
Intermediate Scientific Report
SNF Project no. 2000-067855.02

“Tools and Techniques for
Decomposing and Composing Software”

November 10, 2003

a) Summary of results

This project addresses the problem of how to organize and structure software systems in such a way
that they can be easily adapted to changing requirements. We focus on (1) tools and techniques for
extracting architectural artifacts,i.e., for decomposingsoftware, and (2) mechanisms and language
features for flexibly constructing software from parts,i.e., for composingsoftware. The key results in
the first year include (1) techniques for extracting behavioural dependencies in legacy software using
Concept Analysis, and for visualizing and understanding run-time structures, and (2) the development
of innovative programming language features for building object-oriented software from fine-grained
units of reuse (traits), for specifying extensions to existing software bases in a local context (Class-
boxes), and specifying applications as compositions of components (Piccola).

This project is carried out under close collaboration withRECAST: Evolution of Object-Oriented
Applications(SNF Project No. 620-066077). Whereas RECAST concentrates more generally on mod-
eling of object-oriented software, program understanding and software evolution, this project focuses
on technical issues related to object-oriented languages and language design.

Results

The results obtained in the first year correspond closely to the project workplan, with a few additions.
First we present results pertaining to program understanding (decomposition), and then we consider
results dealing with language design (composition).

Software Decomposition

Considerable work has been done to extend and refine the MOOSE reengineering platform. MOOSE
is a general-purpose tool for loading, modeling and analyzing models of software systems. Software
systems implemented in different languages can be parsed with a variety of different tools, and loaded
into MOOSE. These models can then stored, queried, analyzed and visualized. MOOSE itself is not a
research result, but it is a key component of our laboratory, since it enables the rapid development of
reverse engineering and reengineering tools needed to carry our research experiments. As such, there
are no publications on MOOSE itself, but rather on the experiments that MOOSE enables.

1



One very successful research track has been the application of Formal Concept Analysis (FCA),
a technique for detecting recurring patterns (i.e., “concepts”) in sets of elements and their proper-
ties, to models of software. The MOOSE platform has been used here to carry out experiments
in which FCA was applied to detect recurring behavioural patterns in object-oriented class hierar-
chies [Aré03a] [Buc03]. Further experiments are in progress, and further publications are in press
[ADN03b] [ADN03a]. FCA has also been applied to the understanding of the inner workings of
classes [Aré03b]. This work has been previously reported in the context of the RECAST project
(No. 620-066077).

A static analysis of software source code will not necessary reveal the run-time architectural arti-
facts. We have applied and extended the techniques of lightweight visualization developed in Lanza’s
PhD thesis [Lan03] to the visualization of run-time structures [BDL03]. Further publications are also
pending. This work is described in greater detail in a Master’s thesis carried out in collaboration with
the I3S Laboratory of the University of Nice at Sophia-Antipolis [Ber03].

Visualization and querying of software models have also been combined to identify meaningful
groups of software artifacts [Tal03]. The results presented in this master’s thesis are now integrated in
CodeCrawler, the software visualisation platform that is based on top of MOOSE [Lan03].

As planned, the logic programming framework SOUL has been integrated into MOOSE. This will
enable more advanced forms of querying for MOOSE models, which is needed for further experi-
ments related to architectural extraction and validation of architectural constraints [Aeb03]. SOUL
has been used to represent and codify software architecture. SOUL acts as a foundation for logic
meta programming, where logic programming is used to reasoning on software [MWVM03]. We are
currently using SOUL to express advanced behavioral tests over the trace of programs and further
publications will follow.

Software Composition

We have also achieved several results in the area of constructing flexible software systems from com-
ponents. This work includes both refinements of older, more mature research tracks (Piccola, Open-
CoLaS), and new, innovative directors (Traits, Classboxes).

Piccola is an experimental language for composing applications from software components, and
JPiccola is the Java-based implementation of the language. The language definition and its semantics
are stable and mature, and a publication is pending [NA03a]. A JPiccola manual and tutorial are now
available, and are included in the web download1 [NAK03]. Newer results include the development
of an experimental type system for Piccola [Nie03], the definition of compositional styles based on
this type system [Kne03], and a technique for converting white box, inheritance-based software reuse
to black-box, component-based reuse by means of run-time creation of classes [Sch03].

OpenCoLaS [Cru02] is a framework for evaluating coordination models, a complementary ap-
proach to composing components in a distributed environment.

We have also started a series of experiments in new directions.
Traits offer a fine-grained model of software reuse that allow duplicated code to be cleanly refac-

tored without the need for complex models of multiple inheritance [SDNB03]. A first formalization of
the traits model has been elaborated [SND+02], and a detailed description has been submitted for pub-
lication. First experiments applying traits to refactoring a non-trivial class hierarchy have been carried
out [BSD02] and a full paper will appear shortly [BSD03]. A paper on the interactive environment
(the traits browser) is in the publication pipeline [SB03].

1www.iam.unibe.ch/ ∼scg/Research/Piccola

2

http://www.iam.unibe.ch/~scg/Research/Piccola/


Classboxes offer a coarse-grained model of software reuse offering local class extensions
[BDW03b] [BDW03a]. A Classbox is a simple module system in which sets of classes may be
imported from or exported to other Classboxes. Classes may be locally extended without impacting
other Classboxes. Classboxes offer an elegant way to uniformly extend a set of cooperating classes –
a problem that cannot be solved by subclassing. A formalization of the Classbox model is underway.

Surfacesare a further exploration of the theme of feature visibility in object-oriented languages
[DSW03].

OOPAL is a model that unifies array programming and object-oriented language features [DM03]
[MD03]. F-script, the language that implements the OOPAL model, is freely available and is attracting
increasing exposure as it is integrated with the Mac OS X operating system.

Staff contributions

• Gabiela Aŕevalo is carrying out the experiments with Formal Concept Analysis. She has de-
veloped a tool, ConAn, which applies FCA algorithms to MOOSE models [Aré03a] [Aré03b]
[ADN03b].

• Alexandre Bergel has developed the Classbox model and its implementation [BDW03b]
[BDW03a].

• Laura Ponisio is working on a technique to modularize software based on existing dependencies
between artifacts. She has developed a tool, Baobab, which analyzes coupling and cohesion
within MOOSE models. The detected dependencies will be used to improve the clustering of
artifacts within modules. This work is relatively new, and no publication are available yet.

• Nathanael Schaerli has developed the traits model and its implementation [BSD02] [BSD03]
[SND+02] [SDNB03] [SB03].

Changes to the research plan

No major changes have occurred in the research plan.

Important events

• The PhD thesis of Michele Lanza [Lan03] has been awarded the prestigious Denert-Stiftung
Software Engineering prize for 2003. (See:www.denert-stiftung.de )

• Oscar Nierstrasz was an Invited Speaker at FMCO 2002 (First International Symposium on
Formal Methods for Components and Objects –Leiden, The Netherlands, Nov. 5-8, 2002)

• We have presented papers in a series of high-profile conferences and workshops: ECOOP 2003
(European Conference on Object-Oriented Programming), JMLC 2003 (Joint Modular Lan-
guages Conference), Coordination 2003, LMO 2003 (Langages et Modèlesà Objets).

• We have organized two workshops at ECOOP 2003:the 4th International Workshop on Object-
Oriented Reengineering, andObject-Oriented Language Engineering for the Post-Java Era

• We have organized a workshop on declarative Meta Programming (Edinburgh, 2003) [MWVM03].

3

http://www.denert-stiftung.de/


b) Publications

The following publications are annexed to this report. They are all available electronically as PDF
files at the following url:

www.iam.unibe.ch/ ∼scg/cgi-bin/oobib.cgi?snf03

References

[Ar é03a] Gabriela Aŕevalo. Understanding behavioral dependencies in class hierarchies using concept
analysis. InProceedings of LMO 2003: Langages et Modelesà Objets, pages 47–59. Hermes,
Paris, January 2003.

[BDL03] Roland Bertuli, St́ephane Ducasse, and Michele Lanza. Run-time information visualization for
understanding object-oriented systems. InProceedings of WOOR 2003 (4th International Work-
shop on Object-Oriented Reengineering), pages 10–19. University of Antwerp, 2003.

[BDW03a] Alexandre Bergel, Stéphane Ducasse, and Roel Wuyts. The classbox module system. InProceed-
ings of the ECOOP ’03 Workshop on Object-oriented Language Engineering for the Post-Java
Era, July 2003.

[BDW03b] Alexandre Bergel, Stéphane Ducasse, and Roel Wuyts. Classboxes: A minimal module model
supporting local rebinding. InProceedings of the Joint Modular Languages Conference 2003,
volume 2789 ofLNCS, pages 122–131. Springer-Verlag, 2003.

[BSD02] Andrew Black, Nathanael Schärli, and St́ephane Ducasse. Applying traits to the Smalltalk collec-
tion hierarchy. Technical Report IAM-02-007, Institut für Informatik, Universiẗat Bern, Switzer-
land, November 2002. Also available as Technical Report CSE-02-014, OGI School of Science
& Engineering, Beaverton, Oregon, USA.

[Cru02] Juan-Carlos Cruz. OpenCoLaS – a coordination framework for CoLaS dialects. InProceedings
of COORDINATION 2002, York, United Kingdom, 2002.

[DM03] St́ephane Ducasse and Philippe Mougin. Power to collections: Generalizing polymorphism by
unifying array programming and object-oriented programming. InProceedings of the ECOOP
’03 Workshop on Object-oriented Language Engineering for the Post-Java Era, July 2003.

[DSW03] St́ephane Ducasse, Nathanael Schaerli, and Roel Wuyts. Open surfaces for controlled visibility.
In Proceedings of the ECOOP ’03 Workshop on Object-oriented Language Engineering for the
Post-Java Era, July 2003.

[MWVM03] Tom Mens, Roel Wuyts, Kris De Volder, and Kim Mens. Workshop proceedings — declara-
tive meta programming to support software development.ACM SIGSOFT Software Engineering
Notes, 28(1), January 2003.

[NAK03] Oscar Nierstrasz, Franz Achermann, and Stefan Kneubuehl. A guide to JPiccola. Technical
Report IAM-03-003, Institut f̈ur Informatik, Universiẗat Bern, Switzerland, June 2003.

[Nie03] Oscar Nierstrasz. Contractual types. Technical Report IAM-03-004, Institut für Informatik,
Universiẗat Bern, Switzerland, 2003.

[SDNB03] Nathanael Scḧarli, St́ephane Ducasse, Oscar Nierstrasz, and Andrew Black. Traits: Composable
units of behavior. InProceedings ECOOP 2003, LNCS, pages 248–274. Springer Verlag, July
2003.

[SND+02] Nathanael Scḧarli, Oscar Nierstrasz, Stéphane Ducasse, Roel Wuyts, and Andrew Black. Traits:
The formal model. Technical Report IAM-02-006, Institut für Informatik, Universiẗat Bern,
Switzerland, November 2002. Also available as Technical Report CSE-02-013, OGI School
of Science & Engineering, Beaverton, Oregon, USA.

4

http://www.iam.unibe.ch/~scg/cgi-bin/oobib.cgi?snf03


Theses

The following Masters’ and PhD theses arenot included with this report, but are available at the
following url:

www.iam.unibe.ch/ ∼scg/cgi-bin/oobib.cgi?snf03

References

[Aeb03] Tobias Aebi. Extracting architectural information using different levels of collaboration. Diploma
thesis, University of Bern, September 2003.

[Ber03] Roland Bertuli. Compŕehension de systemes orientés-objet par l’utilisation d’informations dy-
namiques condensées. Master’s thesis,École Suṕerieure en Science Informatiques, Sophia-Antipolis,
France, 2003.

[Buc03] Frank Buchli. Detecting software patterns using formal concept analysis. Diploma thesis, University
of Bern, September 2003.

[Kne03] Stefan Kneubuehl. Typeful compositional styles. Diploma thesis, University of Bern, April 2003.

[Lan03] Michele Lanza.Object-Oriented Reverse Engineering — Coarse-grained, Fine-grained, and Evolu-
tionary Software Visualization. PhD thesis, University of Berne, May 2003.

[Sch03] Andreas Schlapbach. Enabling white-box reuse in a pure composition language. Diploma thesis,
University of Bern, January 2003.

[Tal03] Daniele Talerico. Grouping in object-oriented reverse engineering. Diploma thesis, University of
Bern, June 2003.

RECAST publications

The following papers have been published in the context of the RECAST project, and arenot included
with this report. They have been previously submitted with the intermediate report for RECAST.
Electronic versions are available at:

www.iam.unibe.ch/ ∼scg/cgi-bin/oobib.cgi?recast03

References

[Ar é03b] Gabriela Aŕevalo. X-Ray views on a class using concept analysis. InProceedings of WOOR 2003 (4th
International Workshop on Object-Oriented Reengineering), pages 76–80. University of Antwerp,
July 2003.

[Lan03b] Michele Lanza. Codecrawler — lessons learned in building a software visualization tool. InPro-
ceedings of CSMR 2003, pages 409–418. IEEE Press, 2003.

5

http://www.iam.unibe.ch/~scg/cgi-bin/oobib.cgi?snf03
http://www.iam.unibe.ch/~scg/cgi-bin/oobib.cgi?recast03


c) Publications in press

The following papers have been accepted for publication, and will be included in the final report for
this project.

www.iam.unibe.ch/ ∼scg/cgi-bin/oobib.cgi?snf04

References

[ADN03a] Gabriela Aŕevalo, St́ephane Ducasse, and Oscar Nierstrasz. Understanding classes using X-Ray
views. In Proceedings of 2nd International Workshop on MASPEGHI 2003 (ASE 2003), pages
9–18. CRIM - University of Montreal (Canada), October 2003.

[ADN03b] Gabriela Aŕevalo, St́ephane Ducasse, and Oscar Nierstrasz. X-Ray views: Understanding the in-
ternals of classes. InProceedings of ASE 2003, pages 267–270. IEEE Computer Society, October
2003.

[BSD03] Andrew P. Black, Nathanael Schärli, and St́ephane Ducasse. Applying traits to the Smalltalk col-
lection hierarchy. InProceedings OOPSLA 2003, October 2003. To appear.

[MD03] Philippe Mougin and Stéphane Ducasse. OOPAL: Integrating array programming in object-oriented
programming. InProceedings OOPSLA 2003, October 2003.

[NA03a] Oscar Nierstrasz and Franz Achermann. A calculus for modeling software components. InFMCO
2002 Proceedings, LNCS. Springer-Verlag, 2003. To appear.

[NA03b] Oscar Nierstrasz and Franz Achermann. Separating concerns with first-class namespaces. In Tzilla
Elrad, Siob́an Clarke, Mehmet Aksit, and Robert Filman, editors,Aspect-Oriented Software Devel-
opment. Addison-Wesley, 2003. To appear.

[SB03] Nathanael Scḧarli and Andrew P. Black. A browser for incremental programming.Computer
Languages, Systems and Structures, 2003. (To appear, special issue on Smalltalk).

6

http://www.iam.unibe.ch/~scg/cgi-bin/oobib.cgi?snf04

