayImage();

}

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.26

Proxy Pattern Example (2)

public class ProxyImage implements Image {

private String filename;

private Image image;

public ProxyImage(String filename){

this.filename = filename;

}

public void displayImage() {

if (image == null) {

image = new RealImage(filename); //load only on demand

}

image.displayImage();

}

}

delegate request

to real subject

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.27

Proxy Pattern Example (3)

public class RealImage implements Image {

private String filename;

public RealImage(String filename) {

this.filename = filename;

System.out.println("Loading "+filename);

}

public void displayImage() {

System.out.println("Displaying "+filename);

}

}

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.28

Proxy Pattern Example (4) - the Client

public class ProxyExample {

public static void main(String[] args) {

ArrayList<Image> images = new ArrayList<Image>();

images.add(new ProxyImage("HiRes_10MB_Photo1"));

images.add(new ProxyImage("HiRes_10MB_Photo2"));

images.add(new ProxyImage("HiRes_10MB_Photo3"));

images.get(0).displayImage();

images.get(1).displayImage();

images.get(0).displayImage(); // already loaded

}

}

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.29

Proxies are used for remote object access

Example

>  A Java “stub” for a remote object accessed by Remote

Method Invocation (RMI).

Consequences

>  A Proxy decouples clients from servers. A Proxy

introduces a level of indirection.

Proxy differs from Adapter in that it does not change the
objectʼs interface.

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.30

Proxy remote access example

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.31

Template Method Pattern

✎  How do you implement a generic algorithm, deferring
some parts to subclasses?

✔  Define it as a Template Method.

A Template Method factors out the common part of similar
algorithms, and delegates the rest to:

—  hook methods that subclasses may extend, and

—  abstract methods that subclasses must implement.

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.32

Template Method Pattern (2)

Example

>  TestCase.runBare() is a template method that calls the hook

method setUp().

>  AbstractBoardGameʼs constructor defers initialization to the

abstract init() method

Consequences

>  Template methods lead to an inverted control structure since a

parent classes calls the operations of a subclass and not the other
way around.

Template Method is used in most frameworks to allow application
programmers to easily extend the functionality of framework
classes.

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.33

Template Method Pattern - UML

Defines the

skeleton of the

algorithm

Overrides the base

class methods

Hook methods
AbstractClass

primitiveOperation()

…

templateMethod()

ConcreteClass1

primitiveOperation()

…

ConcreteClass2

primitiveOperation()

..

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.34

Template Method Pattern Example

Subclasses of TestCase are expected to override hook
method setUp() and possibly tearDown() and
runTest().

public abstract class TestCase implements Test {

...

public void runBare() throws Throwable {

setUp();

try { runTest(); }

finally { tearDown(); }

}

protected void setUp() { }

// empty by default

protected void tearDown() { }

protected void runTest() throws Throwable { ... }

}

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.35

Composite Pattern

✎  How do you manage a part-whole hierarchy of objects in
a consistent way?

✔  Define a common interface that both parts and
composites implement.

Typically composite objects will implement their behavior by
delegating to their parts.

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.36

Composite Pattern Example

>  Composite allows you to treat
a single instance of an object
the same way as a group of
objects.

>  Consider a Tree. It consists of
Trees (subtrees) and Leaf
objects.

Leaf

Tree

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.37

Composite Pattern Example (2)

«interface»

Icomponent

addComponent()

removeComponent()

getChildren()

Composite
Leaf

+children

public interface IComponent {

 Collection getChildren();

 boolean addComponent(IComponent c);

 boolean removeComponent(IComponent c);

}

public class Leaf implements IComponent {

 Collection getChildren(){ return null;}

 boolean addComponent(IComponent c){ return false;}

 boolean removeComponent(IComponent c) { return false;}

}

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.38

Composite Pattern Example (3)

public class Composite implements IComponent {

private String id;

private ArrayList<IComponent> list = new ArrayList<IComponent> ();

public boolean addComponent(IComponent c) {

return list.add(c);

}

public Collection getChildren() {

return list;

}

public boolean removeComponent(IComponent c) {

return list.remove(c);

}

…

}

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.39

Composite Pattern Example — Client Usage (4)

public class CompositeClient {

public static void main(String[] args) {

Composite switzerland = new Composite("Switzerland");

Leaf bern = new Leaf("Bern");

Leaf zuerich = new Leaf("Zuerich");

switzerland.addComponent(bern);

switzerland.addComponent(zuerich);

Composite europe = new Composite("Europe");

europe.addComponent(switzerland);

System.out.println(europe.toString());

}

}

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.40

Observer Pattern

✎  How can an object inform arbitrary clients when it
changes state?

✔  Clients implement a common Observer interface and
register with the “observable” object; the object notifies
its observers when it changes state.

An observable object publishes state change events to its
subscribers, who must implement a common interface
for receiving notification.

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.41

Observer Pattern (2)

Example

>  See GUI Lecture

>  A Button expects its observers to implement the

ActionListener interface. 
(see the Interface and Adapter examples)

Consequences

>  Notification can be slow if there are many observers for

an observable, or if observers are themselves
observable!

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.42

Null Object Pattern

✎  How do you avoid cluttering your code with tests for null
object pointers?

✔  Introduce a Null Object that implements the interface
you expect, but does nothing.

Null Objects may also be Singleton objects, since you
never need more than one instance.

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.43

Null Object Pattern — UML

RealObject

request()

NullObject

request()

uses
Client
 AbstractObject

request()

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.44

Null Object

Examples

>  NullOutputStream extends OutputStream with an

empty write() method

Consequences

>  Simplifies client code

>  Not worthwhile if there are only few and localized tests

for null pointers

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.45

What Problems do Design Patterns Solve?

Patterns:

>  document design experience

>  enable widespread reuse of software architecture

>  improve communication within and across software development

teams

>  explicitly capture knowledge that experienced developers already

understand implicitly

>  arise from practical experience

>  help ease the transition to object-oriented technology

>  facilitate training of new developers

>  help to transcend “programming language-centric” viewpoints

Doug Schmidt, CACM Oct 1995

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.46

What you should know!

✎  Whatʼs wrong with long methods? How long should a
method be?

✎  Whatʼs the difference between a pattern and an idiom?

✎  When should you use delegation instead of inheritance?

✎  When should you call “super”?

✎  How does a Proxy differ from an Adapter?

✎  How can a Template Method help to eliminate duplicated

code?

✎  When do I use a Composite Pattern? Do you know any

examples from the Frameworks you know?

© O. Nierstrasz

P2 — Guidelines, Idioms and Patterns

9.47

Can you answer these questions?

✎  What idioms do you regularly use when you program?
What patterns do you use?

✎  What is the difference between an interface and an
abstract class?

✎  When should you use an Adapter instead of modifying
the interface that doesnʼt fit?

✎  Is it good or bad that java.awt.Component is an abstract
class and not an interface?

✎  Why do the Java libraries use different interfaces for the
Observer pattern (java.util.Observer,
java.awt.event.ActionListener etc.)?

License

© Oscar Nierstrasz
 48

Attribution-ShareAlike 2.5

You are free:

•  to copy, distribute, display, and perform the work

•  to make derivative works

•  to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

•  For any reuse or distribution, you must make clear to others the license terms of this work.

•  Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5/

Safety Patterns

