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a) Summary of results

This project was concerned with developing tools and models to support the transition towards component-
based software development. Results achieved in this project can be grouped according to the themes of
the original project proposal:

e Towards a Component Meta Model
e Component Migration

e Compositional Infrastructure

Towards a Component Meta Model

First we consider results related twodeling manipulatingand reasoningabout software systems in
order to better understand thene., in order to support reverse engineering.

In order to understand and evolve a software system, appropmizdelsare needed. We have de-
veloped a meta-model for characterizing software entities called FAMIX and a software “repository”
based on this meta-model, called MOOSE. This repository is effectively a platform for exploring soft-
ware models, and forms the basis of several of the experimental tools developed in the course of this
project. [DLO1] describes a general methodology for program understanding based on this meta-model
and platform.

One of the key issues in program understanding is to extract useful information from large amounts
of software data. Software metrics can be extremely effective in processing this data, and visualization of
metrics helps one to quickly get an overview of the data. CodeCrawler is a generic metrics visualization
tool developed within the scope of this project, and applied to large software systems. [ML02] describes
a generic graph-based model on top of which metrics can be extracted and [LD02a] presents the metrics
that have been applied in reverse engineering experiments in the context of CodeCrawler.

Metrics-based visualization works best when applied to simple, direct metrics. In order to recog-
nize and reason about relationships between software entities, however, other approaches are needed.
SOUL is a declarative meta-programming language which has been integrated with MOOSE. SOUL
has been reimplemented to improve the efficiency, and a library written in SOUL to do static reasoning
of Smalltalk programs was refactored. SOUL is now used by around 20 people in 4 countries that use
Declarative Meta Programming as the engine to drive research in software engineering regarding met-
rics, aspect-oriented programming, framework documentation, evolution, and program understanding.
[MMWO01b] [MMWO01a] present an overview of the work done. [WDO01] describes how SOUL is used
to reason about object-oriented software artifacts.



In order to understand a software application, the developer must know how different software arti-
facts are related. Very often, however, these relationships are implicit rather than explicit. We started to
applyconcept analysisa branch of lattice theory, which allows us to group elements based on common
properties, to discover such implicit relationships. In [AM02a, AM02b] we apply concept analysis to
well known Smalltalk class hierarchies. Specifically we studied how the classes in an object-oriented
inheritance hierarchy are coupled by means of the inheritance and interface relationships. In this work
we identify implicit concept patternthat express how reuse is achieved, identify weak spots in the hi-
erarchy that could be improved, and recognize guidelines for customizing and extending the hierarchy.

We have also investigated ways of using dynamic trace information as an additional source of reverse
engineering information. In [RD02, Ric02] we describe how such dynamic information can be used
effectively to uncover roles and collaborations during architectural recovery.

Finally, in [Sch02] we have explored how different navigational aids and mechanisms can help a
developer during the reverse engineering process.

Component Migration

The second track in this project explored how systems evolve.

[DDNO2] is a book which presents guidelines and techniques for reverse and reengineering as a
collection of so-calledeengineering patternsMost of the material for this book was gathered during
earlier projects, particularly SNF-2000-46947.96 and BBW-96.0015, which are acknowledged in the
preface to the book, though the process of writing and editing was completed during the current project.

[Duc01] is a habilitation which describes in further detail the tools and techniques used in reengi-
neering, and which summarizes much of the work carries out in this and earlier, related SNF projects.

Newer work includes the following:

e [Wuy01] describes how SOUL can be used to reason about changes in an evolving software sys-
tem.

e [LDO02b] explores the use of CodeCrawler to visualize metrics that compare different versions of
a software system.

e [Ste01] explores the use of a query engine to recover refactoring which have been performed on a
software system.

e [KNO1] investigates a series of refactorings which can be used to eliminate duplicated code.

e [TicO1] explores the broader issue of modeling and tool support for language-independent refac-
toring.

e Finally, [KauO1] explores the sources of problems arises during the evolution of large software
systems, and [Nie02] proposes a research agenda that focuses on software evolution.

Compositional Infrastructure

The final track of the project concerns infrastructure for building software systems from components.

Most of this work has focused dpiccola an experimental composition language, which has been
extensively explored in previous projects. [Ach02] descriBesolain detail, providing a formal se-
mantics for the language, and describing how this semantics can be used to aid reasoning about proper-
ties of software compositions. We have also explored a variety of other languages and approaches for
software composition.

[Hof01] explores the use of a coordination medium to dynamically reconfigure heterogeneous com-
positions of software components.



[SLNO1] surveys the suitability of scripting and coordination languages for coordinating cooperating
software agents.

In this track we also explore new ways of structuring code and a new object model. First we have
been working on the definition and integration of dynamic interfaces as a way to convey role intention
which is important for composition [SD02]. Then, more fundamentally, we have been defining a new
object model that introduces the notion todiits (groups of methods) [SDNO02]. Traits allow one to
compose classes out of reusable abstractions. Traits are orthogonal to inheritance which is the traditional
way of reusing object-oriented code. We envision traits as the basic brick on top of which we will build
a more advanced composition and component language.

Pecos: a Companion Research Project

Dr. Roel Wuyts joined the lab in December 2000. The bulk of his research focussed on developing a
component model for embedded devices in the context of the IST pragedHGC02]. This project

was concerned with bringing component-based software engineering to a particular kind of small em-
bedded systems. The component model copes with the different constraints imposed by the environ-
ment (low power consumption, little memory, simple CPUs) [NAO2] and supports the verification of
non-functional requirements (checking of timing and scheduling issues) [WD02], [LAOZ2].

SNF Personnel

The following research personnel were funded fully or in part by the SNF project:

e Franz Achermann developed the semantics and implementatRisafla[Ach02].

e Stephane Ducasse was the architect of the MOOSE environment, and supervised various projects
that built on MOOSE [DDNO02], [DLO01], [Duc01], [RD02]. Ducasse also co-supervised the
work of Arévalo [AM02a] [AM02b], Golomingi [KNO1], Hofmann [Hof01], Richner [RD02],
Schweizer [Sch02], and Steiger [Ste01].

e Michele Lanza developed CodeCrawler [LD02b] [LD02a] [MLOZ2].

e Sander Tichelaar was largely responsible for the FAMIX meta-model that MOOSE is based on,
and he developed the language-independent refactoring support of MOOSE [Tic01].

e Roel Wuyts developed SOUL and integrated it into MOOSE [MMWO01b] [MMWO01a] [WDO01]
[WuyO01].



b) Publications
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