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a) Summary of results

This project addresses the problem of how to organize and structure software systems in such a way
that they can be easily adapted to changing requirements. We focus on (1) tools and techniques for
extracting architectural artifacts,i.e., for decomposingsoftware, and (2) mechanisms and language
features for flexibly constructing software from parts,i.e., for composingsoftware. The key results in
the first year include (1) techniques for extracting behavioural dependencies in legacy software using
Concept Analysis, and for visualizing and understanding run-time structures, and (2) the development
of innovative programming language features for building object-oriented software from fine-grained
units of reuse (traits), for specifying extensions to existing software bases in a local context (Class-
boxes), and specifying applications as compositions of components (Piccola).

This project is carried out under close collaboration withRECAST: Evolution of Object-Oriented
Applications(SNF Project No. 620-066077). Whereas RECAST concentrates more generally on mod-
eling of object-oriented software, program understanding and software evolution, this project focuses
on technical issues related to object-oriented languages and language design.

Results

The results obtained in the first year correspond closely to the project workplan, with a few additions.
First we present results pertaining to program understanding (decomposition), and then we consider
results dealing with language design (composition).

Software Decomposition

Considerable work has been done to extend and refine the MOOSE reengineering platform. MOOSE
is a general-purpose tool for loading, modeling and analyzing models of software systems. Software
systems implemented in different languages can be parsed with a variety of different tools, and loaded
into MOOSE. These models can then stored, queried, analyzed and visualized. MOOSE itself is not a
research result, but it is a key component of our laboratory, since it enables the rapid development of
reverse engineering and reengineering tools needed to carry our research experiments. As such, there
are no publications on MOOSE itself, but rather on the experiments that MOOSE enables.
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One very successful research track has been the application of Formal Concept Analysis (FCA),
a technique for detecting recurring patterns (i.e., “concepts”) in sets of elements and their proper-
ties, to models of software. The MOOSE platform has been used here to carry out experiments
in which FCA was applied to detect recurring behavioural patterns in object-oriented class hierar-
chies [Aré03a] [Buc03]. Further experiments are in progress, and further publications are in press
[ADN03b] [ADN03a]. FCA has also been applied to the understanding of the inner workings of
classes [Aré03b]. This work has been previously reported in the context of the RECAST project
(No. 620-066077).

A static analysis of software source code will not necessary reveal the run-time architectural arti-
facts. We have applied and extended the techniques of lightweight visualization developed in Lanza’s
PhD thesis [Lan03] to the visualization of run-time structures [BDL03]. Further publications are also
pending. This work is described in greater detail in a Master’s thesis carried out in collaboration with
the I3S Laboratory of the University of Nice at Sophia-Antipolis [Ber03].

Visualization and querying of software models have also been combined to identify meaningful
groups of software artifacts [Tal03]. The results presented in this master’s thesis are now integrated in
CodeCrawler, the software visualisation platform that is based on top of MOOSE [Lan03].

As planned, the logic programming framework SOUL has been integrated into MOOSE. This will
enable more advanced forms of querying for MOOSE models, which is needed for further experi-
ments related to architectural extraction and validation of architectural constraints [Aeb03]. SOUL
has been used to represent and codify software architecture. SOUL acts as a foundation for logic
meta programming, where logic programming is used to reasoning on software [MWVM03]. We are
currently using SOUL to express advanced behavioral tests over the trace of programs and further
publications will follow.

Software Composition

We have also achieved several results in the area of constructing flexible software systems from com-
ponents. This work includes both refinements of older, more mature research tracks (Piccola, Open-
CoLaS), and new, innovative directors (Traits, Classboxes).

Piccola is an experimental language for composing applications from software components, and
JPiccola is the Java-based implementation of the language. The language definition and its semantics
are stable and mature, and a publication is pending [NA03a]. A JPiccola manual and tutorial are now
available, and are included in the web download1 [NAK03]. Newer results include the development
of an experimental type system for Piccola [Nie03], the definition of compositional styles based on
this type system [Kne03], and a technique for converting white box, inheritance-based software reuse
to black-box, component-based reuse by means of run-time creation of classes [Sch03].

OpenCoLaS [Cru02] is a framework for evaluating coordination models, a complementary ap-
proach to composing components in a distributed environment.

We have also started a series of experiments in new directions.
Traits offer a fine-grained model of software reuse that allow duplicated code to be cleanly refac-

tored without the need for complex models of multiple inheritance [SDNB03]. A first formalization of
the traits model has been elaborated [SND+02], and a detailed description has been submitted for pub-
lication. First experiments applying traits to refactoring a non-trivial class hierarchy have been carried
out [BSD02] and a full paper will appear shortly [BSD03]. A paper on the interactive environment
(the traits browser) is in the publication pipeline [SB03].

1www.iam.unibe.ch/ ∼scg/Research/Piccola
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Classboxes offer a coarse-grained model of software reuse offering local class extensions
[BDW03b] [BDW03a]. A Classbox is a simple module system in which sets of classes may be
imported from or exported to other Classboxes. Classes may be locally extended without impacting
other Classboxes. Classboxes offer an elegant way to uniformly extend a set of cooperating classes –
a problem that cannot be solved by subclassing. A formalization of the Classbox model is underway.

Surfacesare a further exploration of the theme of feature visibility in object-oriented languages
[DSW03].

OOPAL is a model that unifies array programming and object-oriented language features [DM03]
[MD03]. F-script, the language that implements the OOPAL model, is freely available and is attracting
increasing exposure as it is integrated with the Mac OS X operating system.

Staff contributions

• Gabiela Aŕevalo is carrying out the experiments with Formal Concept Analysis. She has de-
veloped a tool, ConAn, which applies FCA algorithms to MOOSE models [Aré03a] [Aré03b]
[ADN03b].

• Alexandre Bergel has developed the Classbox model and its implementation [BDW03b]
[BDW03a].

• Laura Ponisio is working on a technique to modularize software based on existing dependencies
between artifacts. She has developed a tool, Baobab, which analyzes coupling and cohesion
within MOOSE models. The detected dependencies will be used to improve the clustering of
artifacts within modules. This work is relatively new, and no publication are available yet.

• Nathanael Schaerli has developed the traits model and its implementation [BSD02] [BSD03]
[SND+02] [SDNB03] [SB03].

Changes to the research plan

No major changes have occurred in the research plan.

Important events

• The PhD thesis of Michele Lanza [Lan03] has been awarded the prestigious Denert-Stiftung
Software Engineering prize for 2003. (See:www.denert-stiftung.de )

• Oscar Nierstrasz was an Invited Speaker at FMCO 2002 (First International Symposium on
Formal Methods for Components and Objects –Leiden, The Netherlands, Nov. 5-8, 2002)

• We have presented papers in a series of high-profile conferences and workshops: ECOOP 2003
(European Conference on Object-Oriented Programming), JMLC 2003 (Joint Modular Lan-
guages Conference), Coordination 2003, LMO 2003 (Langages et Modèlesà Objets).

• We have organized two workshops at ECOOP 2003:the 4th International Workshop on Object-
Oriented Reengineering, andObject-Oriented Language Engineering for the Post-Java Era

• We have organized a workshop on declarative Meta Programming (Edinburgh, 2003) [MWVM03].
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b) Publications

The following publications are annexed to this report. They are all available electronically as PDF
files at the following url:

www.iam.unibe.ch/ ∼scg/cgi-bin/oobib.cgi?snf03
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[SDNB03] Nathanael Scḧarli, St́ephane Ducasse, Oscar Nierstrasz, and Andrew Black. Traits: Composable
units of behavior. InProceedings ECOOP 2003, LNCS, pages 248–274. Springer Verlag, July
2003.
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Theses

The following Masters’ and PhD theses arenot included with this report, but are available at the
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namiques condensées. Master’s thesis,École Suṕerieure en Science Informatiques, Sophia-Antipolis,
France, 2003.

[Buc03] Frank Buchli. Detecting software patterns using formal concept analysis. Diploma thesis, University
of Bern, September 2003.

[Kne03] Stefan Kneubuehl. Typeful compositional styles. Diploma thesis, University of Bern, April 2003.

[Lan03] Michele Lanza.Object-Oriented Reverse Engineering — Coarse-grained, Fine-grained, and Evolu-
tionary Software Visualization. PhD thesis, University of Berne, May 2003.

[Sch03] Andreas Schlapbach. Enabling white-box reuse in a pure composition language. Diploma thesis,
University of Bern, January 2003.

[Tal03] Daniele Talerico. Grouping in object-oriented reverse engineering. Diploma thesis, University of
Bern, June 2003.

RECAST publications

The following papers have been published in the context of the RECAST project, and arenot included
with this report. They have been previously submitted with the intermediate report for RECAST.
Electronic versions are available at:

www.iam.unibe.ch/ ∼scg/cgi-bin/oobib.cgi?recast03

References
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c) Publications in press

The following papers have been accepted for publication, and will be included in the final report for
this project.
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