Final Scientific Report — NFS Project no. 20-61655.00
“Meta-models and Tools for
Evolution Towards Component Systems”

November 5, 2002

a) Summary of results

This project was concerned with developing tools and models to support the transition towards component-
based software development. Results achieved in this project can be grouped according to the themes of
the original project proposal:

e Towards a Component Meta Model
e Component Migration

e Compositional Infrastructure

Towards a Component Meta Model

First we consider results related twodeling manipulatingand reasoningabout software systems in
order to better understand thene., in order to support reverse engineering.

In order to understand and evolve a software system, appropmizdelsare needed. We have de-
veloped a meta-model for characterizing software entities called FAMIX and a software “repository”
based on this meta-model, called MOOSE. This repository is effectively a platform for exploring soft-
ware models, and forms the basis of several of the experimental tools developed in the course of this
project. [DLO1] describes a general methodology for program understanding based on this meta-model
and platform.

One of the key issues in program understanding is to extract useful information from large amounts
of software data. Software metrics can be extremely effective in processing this data, and visualization of
metrics helps one to quickly get an overview of the data. CodeCrawler is a generic metrics visualization
tool developed within the scope of this project, and applied to large software systems. [ML02] describes
a generic graph-based model on top of which metrics can be extracted and [LD02a] presents the metrics
that have been applied in reverse engineering experiments in the context of CodeCrawler.

Metrics-based visualization works best when applied to simple, direct metrics. In order to recog-
nize and reason about relationships between software entities, however, other approaches are needed.
SOUL is a declarative meta-programming language which has been integrated with MOOSE. SOUL
has been reimplemented to improve the efficiency, and a library written in SOUL to do static reasoning
of Smalltalk programs was refactored. SOUL is now used by around 20 people in 4 countries that use
Declarative Meta Programming as the engine to drive research in software engineering regarding met-
rics, aspect-oriented programming, framework documentation, evolution, and program understanding.
[MMWO01b] [MMWO01a] present an overview of the work done. [WDO01] describes how SOUL is used
to reason about object-oriented software artifacts.

In order to understand a software application, the developer must know how different software arti-
facts are related. Very often, however, these relationships are implicit rather than explicit. We started to
applyconcept analysisa branch of lattice theory, which allows us to group elements based on common
properties, to discover such implicit relationships. In [AM02a, AM02b] we apply concept analysis to
well known Smalltalk class hierarchies. Specifically we studied how the classes in an object-oriented
inheritance hierarchy are coupled by means of the inheritance and interface relationships. In this work
we identify implicit concept patternthat express how reuse is achieved, identify weak spots in the hi-
erarchy that could be improved, and recognize guidelines for customizing and extending the hierarchy.

We have also investigated ways of using dynamic trace information as an additional source of reverse
engineering information. In [RD02, Ric02] we describe how such dynamic information can be used
effectively to uncover roles and collaborations during architectural recovery.

Finally, in [Sch02] we have explored how different navigational aids and mechanisms can help a
developer during the reverse engineering process.

Component Migration

The second track in this project explored how systems evolve.

[DDNO2] is a book which presents guidelines and techniques for reverse and reengineering as a
collection of so-calledeengineering patternsMost of the material for this book was gathered during
earlier projects, particularly SNF-2000-46947.96 and BBW-96.0015, which are acknowledged in the
preface to the book, though the process of writing and editing was completed during the current project.

[Duc01] is a habilitation which describes in further detail the tools and techniques used in reengi-
neering, and which summarizes much of the work carries out in this and earlier, related SNF projects.

Newer work includes the following:

e [Wuy01] describes how SOUL can be used to reason about changes in an evolving software sys-
tem.

e [LDO02b] explores the use of CodeCrawler to visualize metrics that compare different versions of
a software system.

e [Ste01] explores the use of a query engine to recover refactoring which have been performed on a
software system.

e [KNO1] investigates a series of refactorings which can be used to eliminate duplicated code.

e [TicO1] explores the broader issue of modeling and tool support for language-independent refac-
toring.

e Finally, [KauO1] explores the sources of problems arises during the evolution of large software
systems, and [Nie02] proposes a research agenda that focuses on software evolution.

Compositional Infrastructure

The final track of the project concerns infrastructure for building software systems from components.

Most of this work has focused dpiccola an experimental composition language, which has been
extensively explored in previous projects. [Ach02] descriBesolain detail, providing a formal se-
mantics for the language, and describing how this semantics can be used to aid reasoning about proper-
ties of software compositions. We have also explored a variety of other languages and approaches for
software composition.

[Hof01] explores the use of a coordination medium to dynamically reconfigure heterogeneous com-
positions of software components.

[SLNO1] surveys the suitability of scripting and coordination languages for coordinating cooperating
software agents.

In this track we also explore new ways of structuring code and a new object model. First we have
been working on the definition and integration of dynamic interfaces as a way to convey role intention
which is important for composition [SD02]. Then, more fundamentally, we have been defining a new
object model that introduces the notion todiits (groups of methods) [SDNO02]. Traits allow one to
compose classes out of reusable abstractions. Traits are orthogonal to inheritance which is the traditional
way of reusing object-oriented code. We envision traits as the basic brick on top of which we will build
a more advanced composition and component language.

Pecos: a Companion Research Project

Dr. Roel Wuyts joined the lab in December 2000. The bulk of his research focussed on developing a
component model for embedded devices in the context of the IST pragedHGC02]. This project

was concerned with bringing component-based software engineering to a particular kind of small em-
bedded systems. The component model copes with the different constraints imposed by the environ-
ment (low power consumption, little memory, simple CPUs) [NAO2] and supports the verification of
non-functional requirements (checking of timing and scheduling issues) [WD02], [LAOZ2].

SNF Personnel

The following research personnel were funded fully or in part by the SNF project:

e Franz Achermann developed the semantics and implementatRisafla[Ach02].

e Stephane Ducasse was the architect of the MOOSE environment, and supervised various projects
that built on MOOSE [DDNO02], [DLO01], [Duc01], [RD02]. Ducasse also co-supervised the
work of Arévalo [AM02a] [AM02b], Golomingi [KNO1], Hofmann [Hof01], Richner [RD02],
Schweizer [Sch02], and Steiger [Ste01].

e Michele Lanza developed CodeCrawler [LD02b] [LD02a] [MLOZ2].

e Sander Tichelaar was largely responsible for the FAMIX meta-model that MOOSE is based on,
and he developed the language-independent refactoring support of MOOSE [Tic01].

e Roel Wuyts developed SOUL and integrated it into MOOSE [MMWO01b] [MMWO01a] [WDO01]
[WuyO01].

b) Publications

Copies of the following publications accompany the final report.

References

[AMO02a]

[AMO2b]

[DDNO2]

[DLO1]

[LDO02a]

[LDO2b]

[MLO2]

[MMWO1a]

[MMWO1b]

[Nie02]

[RDO2]

[SD02]

Gabriela Aévalo and Tom Mens. Analysing object oriented application frameworks using
concept analysis. In Andrew Black, Erik Ernst, Peter Grogono, and Markky Sakkinen,
editors,ECOOP 2002: Proceedings of the Inheritance Workshapiversity of Jyvaskyh,
2002.

Gabriela Aévalo and Tom Mens. Analysing object oriented framework reuse using con-
cept analysis. In Jean-Michel Bruel and Zohra Bellahsene, edAdrsnces in Object-
oriented information systems: OOIS 2002 Worksh&psinger Verlag, 2002.

Serge Demeyer, 8phane Ducasse, and Oscar Nierstr&zject-Oriented Reengineering
Patterns Morgan Kaufmann, 2002.

Stephane Ducasse and Michele Lanza. Towards a methodology for the understanding of
object-oriented system3echnique et science informatiqu@e(4):539-566, 2001.

Michele Lanza and $phane Ducasse. Beyond language independent object-oriented met-
rics: Model independent metrics. In Fernando Brito e Abreu, Mario Piattini, Geert Poels,
and Houari A. Sahraoui, editorBroceedings of the 6th International Workshop on Quan-
titative Approaches in Object-Oriented Software Engineengages 77—-84, 2002.

Michele Lanza and $phane Ducasse. Understanding software evolution using a combi-
nation of software visualization and software metricsPtaceedings of LMO 20Qdages
135-149, 2002.

Tom Mens and Michele Lanza. A graph-based metamodel for object-oriented software
metrics. Electronic Notes in Theoretical Computer Scient&(2), 2002.

K. Mens, I|. Michiels, and R. Wuyts. Supporting software development through declar-
atively codified programming pattern&SEKE 2001 Special Issue of Elsevier Journal on
Expert Systems with Applicatigri®d01. Extended version of [MMWO01b].

Kim Mens, Isabel Michiels, and Roel Wuyts. Supporting software development through
declaratively codified programming patterns. SEKE 2001 Proceedingpages 236—243.
Knowledge Systems Institute, 2001. International conference on Software Engineering
and Knowledge Engineering, Buenos Aires, Argentina, June 13-15, 2001.

Oscar Nierstrasz. Software evolution as the key to productivitriceedings Radical
Innovations of Software and Systems Engineering in the Futiergce, Italy, Oct. 2002.
to appear.

Tamar Richner and 8phane Ducasse. Using dynamic information for the iterative recov-
ery of collaborations and role®roceedings of ICSM’2002 (International Conference on
Software MaintenancePctober 2002.

Benny Sadeh and&ihane Ducasse, Adding Dynamic Interface to Smalltalk, Journal of
Object Technology, vol. 1, no. 1, 2002.

[SDNO2]

[SLNO1]

[WDO1]

[Wuy01]

Nathanael Schaerli, &hane Ducasse and Oscar Nierstrasz, Classes = Traits + States +
Glue (Beyond mixins and multiple inheritance), Proceedings of the International Workshop
on Inheritance, 2002.

Jean-Guy Schneider, Markus Lumpe, and Oscar Nierstrasz. Agent coordination via script-
ing languages. In Andrea Omicini, Franco Zambonelli, Matthias Klusch, and Robert Tolks-
dorf, editors,Coordination of Internet Agentpages 153-175. Springer-Verlag, 2001.

Roel Wuyts and ®fphane Ducasse. Symbiotic reflection between an object-oriented and a
logic programming language. BCOOP 2001 International workshop on MultiParadigm
Programming with Object-Oriented Language§01.

Roel Wuyts. Synchronising changes to design and implementation using a declarative
meta-programming language. limernational Workshop on (Constraint) Logic Program-
ming for Software Engineerindec. 2001.

Theses, Habilitation

The following theses and habilitation are not included with the report, but are all available from the

following url:
http://www.iam.unibe.ch/ ~scg/cgi-bin/oobib.cgi?snf02

References

[Ach02] Franz Achermannforms, Agents and Channels - Defining Composition Abstraction with
Style PhD thesis, University of Berne, January 2002.

[Duc01] Séphane Ducasse. Reengineering object-oriented applications. Technical report, Univer-
sité Pierre et Marie Curie (Paris 6), 2001. Habilitatepdiriger des recherches.

[HofO1] Thomas F. Hofmann. OPENSPACES, an object-oriented framework for configurable co-
ordination of heterogeneous agents. Diploma thesis, University of Bern, April 2001.

[Kau01] Christian Kaufmann. Software engineering im spannungsfeld theorie und praxis. Master’s
thesis, University of Bern, 2001.

[KNO1] Georges Golomingi Koni-N’sapu. A scenario based approach for refactoring duplicated
code in object oriented systems. Diploma thesis, University of Bern, June 2001.

[Ric02] Tamar Richner.Recovering Behavioral Design Views: a Query-Based ApprodehD
thesis, University of Berne, May 2002.

[Sch02] Daniel Schweizer. Navigation in object-oriented reverse engineering. Diploma thesis,
University of Bern, June 2002.

[Ste01] Lukas Steiger. Recovering the evolution of object oriented software systems using a flexi-
ble query engine. Diploma thesis, University of Bern, June 2001.

[Tic01] Sander TichelaaModeling Object-Oriented Software for Reverse Engineering and Refac-

toring. PhD thesis, University of Berne, December 2001.

Pecos papers

The following publications are related to th&ds project. Since this project was funded from a
different source (BBW), we do not include copies of these papers. Most are available, however, from
the following url:

http://mwww.iam.unibe.ch/ ~scg/cgi-bin/oobib.cgi?pecos

References

[GCO02] Thomas Genssler, Alexander Christoph, Benedikt Schulz, Michael Winter, Chris M. Stich,
Christian Zeidler, Peter Mler, Andreas Stelter, Oscar Nierstraszgf@tane Ducasse,
Gabriela Aevalo, Roel Wuyts, Peng Liang, Bastiaan &chage, and Reinier van den
Born, Recosin a Nutshell, The BcosConsortium, September 2002.

[LAOZ] Peng Liang, Gabriela Avalo, Séphane Ducasse, Michele Lanza, Nathanael Schaerli,
Roel Wuyts and Oscar Nierstrasz, Applying RMA for Scheduling Field Device Compo-
nents, ECOOP 2002 Workshop Reader, 2002.

[NAO2] Oscar Nierstrasz, Gabriela @valo, Séphane Ducasse, Roel Wuyts, Andrew Black, Peter
Muller, Christian Zeidler, Thomas Genssler, and Reinier van den Born, A Component
Model for Field Devices, Proceedings First International IFIP/ACM Working Conference
on Component Deployment, ACM, Berlin, Germany, June 2002, pp. 200-209.

[WDO02] Roel Wuyts and $fphane Ducasse, Non-Functional Requirements in a Component Model
for Embedded Systems, International Workshop on Specification and Verification of
Component-Based Systems, 2001

c) Publications in press

None

