
3

2. Scientific part

2.1. Summary and key-words

All successful software systems evolve to meet changing requirements. Without continual
reengineering, however, such systems necessarily suffer from architectural drift, as their
original design no longer matches new business goals and requirements. As a consequence,
they become increasingly complex and fragile, leading to ever higher maintenance costs.

We propose a component-based approach to software evolution, in which stable software
artifacts are identified over time, and are migrated towards components and component ar-
chitectures. The key to the approach is a component meta model for modelling and analys-
ing evolving software systems. This meta model facilitates component migration tools and
techniques. As a successful software system matures, instead of becoming more complex
and fragile, its architecture gradually migrates towards a configuration of software compo-
nents, which can be more easily reconfigured and adapted than a typical legacy system. To
achieve this flexibility, however, a component-based system requires a suitable composi-
tional infrastructure for specifying component configurations and the compositional ab-
stractions that hold the components together.

We propose to develop (i) a component meta model for modelling software systems that
extends existing standards (such as UML) with concepts required to support evolution, fo-
cusing on such issues as non-functional requirements and software dependencies. Based on
this meta model, we will develop (ii) component migration tools and methods that will help
to identify candidate components, identify and resolve architectural and design drift, and
support transformation to component-based software structures. We will focus on software
metrics and visualization to support analysis, and language-independent refactorings to sup-
port transformation. Component migration methods will be documented as reverse and
reengineering patterns. Finally, we propose to develop (iii) a compositional infrastructure to
support architectural specification, and run-time configuration and evolution, using the
agent-based framework of the Piccola composition language.

Keywords

Software components, software evolution, software reengineering, meta-modelling, soft-
ware metrics, visualization, software architecture, software composition.



4

2.2. Research plan

2.2.1. State of the art and related work

Component Meta Model 

Industry has converged in the last few years on the Unified Modelling Language (UML) as
a standard notation for expressing object-oriented models [3]. UML defines its own meta
model, which can be extended to and adapted to various needs. Any serious meta modelling
research effort must therefore position itself with respect to UML.

UML suffers from two serious drawbacks for component migration. First, UML is con-
ceived as language for specifying analysis and design models, and is missing concepts
needed for describing and working with implementation models. Fine-grained relationships
between individual code elements, for example, can only be modelled by extending UML in
non-standard ways. Second, UML is very weak when it comes to expressing non-functional
properties (such as quality-of-service, resource consumption or real-time constraints) or ex-
pressing compositionality dependencies and constraints (such as protocols that must be re-
spected when using an interface, or assumptions that must be respected when extending a
component or overriding behaviour inherited by a subclass).

Considerable work has been done on real-time extensions to UML [10], and standardiza-
tion efforts are under way, but little has been done so far on other kinds of non-functional
requirements. The notion of contracts as explicit representations of contractual obligations
between objects or components and their clients is well-established [15][24] but UML pro-
vides only an informal mechanism to express constraints (usually restricted to data model-
ling constraints). Various researchers have proposed enriching interfaces to express
reusability constraints [20][34], but this is still an open research issue, and UML does not
address it.

XML is clearly emerging as a standard for interchange of models [4][5]. XML is a suc-
cessor of SGML, intended to express arbitrary models, not just document mark-up.

Until now there is no commonly agreed definition of what a component is [35][65]. Most
researchers and authors agree that components should be “black box” entities, and prefera-
bly binary entities [35], but there is no agreement what constitutes a “black box” since even
binary components may exhibit hidden platform dependencies. There is also considerable
interest in source code components in the form of C++ templates. Moreover, multiple com-
ponent models exist, such as EJB, COM+ and CORBA. Component repositories exist
[9][16][25][37] but there is no uniform way to represent their basic structure and properties,
and there is no agreement what properties need to be captured and represented.

In the past few years there has been increasing interest in abstracting not just components
but common architectures from a set of related applications (i.e., a “product line”). Such
“architectural styles” have been documented and specified using a range of experimental
architectural description languages, with the goal of formalizing and reasoning about ap-
plications at an architectural level [32].

Component Migration 

Traditional reengineering of legacy system promotes wrapping technologies where the leg-
acy code is encapsulated within object-oriented languages like Java or Smalltalk [6]. Vari-
ous techniques, like data flow analysis [7] may be used to decompose the legacy code into
subsystems that can then be wrapped as components. Component mining, on the other hand,
tries to identify generic software entities in legacy code and extract them as components.
Several techniques are applied to identify candidate components [19] [14]: metrics [13],
clustering algorithms [1], and concept analysis [21][33].



5

Once the analysis is done, code transformations are necessary. In the context of object-
oriented programming, behaviour preserving code transformations are known as refactor-
ings [28][30]. The Refactoring Browser is the best known tool currently available [30], but
can only be applied to Smalltalk.

Compositional Infrastructure

Composition infrastructure is concerned first of all with how to specify compositions of
components, and second with how to effect component interconnections at run-time. The
first subject is current addressed by (i) advances in programming languages, (ii) scripting
languages, (iii) graphical “builders” and 4GL environments. The second issue is largely ad-
dressed by so-called middleware platforms.

Purely functional programming languages have always been good at expressing (func-
tional) composition, but do not explicitly address issues of concurrency and distribution
which are critical for real component-based systems. Recently there has been some investi-
gation into using functional languages to compose components [18].

C++ template meta-programming has become extremely popular in specialized domains
where compile-time composition of software components is required to achieve adequate
performance. In this approach, compile-time polymorphism is favoured over run-time poly-
morphism, but all polymorphism is statically resolved by means of compile-time reflection
[8]. Since C++ templates are untyped, all type-checking is performed after composition is
completed.

One of the key difficulties in run-time component composition is that not all interfaces
can be known statically. Java solved this problem by providing a so-called “reflection”
package (technically this is introspection, since Java can only inspect the class of an object,
not change it at run-time).

Conventional programming languages typically provide no special mechanisms to sup-
port component composition. Instead, so-called scripting languages have come in vogue,
which allow programmers to compose applications with high-level “scripts” which direct
and coordinate components typically written in a conventional programming language.
Languages like Visual Basic [11][26], Perl [36], TCL [29] and Python [23] have become
very popular in recent years, especially in domains like internet programming, where appli-
cations are rapidly developed and evolved. Each of these languages is typically well suited
for scripting some particular domain (Perl is good at text manipulation, TCL is good at GUI
building), and not so good at others, thus leading to a proliferation of specialized scripting
languages.

Similarly, graphical application builders and 4GL environments [22] are typically highly
optimized for certain tasks, such as GUI construction or development of form-based data-
base applications, but cannot be adapted to support graphical composition in other domains.

Run-time support for software composition is generally limited to middleware systems
like CORBA [2][27] and COM [17][31], which provide mechanisms to lookup components
and services, some degree of service negotiation, communication between distributed com-
ponents and their clients, and marshalling of communicated values (if necessary). Compo-
nents that are to be made available through such middleware systems must publish their
interfaces with a so-called Interface Definition Language, or IDL. Such interfaces are limit-
ed to expresses service signatures — non-functional properties, dependencies, contracts,
constraints and protocols cannot be expressed [12], but they are critical in order to avoid
compositional mismatch [35]. In COM, for example, non-functional properties are specified
at the object level, but not in the interfaces. Similarly, MTS (the Microsoft Transaction
Server, now part of COM+) [11], provides transaction and security services for run-time
components, but the service guarantees cannot be specified at the interface level.



6

[1] Nicolas Anquetil and Timothy C. Lethbridge, “Experiments with Clustering as a Software Remodular-
ization Method,” WCRE’99 (Sixth Working Conference on Reverse Engineering), 1999, pp. 235-256. 

[2] Ron Ben-Natan, Corba, McGraw-Hill, 1995. 
[3] Grady Booch , James Rumbaugh and Ivar Jacobson, The Unified Modeling Language User Guide, Ad-

dison-Wesley, 1998, ISBN: 0-210-57168-4. 
[4] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen (eds), Extensible Markup Language (XML) 1.0, W3C

Recommendation, http://www.w3.org/TR/1998/REC-xml-19980210, Feb 10, 1998.
[5] Dan Connolly, Extensible Markup Language (XML), http://www.w3.org/XML/, website, 1997-2000.
[6] Michael Brodie and Michael Stonebraker, Migrating Legacy Systems: Gateways, Interfaces and the In-

cremental Approach, Morgan Kaufman, 1995. 
[7] R. Clayton , S. Rugaber and L. Wills, “Incremental Migration Strategies: Data Flow Analysis for

Wrapping,” Proceedings of WCRE’98, IEEE Computer Society, 1998, pp. 69-79, ISBN: 0-8186-89-
67-6. 

[8] Krzysztof Czarnecki, Ulrich W. Eisenecker, “Components and Generative Programming”, ESEC /
SIGSOFT FSE, 1999, pp 2-19.

[9] P. Devanbu, R.J. Brachman, P.G. Selfridge and B.W. Ballard, "LaSSIE: A Knowledge-Based Software
Information System", Communications of the ACM 34, 5, pp. 34-49, 1991

[10] Bruce Powel Douglass, Real-Time UML Second Edition, Addison-Wesley, 1999. 
[11] Guy Eddon and Henry Eddon, Inside COM+, Base Services, Microsoft Press, 1999.
[12] David Garlan, Robert Allen and John Ockerbloom, “Architectural Mismatch: Why Reuse Is So Hard,”

IEEE Software, vol. 12, no. 6, Nov 1995, pp. 17-26. 
[13] Jean-Francois Girard and Rainer Koschke, “A Metric-based Approach to Detect Abstract Data Types

and Abstract State Encapsulation,” Conference on Automated Sotfware Engineering, 1997. 
[14] Jean-Francois Girard and Rainer Koschke, “A Comparison of Abstract Data Type and Object Detec-

tion Techniques,” Science of Computer Programming Journal, Elsevier Science Publisher, 1999.
[15] Richard Helm, Ian M. Holland and Dipayan Gangopadhyay, “Contracts: Specifying Behavioural Com-

positions in Object-Oriented Systems,” Proceedings OOPSLA/ECOOP’90, ACM SIGPLAN Notices,
vol. 25, no. 10, Oct. 1990, pp. 169-180. 

[16] S. Henninger, "An Evolutionary Approach to Constructing Effective Software Reuse Repositories",
ACM Transactions on Software Engineering and Methodology 6, 2, pp. 111-140, 1997

[17] Inprise Corporation, Inside COM+, C++ Builder 4 Developer's Guide, 1999
[18] Simon Peyton Jones, Erik Meijer and Daan Leijen, “Scripting COM components in Haskell,” Fifth In-

ternational Conference on Software Reuse, Victoria, British Columbia, June 1998. 
[19] Rainer Koschke, “An Incremental Semi-Automatic Method for Component Recovery,” WCRE’99

(Sixth Working Conference on Reverse Engineering), 1999, pp. 256-267. 
[20] John Lamping, “Typing the Specialization Interface,” Proceedings OOPSLA ’93, ACM SIGPLAN No-

tices, vol. 28, no. 10, Oct. 1993, pp. 201-214. 
[21] Christian Lindig and Gregor Snelting, “Assessing Modular Structure of Legacy Code based on Mathe-

matical Concept Analysis,” Proceegins of ICSE’97, 1997. 
[22] Ray Lischner, Secrets of Delphi 2, Waite Group Press, 1996. 
[23] Mark Lutz, Programming Python, O’Reilly, 1996. 
[24] Bertrand Meyer, “Applying Design by Contract,” IEEE Computer (Special Issue on Inheritance &

Classification), vol. 25, no. 10, Oct. 1992, pp. 40-52. 
[25] A. Michail and D. Notkin, "Assessing Software Libraries by Browsing Similar Classes, Functions and

Relationships", In Proceedings of the 21st ICSE, (Los Angeles, CA), pp. 463-472, 1999
[26] Microsoft Corporation, Visual Basic Programmierhandbuch, 1997
[27] Object Management Group, The Common Object Request Broker: Architecture and Specification, July

1996
[28] William F. Opdyke, Refactoring Object-Oriented Frameworks, University of Illinois, 1992, Ph.D.

Thesis. 
[29] John K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, 1994. 
[30] Don Roberts, John Brant and Ralph E. Johnson, “A Refactoring Tool for Smalltalk,” Theory and Prac-

tice of Object Systems (TAPOS), vol. 3, no. 4, John Wiley & Sons, 1997, pp. 253-263. 
[31] Dale Rogerson, Inside COM: Microsoft’s Component Object Model, Microsoft Press, 1997. 
[32] Mary Shaw and David Garlan, Software Architecture: Perspectives on an Emerging Discipline, Pren-

tice-Hall, 1996. 
[33] Michael Siff and Thomas Reps, “Identifying Modules Via Concept Analysis,” Proceedings of Interna-

tional Conference on Software Maintenance, 1997. 



7

[34] Patrick Steyaert, Carine Lucas, Kim Mens and Theo D’Hondt, “Reuse Contracts: Managing the Evolu-
tion of Reusable Assets,” Proceedings of OOPSLA ’96 Conference, ACM Press, 1996, pp. 268-285. 

[35] Clemens A. Szyperski, Component Software, Addison-Wesley, 1998. 
[36] Larry Wall and Randal L. Schwartz, Programming Perl, O’Reilly & Associates, Inc., 1990. 
[37] A.M. Zaremski and J.M. Wing, "Specification Matching of Software Components", ACM Transaction

on Software Engineering and Methodology 6, 4, pp. 333-369, 1997

2.2.2. Contributions to the field by the applicants

We have carried out related work both within the ongoing NFS project, “A framework ap-
proach to composing heterogeneous applications” (NFS 20-53711.98), and within FA-
MOOS, “A Framework-based Approach for Mastering Object-Oriented Software
Evolution” (ESPRIT Project 21975, BBW Nr. 96.0015). 

Component Meta Model 

Within the NFS project we have carried out extensive modelling experiments to develop a
formal semantics of software components and composition mechanisms. This work has led
to (i) the πL Calculus, a process calculus foundation for software components in which con-
current agents communicate forms, or extensible records instead of tuples [61][62][74], (ii)
an approach to modelling objects and components based on explicit meta-objects encoded
in πL [60][76][72][73].

Within FAMOOS we have carried out a detailed analysis of UML and determined that it
was not adequate for supporting reengineering operations [45]. As a consequence we de-
fined a language independent meta model named Famix [47] and a corresponding inter-
change format [66]. Famix is currently the foundation of the Moose reengineering
environment [53], which in turn is the basis for the Moose Refactoring Engine, CodeCrawl-
er [44][59][49], and Moose/Metrics [43] and [48].

Using Moose, we have evaluated how size metrics can support the understanding of ap-
plication evolution by means of recovering refactorings [48] and how size metrics can as-
sess the quality of software entities [43]. With CodeCrawler, we have shown how the
combination of simple metrics and simple graphs support the assessment of object-oriented
applications [44][49][52][59]. We have also used the Famix model to evaluate the impact of
changes between software versions on the technical documentation [55].

Component Migration 

Within FAMOOS we have worked on the reengineering of object-oriented legacy applica-
tions. We have particularly focused on the first necessary steps of component migration:
identification of duplicated code [50], language independent code refactorings, abstraction
identification, supporting iterative model extraction, and architectural extraction
[67][68][69][71][79]. We have also developed the following tools: DupLoc, a tool for de-
tecting code duplication in a language independent manner [50]; Gaudi, an environment for
supporting iterative extraction of architectural view based on logic programming [70]; and
the Moose/Refactoring Engine, a language-independent refactoring engine.

At the methodological level, we have identified a series of guidelines for developing
component frameworks [41][77], and we are also continuing to analyse the process of reen-
gineering by recording best practice in reverse engineering and reengineering in terms of
patterns [42][46][51]. We have also started to investigate how to support the refactoring
process by means of special “assistants” that suggest transformations to be performed [54].

Compositional Infrastructure

Piccola is an experimental composition language [64] whose semantics is defined by a map-
ping to πL [38][39][63][75]. The current version of Piccola is implemented in Java, and
translates Piccola scripts to πL, which is then executed by a πL interpreter.



8

Piccola can be used to define (i) architectural styles, such as push-flow or pull-flow pipes
and filters, GUI composition, publisher-subscriber composition, and so on, (ii) coordination
abstractions to mediate between concurrent activities, (iii) glue abstractions to bridge com-
positional styles, and (iv) scripts, which specify how external components are plugged to-
gether using composition, coordination and glue abstractions. The current implementation
is performant enough to carry out non-trivial experiments, and we are now exploring some
larger case studies. We expect that the formal foundation of Piccola will allow us to reason
about compositions and their properties (for example, performance costs, or real-time guar-
antees) in a way that is not possible with scripting languages.

Piccola can presently be used only to compose components written in Java or Piccola,
and there is no support yet for distribution using either middleware or coordination media.
We have, however, previously explored the use of scripting languages, particularly Python,
for scripting CORBA components, and for wrapping existing software to export services to
CORBA [57]. We have also experimented with the development of reusable coordination
abstractions for Java [78], form-based coordination media for distributed components [58],
and mobile software components [56]. We expect these earlier experiments to lead to a
more systematic approach to composition of distributed components based on Piccola.

We have also carried out some initial experiments in visualizing and controlling agent
communication within a running Piccola system [40], and we believe these initial ideas can
be elaborated to support run-time monitoring and reconfiguration of component-based soft-
ware systems.

References in bold are provided in the annex to this proposal.

[38] Franz Achermann and Oscar Nierstrasz, “Applications = Components + Scripts — A tour of Pic-
cola,” Software Architectures and Component Technology, Mehmet Aksit (Ed.), Kluwer, 2000,
to appear. 

[39] Franz Achermann, Markus Lumpe, Jean-Guy Schneider and Oscar Nierstrasz, “Piccola - a
Small Composition Language,” Formal Methods for Distributed Processing, an Object Oriented
Approach, Howard Bowman and John Derrick. (Ed.), Cambridge University Press., 2000, to ap-
pear. 

[40] Cristina Gheorghiu Cris, “Visualisierung von pi-Programmen,” Informatikprojekt, University of Bern,
Jan. 99. 

[41] Serge Demeyer, Theo Dirk Meijler, Oscar Nierstrasz and Patrick Steyaert, “Design Guidelines for Tai-
lorable Frameworks,” Communications of the ACM, vol. 40, no. 10, ACM Press, October 1997, pp. 60-
64. 

[42] Serge Demeyer, Matthias Rieger and Sander Tichelaar, Three Reverse Engineering Patterns, April,
1998, Writing Workshop at EuroPLOP’98. 

[43] Serge Demeyer and Stéphane Ducasse, “Metrics, Do They Really Help?,” Proceedings LMO’99 (Lan-
guages et Modèles à Objets), Jacques Malenfant (Ed.), HERMES Science Publications, Paris, 1999,
pp. 69-82. 

[44] Serge Demeyer, Stéphane Ducasse and Michele Lanza, “A Hybrid Reverse Engineering Platform
Combining Metrics and Program Visualization,” WCRE’99 Proceedings (6th Working Confer-
ence on Reverse Engineering), Francoise Balmas, Mike Blaha and Spencer Rugaber (Ed.), IEEE,
October, 1999. 

[45] Serge Demeyer, Stéphane Ducasse and Sander Tichelaar, “Why Unified is not Universal. UML
Shortcomings for Coping with Round-trip Engineering,” Proceedings UML’99 (The Second In-
ternational Conference on The Unified Modeling Language), Bernhard Rumpe (Ed.), LNCS 1723,
Springer-Verlag, Kaiserslautern, Germany, October, 1999. 

[46] Serge Demeyer, Stéphane Ducasse and Sander Tichelaar, “A Pattern Language for Reverse En-
gineering,” Proceedings of the 4th European Conference on Pattern Languages of Programming
and Computing, 1999, Paul Dyson (Ed.), UVK Universitätsverlag Konstanz GmbH, Konstanz,
Germany, July, 1999. 

[47] Serge Demeyer, Sander Tichelaar and Patrick Steyaert, “FAMIX 2.0 - The FAMOOS Information Ex-
change Model,” technical report, University of Berne, August, 1999. 

[48] Serge Demeyer, Stéphane Ducasse and Oscar Nierstrasz, “Finding Refactorings via Change Metrics,”
working paper, April, 1999. 



9

[49] Stéphane Ducasse and Michele Lanza, “Towards a Reverse Engineering Methodology for Object-Ori-
ented Systems,” Techniques et Sciences Informatiques, 2000, Submitted to Techniques et Sciences In-
formatiques, Edition Speciale Reutiliusation. 

[50] Stéphane Ducasse, Matthias Rieger and Serge Demeyer, “A Language Independent Approach
for Detecting Duplicated Code,” Proceedings ICSM’99 (International Conference on Software
Maintenance), Hongji Yang and Lee White (Ed.), IEEE, September, 1999, pp. 109-118. 

[51] Stéphane Ducasse, Tamar Richner and Robb Nebbe, “Type-Check Elimination: Two Object-Oriented
Reengineering Patterns,” WCRE’99 Proceedings (6th Working Conference on Reverse Engineering),
Francoise Balmas, Mike Blaha and Spencer Rugaber (Ed.), IEEE, October, 1999. 

[52] Stéphane Ducasse, Michele Lanza and Serge Demeyer, “A Hybrid Reverse Engineering Approach
Combining Metrics and Program Visualization,” In Object-Oriented Technology (ECOOP'99 Work-
shop Reader), LNCS (Lecture Notes in Computer Science), N 1800, Springer - Verlag, 1999.

[53] Stéphane Ducasse, “The Moose Environment: a First Documentation,” Technical Report, University of
Berne, 1999. 

[54] Stéphane Ducasse, Matthias Rieger and Georges Golomingi, “Tool Support for Refactoring Duplicated
OO Code,” Proceedings of the ECOOP’99 Workshop on Experiences in Object-Oriented Re-Engineer-
ing, Stéphane Ducasse and Oliver Ciupke (Ed.), Forschungszentrum Informatik, Karlsruhe, June 1999,
FZI-Report 2-6-6/99. 

[55] Fredi Frank, “An Associative Documentation Model,” Diploma thesis, University of Bern, October
1999. 

[56] Jürg Gertsch, “Fruitlets - a Kind of Mobile Component,” Diploma thesis, University of Bern, June
1997. 

[57] Michael Held, “Scripting für CORBA,” Diploma thesis, University of Berne, March 1999. 
[58] Daniel Kühni, “APROCO: A Programmable Coordination Medium,” Diploma thesis, University of

Bern, October 1998. 
[59] Michele Lanza, “Combining Metrics and Graphs for Object Oriented Reverse Engineering,” Diploma

thesis, University of Bern, October 1999. 
[60] Markus Lumpe, Jean-Guy Schneider and Oscar Nierstrasz, “Using Metaobjects to Model Concurrent

Objects with PICT,” Proceedings of Languages et Modèles à Objects, Leysin, October 1996, pp. 1-12. 
[61] Markus Lumpe, Jean-Guy Schneider, Oscar Nierstrasz and Franz Achermann, “Towards a formal com-

position language,” Proceedings of ESEC ’97 Workshop on Foundations of Component-Based Sys-
tems, Gary T. Leavens and Murali Sitaraman (Ed.), Zurich, September 1997, pp. 178-187. 

[62] Markus Lumpe, “A Pi-Calculus Based Approach to Software Composition,” Ph.D. thesis, University
of Bern, Institute of Computer Science and Applied Mathematics, January 1999. 

[63] Markus Lumpe, Franz Achermann and Oscar Nierstrasz, “A Formal Language for Composition,”
Foundations of Component Based Systems, Gary Leavens and Murali Sitaraman (Ed.), Cambridge
University Press, 2000, to appear. 

[64] Oscar Nierstrasz and Theo Dirk Meijler, “Requirements for a Composition Language,” Object-Based
Models and Langages for Concurrent Systems, P. Ciancarini, O. Nierstrasz and A. Yonezawa (Ed.),
LNCS 924, Springer-Verlag, 1995, pp. 147-161. 

[65] Oscar Nierstrasz and Laurent Dami, “Component-Oriented Software Technology,” Object-Oriented
Software Composition, O. Nierstrasz and D. Tsichritzis (Ed.), Prentice Hall, 1995, pp. 3-28. 

[66] Oscar Nierstrasz, Sander Tichelaar and Serge Demeyer, “CDIF as the Interchange Format between
Reengineering Tools,” OOPSLA’98 Workshop on Model Engineering, Methods and Tools Integration
with CDIF, October, 1998. 

[67] Tamar Richner and Robb Nebbe, “Analyzing Dependencies to Solve Low-Level Problems,” Object-
Oriented Technology (ECOOP’97 Workshop Reader), Jan Bosch and Stuart Mitchell (Ed.), LNCS
1357, Springer-Verlag, June, 1997, pp. 266-267. 

[68] Tamar Richner, “Describing Framework Architectures: more than Design Patterns,” Proceedings of
the ECOOP ’98 Workshop on Object-Oriented Software Architectures, Jan Bosch, Helene Bachatene,
Görel Hedin and Kai Koskimies (Ed.), Research Report 13/98, University of Karlskrona, July, 1998. 

[69] Tamar Richner, Stéphane Ducasse and Roel Wuyts, “Understanding Object-Oriented Programs with
Declarative Event Analysis,” Object-Oriented Technology (ECOOP’98 Workshop Reader), Serge De-
meyer and Jan Bosch (Ed.), LNCS 1543, Springer-Verlag, July, 1998. 

[70] Tamar Richner and Stéphane Ducasse, “Recovering High-Level Views of Object-Oriented Applica-
tions from Static and Dynamic Information,” Proceedings ICSM’99 (International Conference on Soft-
ware Maintenance), Hongji Yang and Lee White (Ed.), IEEE, September, 1999, pp. 13-22. 

[71] Tamar Richner, “Using Recovered Views to Track Architectural Evolution,” to appear in ECOOP’99
Workshop Reader, Springer-Verlag, June, 1999. 



10
[72] Jean-Guy Schneider and Markus Lumpe, “Modelling Objects in PICT,” Technical Report, no. IAM-
96-004, University of Bern, Institute of Computer Science and Applied Mathematics, January 1996. 

[73] Jean-Guy Schneider and Markus Lumpe, “Synchronizing Concurrent Objects in the Pi-Calculus,” Pro-
ceedings of Langages et Modèles à Objets ’97, Roland Ducournau and Serge Garlatti (Ed.), Hermes,
Roscoff, October 1997, pp. 61-76. 

[74] Jean-Guy Schneider, “Components, Scripts, and Glue: A conceptual framework for software composi-
tion,” Ph.D. thesis, University of Bern, Institute of Computer Science and Applied Mathematics, Octo-
ber 1999. 

[75] Jean-Guy Schneider and Oscar Nierstrasz, “Components, Scripts and Glue,” Software Architec-
tures — Advances and Applications, Leonor Barroca, Jon Hall and Patrick Hall (Ed.), Springer,
1999, pp. 13-25. 

[76] Jean-Guy Schneider and Markus Lumpe, “A Metamodel for Concurrent, Object-based Programming,”
Proceedings of Langages et Modèles à Objets 2000, Christophe Dony (Ed.), Hermes, Montreal, Janu-
ary 2000, to appear. 

[77] Sander Tichelaar, Juan Carlos Cruz and Serge Demeyer, “Design Guidelines for Coordination Compo-
nents,” Proceedings ACM SAC 2000 - Track on Coordination, ACM Press, March, 2000, to appear. 

[78] Sander Tichelaar, “A Coordination Component Framework for Open Distributed Systems,” Master’s
Thesis - Software Composition Group, University of Groningen, NL - University of Berne, CH, May
1997. 

[79] Sander Tichelaar, Stéphane Ducasse and Theo-Dirk Meijler, “Architectural Extraction In Reverse En-
gineering by Prototyping: An experiment,” Proceedings of the ESEC/FSE Workshop on Object-Orient-
ed Re-engineering, Serge Demeyer and Harald Gall (Ed.), Technical University of Vienna, Information
Systems Institute, Distributed Systems Group, September, 1997, Technical Report TUV-1841-97-10. 

2.2.3. Detailed research plan

Component Meta Model 

We propose to develop a component meta model that provides concepts required to support
evolution, focusing on such issues as non-functional requirements and software dependen-
cies. The meta model will allow models of software systems to be specified, analysed and
manipulated.

The meta model will extend FAMIX to address architectural constraints pertinent to com-
ponent systems, and, like FAMIX, will strive for maximal compatibility with UML. We
plan to evaluate how the UML Meta-Object Facility (MOF) can be instantiated to support
the description of components (i.e., from CORBA, EJB, COM+). With the resulting meta
model, we expect to be able to express component requirements, constraints, contracts, and
protocols.

Various tools will also be developed to support querying and analysis.

• The FAMIX meta model will be extended to address architectural constraints, such as
non-functional requirements, service obligations and protocols, architectural style, and
reusability and extensibility contracts.

• A component repository will be developed to store software models and act as a server
for various tools.

• A metrics rendering tool will be developed to analyse and evaluate software systems.
The tool will address issues currently not covered by Codecrawler, such as coupling
and cohesion metrics, and comparisons between successive versions of software sys-
tems.

• An interactive query system will be developed to monitor and evaluate versions of
evolving software systems. Both pre-packaged and ad hoc queries will be supported to
help component developers identify which parts of a system are stabilizing, and which
parts require additional flexibility.



11
Component Migration 

Based on the component meta model, we will develop component migration tools to identi-
fy candidate components, identify and resolve architectural and design drift, and support
transformation to component-based software structures. We will focus on software metrics
and visualization to support analysis, and language-independent refactorings to support
transformation.

Migration of applications towards component architectures requires both an iterative de-
velopment process and suitable tools. We believe such a process can be expressed as a reen-
gineering pattern language. We have already identified a large number of reengineering
patterns that express “best practice” in iterative development of object-oriented systems,
and hope to expand this set to a relatively complete system of patterns (known in the litera-
ture as a “pattern language”) to define a process for migration towards components. 

• Software analysis tools will be developed to detect architectural and design drift by ex-
ploiting static and dynamic information of the software models in the repository. Du-
plicated code is already detected by Duploc. Duplicated functionality may be detected
by similar means, with the help of filtering techniques. Coupling and cohesion metrics
can help to detect architectural drift. Various other metrics can be used to detect viola-
tion of other object-oriented and software engineering principles (such as tight data
coupling, navigational code, or missing polymorphism). We especially plan to address:

— software evolution visualization (multiple versions of the same entity)

— very large scale extension (applications, packages, components)

— very small scale extension (internal structure of classes)

• Migration assistants will be developed that suggest software entities as candidates for
abstraction or “componentization” based on the results of the analysis. These “assist-
ants” will apply simple heuristics documented in the pattern language to suggest plau-
sible refactorings to reduce architectural and design drift. For example, duplicated
code can typically be factored out as hook methods, and poor coupling and cohesion
can often be resolved by similarly simple refactorings. Strongly collaborating entities
identified in dynamic analysis may be candidates for new software components.

• Language independent refactoring tools would automate the tedious task of abstract-
ing, renaming and moving software entities, based on the component meta model, rath-
er than on the concrete meta model of a specific programming language. Many of the
transformations performed by the Refactoring Browser on Smalltalk code, for exam-
ple, can be generalized to work with other object-oriented languages, such as C++ and
Java. 

• A reengineering pattern language will be defined that guides component developers in
(i) reverse engineering, or recovering and understanding software models, (ii) detect-
ing problems of flexibility and architectural drift, (iii) identifying new target software
structures that solve these problems, and (iv) transforming the software to the new
structures. Point (i) is supported by the component meta model and tools. Points (ii),
(iii) and (iv) are further supported by the component migration tools.

Compositional Infrastructure

A component-based software system consists not only of generic software components, but
also some specialized ones, tailored to the task, a set of composition abstractions that medi-
ate the interconnections between components, a configuration which specifies those inter-
connections (and which may evolve at run-time), middleware which mediates between
components on different platforms, and glueware which adapts components and bridges in-



12
terfaces and protocols of different component architectures. The composition language, Pic-
cola, will be extended in various ways to address these concerns.

• A middleware bridge will be developed from Piccola to CORBA/COM+.

• A distributed form space will be developed to allow Piccola agents to coordinate com-
ponents on networked systems.

• Composition abstractions for a variety of component architectures will be developed.
Special attention will be given to compositional reasoning: architectural constraints
that are specified in the component meta model should be guaranteed as a consequence
of how components are configured. For example, deadlock-freeness, real-time service
guarantees, security guarantees, or even maximum transaction cost would be proper-
ties that could be ensured at the level of a component architecture and the composition
abstractions provided.

• A composition monitor will visualize the Piccola agents, channels and forms that real-
ize a composition, and permit users to view and interact with an evolving component
configuration.

2.2.4. Work plan

The activities in this project will be iterative and interleaved. Nevertheless, we expect to
concentrate on the following topics in the first and second year:

First year

Component meta model:

• Extend FAMIX to express architectural constraints

• Implement a repository with XML import and export facilities

• Develop metrics rendering tool for software evolution

Component migration:

• Software analysis for duplicated code and functionality

• Migration assistants for duplicated functionality

• Language-independent refactorings based on Famix

• Reengineering pattern catalogue

Compositional infrastructure:

• Middleware bridge for Piccola

• Distributed form space

• Composition abstractions

Second year

Component meta model:

• Develop query and navigation facilities for component repository

Component migration:

• Software analysis for architectural drift based on metrics suite

• Migration assistants for architectural drift

• Language-specific refactorings for Java, Smalltalk and C++

• Reengineering pattern catalogue refined to a systematic “pattern language”



13
Compositional infrastructure:

• Composition monitor

2.2.5. What is the importance of the proposed work?

There is enormous pressure in industry to move software development towards component-
based platforms in order to be able to respond more quickly to rapidly changing require-
ments. Unfortunately the level of maturity in component technology is quite low, except in
a few domains which have received a lot of attention from vendors (such as those targeted
by 4GL environments). Similarly, component platforms and standards focus more on syn-
tax than semantics, and sidestep many of the more difficult interoperability issues. Finally,
there does not exist to this date a culture of investment in software reengineering as a day-
to-day part of the software process. Industry as a whole is not prepared to migrate existing
software systems to component platforms.

This project proposes to undertake basic research in component migration in an attempt
to address some of these shortcomings. Some of the expected results (mainly the software
analysis tools and the best practice patterns) are expected to be of industrial relevance in the
short term. Other parts of the project (such as component meta model extensions and com-
position infrastructure) are more foundational in nature, and are expected to have industrial
impact only in the very long term.

2.3. International Collaboration

2.3.1. Does this project have an international aspect?

Not formally.

2.3.2. If so, in what form?

We have a collaboration agreement with ABB (Baden and Heidelberg) on the topic of com-
ponent migration, and we expect some crossover of results with this NFS project.

2.3.3. In which countries do the most important partners operate?

ABB is a worldwide conglomerate. We will interact mainly with the research divisions in
Switzerland and Germany.


	2. Scientific part
	2.1. Summary and key-words
	Keywords

	2.2. Research plan
	2.2.1. State of the art and related work
	Component Meta Model
	Component Migration
	Compositional Infrastructure

	2.2.2. Contributions to the field by the applicants
	Component Meta Model
	Component Migration
	Compositional Infrastructure

	2.2.3. Detailed research plan
	Component Meta Model
	Component Migration
	Compositional Infrastructure

	2.2.4. Work plan
	First year
	Component meta model:
	Component migration:
	Compositional infrastructure:
	Second year
	Component meta model:
	Component migration:
	Compositional infrastructure:

	2.2.5. What is the importance of the proposed work?

	2.3. International Collaboration
	2.3.1. Does this project have an international aspect?
	2.3.2. If so, in what form?
	2.3.3. In which countries do the most important partners operate?



