
Proposal form

Project Funding : individual projects (Divisions I-III)
Deadlines : March 1 and October 1

Part 2 : Scientific Information

Main applicant: Nierstrasz, Oscar
Project title: Tools and Techniques for Decomposing and Composing Software

Contents

1 Summary 15

2 Research plan 16

2.1 State of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Research fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Detailed Research Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Timetable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Significance of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

14



1 SUMMARY 15

1 Summary

Despite advances in programming languages, software development environments, documentation standards, and
software processes, software continues to be hard to develop, hard to understand, and hard to maintain. In partic-
ular, no matter how much effort is put into developing clean, modern, software systems, it seems that successful
software inevitably drifts towards increasingly complex and hard-to-maintain “legacy systems.”

This project proposes to develop new tools and techniques fordecomposingsoftware systems, that is, for
breaking down and understanding complex software, and forcomposingsoftware systems, that is, structuring
software so that it becomes easier to maintain, reconfigure, and extend. The proposed work builds on our previous
work on the MOOSE reverse engineering environment and the Piccola composition language.

Decomposition: We propose to develop techniques for extracting architectural artifacts from software by (i) ap-
plying rule-based reasoning to analyze the software information space, and (ii) providing mechanisms to
visualize, reason about and interact with the run-time structures.

• Code Analysis:We propose to extend MOOSE with a rule-based interface based on the SOUL logic
programming framework. This will allow us to more easily perform various analyses on software sys-
tems, such as type reconstruction, evaluation of constraints, and recovery of architectural artifacts. We
also propose to develop tools and techniques to detect potential software components, and to classify
and group software elements with a view towards component-based reengineering.

• Run-time Interaction:We have previously focused on program understanding by means of visualizing
simple metrics extracted from complex software systems. We now propose to extend this approach to
(i) visualizing artifacts of a running systems, and (ii) interacting with a running system to understand
the dynamic architecture.

Composition: We further propose to develop techniques to support high-level composition of applications from
software components.

• Composition Languages:We plan to develop a successor to Piccola that simplifies the design of com-
positional styles by making components first-class entities. Reasoning about composition will be sup-
ported by a type system that expresses constraints over interfaces of components and the scripts that
configure them

• Compositional Styles:Existing component models are mostly general-purpose and heavyweight. We
propose to develop various lightweight domain-specific component models, orcompositional styles
that reflect the compositional characteristics and constraints of each domain.

• Composition Mechanisms:Existing programming languages are better suited for “wiring” components
than forplugging them together. We propose to experiment with higher-level compositional mecha-
nisms for existing programming languages that explicitly support various notion of components.

Keywords: Reverse engineering, program understanding, program visualization, software architecture, scripting,
component-based software development.



2 RESEARCH PLAN 16

2 Research plan

2.1 State of Research

The proposed research spans several fields of computer science. We motivate our work in terms of the chronic
problems ofsoftware evolution. The tools and techniques we investigate in this project are related toprogram
understanding and visualization, software architecture, andscripting.

Background: software evolution

Even successful projects are facing problems of evolution orsoftware aging[43, 10]. The persistent character
of the problems in software development led Pressman to coin the phrasechronic afflictionas a more apt way to
describe the “software crisis” [46]. Most of the effort spent in developing and maintaining a system is devoted to
supporting its evolution [52].

Software maintenanceis the name given to the process of changing a system after it has been delivered. Som-
merville, referring to studies conducted in the eighties [29, 34], states that large organizations devoted at least 50%
of their total development effort to maintaining existing systems [52]. McKee in [34] suggests that maintenance
effort is between 65% and 75% of the total effort. So maintenance remains the most expensive software develop-
ment activity. However, the term maintenance is misleading because it gives the impression that this process is just
dealing with bug fixes.

A finer analysis of software maintenance shows that software maintenance is often equivalent to forward en-
gineering and not only limited to corrective maintenance [29, 39]. Maintenance activities have been categorized
into three different types as follows (the percentage shows the relative effort compared with the total maintenance
effort) [52]:

• Corrective maintenance(17%) is concerned with fixing reported errors in the software,

• Adaptive maintenance(18%) is concerned with adapting the software to a new environment (e.g.,platform
or OS), and

• Perfective maintenance(65%) is concerned with implementing new functional or non-functional require-
ments.

Chapin et al. [11] further refine these categories to take different forms of software evolution into account.

Clearly most software development “maintenance” is about supporting the evolution of software. Among
the reasons that lead to software decay, the most important ones are linked with the dynamics of software itself.
Lehman and Belady derived from empirical observations a set of software evolution Laws [28, 27] of which the
following two are especially relevant:

Continuous Changes.“an E-type program1 that is used must be continually adapted else it becomes
progressively less satisfactory”[27]

Increasing Complexity. “As a program is evolved its complexity increases unless work is done to
maintain or reduce it.”[27]

To support the continued evolution of legacy software, reengineering techniques must be applied. Chikosky
and Cross define reengineering as“the examination and the alteration of a subject system to reconstitute it in a
new form and the subsequent implementation of the new form.”[12].

1E-Type program: a software system that solves a problem or implements a computer application in the real world.



2 RESEARCH PLAN 17

Program understanding and visualization

Among the various approaches to support reverse engineering that have been proposed in the literature, graphical
representations of software have long been accepted as comprehension aids.

Many tools make use of static information to visualize software like Rigi [37], Hy+ [13], SeeSoft [15], Shrim-
pViews [54], TANGO [53] as well as commercial tools like Imagix2 to name but a few of the more prominent
examples. Most publications and tools that address the problem of large-scale static software visualization treat
classes as the smallest unit in their visualizations. There are some tools, for instance the FIELD programming
environment [48] which have visualized the internals of classes.

Substantial research has also been conducted on runtime information visualization. Various tools and ap-
proaches make use of dynamic (trace-based) information such as Program Explorer [26], Jinsight and its ances-
tors [44, 45], Graphtrace [25]. Various approaches have been discussed like in [24] or [21] where interactions in
program executions are being visualized.

Tools for visualizing runtime information typically produce only static pictures, and do not allow the user to
interact with the resulting visualizations. Furthermore, most approaches do not scale very well. Indeed, since these
tools base themselves on the recording of traces of running programs, the noise which is generated during a trace
is hard to filter out. As a consequence of these limitations, it can be hard to assign consistent and meaningful
interpretations to the visualizations these tools generate.

The following open questions characterize the current state-of-the-art in program understanding and visualiza-
tion:

• How can program visualization tools support programmers in a typical software engineering lifecycle?

• What benefit can be obtained by combining dynamic and static information?

• How can animations be used to visualize run-time behaviour?

Finally, a major issue in program visualization is a missing formal foundation for these techniques. Although
certain issues, such as assigning a precise interpretation to generated visualizations, would benefit from a formal
foundation, other issues seem to fall outside the scope of formalism. As Brown and Hershberger in [22] put it,
“Creating effective visualizations of computer programs is an art, not a science.”

Software architecture

Although the vision of mass-produced software components has a long history [33], the realization that standard
architectures should drive component-based software development is a relatively recent phenomenon.

Shaw and Garlan survey the state-of-the-art in their classic 1996 book [50], which defines software archi-
tectures in terms ofcomponents, connectorsand rules governing their composition. So-calledarchitectural de-
scription languages(ADLs), such as Wright [2], Rapide [30], and ACME [19] allow users to specify software
architectures and perform certain basic forms of analysis (such as deadlock detection).

A key notion is that of anarchitectural style[1], which captures the common properties of a class of similar
architectures (such alayeredarchitectures ordataflowarchitectures). Styles may sometimes be combined, but
a particular problem is that ofarchitectural mismatch[18] which may occur when attempting to use software
components in an inappropriate context.

A very different approach to formalizing architectural styles is the medium ofpatterns. The classic book,
Design Patterns[16], expresses a set of design artifacts in a cookbook style of presentation. Design patterns can
be considered to be very fine-grained architectures. Buschmann and his colleagues at Siemens AG have used the
same approach to describe various well-known architectural styles [8].

2http://www.imagix.com



2 RESEARCH PLAN 18

The work of Murphy [38] introduces “software reflexion models” that show where an engineer’s high-level
model of the software does and does not agree with a source model, based on a declarative mapping between the
two models. Module Interconnection Languages (MILs) [47] can be used to formally describe the global structure
of a software system, by specifying the interfaces and interconnections among the components (“modules”) that
make up the system. These formal descriptions can be processed automatically to verify system integrity. The
work of Kim Mens is related to this, but the relations are expressed on a higher level of abstraction using a logic
programming language [35].

Whereas the techniques described above depend ona priori identification of architectural artifacts, othera
posteriori techniques can be used to uncover patterns that are implicit in a system. Formal Concept Analysis [17]
uses the key notion of identifying similarities among a set of objects based on their properties and showing the
obtained relationships in a lattice. In the context of component mining techniques, Concept Analysis is considered
to be a promising technique for identifying modules in legacy code. This approach focuses on obtaining alternative
proposals to migrate procedural applications to object-oriented ones (specifically from C to C++) [51]. Tonella and
Antoniol [55] propose the detection of instances of Design Patterns based on the idea that they can be characterized
as a group of classes sharing mutual relations. Godin and Mili [20] focus more on software reengineering and
present a framework for dealing with the design and maintenance of class hierarchies.

Despite the growing interest in Software Architecture in recent years, the following open issues remain:

• There currently exists no mainstream ADL.

• It remains hard to extract the architecture of a software system from either the source code or from the
runtime structures generated.

• Although Concept Analysis has been used to identify potential modules and classes in procedural code, it
has not yet been exploited for identifying components in object-oriented code.

Scripting

Scripting languages are high-level languages for gluing together services implemented in some other host lan-
guage [5, 42]. Most scripting languages, like perl [56], Python [31], Ruby [14], SmallScript3 and TCL [41],
provide a combination of general-purpose programming constructs, and some domain-specific features to support,
for example, text manipulation, system administration, or graphical user interface construction. These languages
tend to be dynamically typed, and dynamically compiled, thus supporting rapid application development.

In practice, scripting languages are commonly used to “wire” together services in a low-level, procedural way.
In contrast, the goal of acomposition languageis to plug together software components and services in a high-
level way, according to a particular architectural style. Various experimental composition languages have been
developed in recent years, such as CLAM [49], which focusses on composition of large-scale “megamodules”,
BML [57], a so-called “Bean Markup Language” for specifying Java Beans configurations in XML, and CoML [7],
another XML-based language for specifying configurations of software components.

Coordination languagesconstitute another class of high-level composition languages that focus on coordinat-
ing dependencies between concurrent and distributed tasks. Linda [9] is the archetypical example of such a lan-
guage, providing nothing more than mechanisms for parallel processes to coordinate their activities by exchanging
messages in a shared “tuple space”. Many coordination languages adopt a similar approach.

Other approaches are based on a semantic foundation of the Chemical Abstract Machine (CHAM) [6], such as
Gamma [4], on theπ calculus [36], such as Darwin [32], or on dataflow models, such as Manifold [3].

Finally, certain researchers have applied functional languages such as Haskell to script third party compo-
nents [23], and others have been investigation concurrent extensions of functional languages, such as functional
nets [40] as a means to express software composition.

3http://www.smallscript.net/



REFERENCES 19

Although scripting languages have become increasingly popular in the past dozen years, the following issues
remain unresolved:

• Scripting languages tend to be either very domain-specific, or just very simple, general-purpose languages.
It is hard to tailor them to multiple domains.

• There is a large gap between the formal approach of ADLs, and the useful, but informal approach of scripting
languages.

• There is currently no mainstream, high-level language that offerscomponentsas a first-class programming
concept.

• There is no common agreement what mechanisms a high-level language should provide to support compon-
ent-based software development.

References

[1] Gregory Abowd, Robert Allen, and David Garlan. Formalizing style to understand descriptions of software
architecture.ACM Transactions on Software Engineering and Methodology, 4(4):319–364, October 1995.

[2] Robert Allen and David Garlan. The wright architectural specification language. Cmu-cs-96-tb, School of
Computer Science, Carnegie Mellon University, Pittsburgh, September 1996.

[3] Farhad Arbab. The IWIM model for coordination of concurrent activites. In Paolo Ciancarini and Chris
Hankin, editors,Proceedings of COORDINATION’96, volume 1061 ofLNCS, pages 34–55, Cesena, Italy,
1996. Springer-Verlag.

[4] Jean-Pierre Ban̂atre and Daniel Le Ḿetayer. The gamma model and its discipline of programming.Science
of Computer programming, 15:55–77, 1990.

[5] David Barron.The World of Scripting Languages. Wiley, December 1999.

[6] Gérard Berry and Ǵerard Boudol. The chemical abstract machine. InProceedings POPL ’90, pages 81–94,
San Francisco, Jan 17-19 1990.

[7] Dietrich Birngruber. Coml: Yet another, but simple component composition language. InWorkshop on
Composition Languages, WCL’01, pages 1–13, Vienna, Austria, September 2001.

[8] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stad.Pattern-Oriented
Software Architecture – A System of Patterns. Wiley, 1996.

[9] Nicholas Carriero and David Gelernter.How to Write Parallel Programs: a First Course. MIT Press, cop.
1990, Cambridge, 1990.

[10] Eduardo Casais. Re-engineering object-oriented legacy systems.Journal of Object-Oriented Programming,
10(8):45–52, January 1998.

[11] Ned Chapin, Joanne E. Hale, Khaled Md. Khan, Juan F. Rami l, and Wui-Gee Than. Types of software
evolution and software maintenance.Journal of software maintenance and evolution, 13:3–30, 2001.

[12] Elliot J. Chikofsky and James H. Cross, II. Reverse engineering and design recovery: A taxonomy.IEEE
Software, pages 13–17, January 1990.



REFERENCES 20

[13] M. Consens and A. Mendelzon. Hy+: A hygraph-based query and visualisation system. InProceeding of the
1993 ACM SIGMOD International Conference on Management Data, SIGMOD Record Volume 22, No. 2,
pages 511–516, 1993.

[14] Andrew Hunt David Thomas.Programming Ruby. Addison Wesley, 2001.

[15] Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner Jr. SeeSoft—A Tool for Visualizing Line Oriented
Software Statistics.IEEE Transactions on Software Engineering, 18(11):957–968, November 1992.

[16] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns. Addison Wesley, Read-
ing, Mass., 1995.

[17] B. Ganter and R. Wille.Formal Concept Analysis. Springer Verlag, 1995.

[18] David Garlan, Robert Allen, and John Ockerbloom. Architectural mismatch: Why reuse is so hard.IEEE
Software, 12(6):17–26, November 1995.

[19] David Garlan, Robert T. Monroe, and David Wile. Acme: Architectural description of component-based
systems. In Gary T. Leavens and Murali Sitaraman, editors,Foundations of Component-Based Systems,
chapter 3, pages 47–67. Cambridge University Press, New York, NY, 2000.

[20] Robert Godin and Hafedh Mili. Building and maintaining analysis-level class hierarchies using galois lat-
tices. InProceedings OOPSLA ’93, ACM SIGPLAN Notices, pages 394–410, October 1993. Published as
Proceedings OOPSLA ’93, ACM SIGPLAN Notices, volume 28, number 10.

[21] Dean J. Jerding, John T. Stansko, and Thomas Ball. Visualizing interactions in program executions. In
Proceedings of ICSE’97, pages 360–370, 1997.

[22] Marc H. Brown John Stasko, John Domingue and Blaine A. Price, editors.Software Visualization - Program-
ming as a Multimedia Experience. The MIT Press, 1998.

[23] Simon Peyton Jones, Erik Meijer, and Daan Leijen. Scripting COM components in haskell. InFifth Interna-
tional Conference on Software Reuse, Victoria, British Columbia, June 1998.

[24] R. Kazman and M. Burth. Assessing architectural complexity. Technical report, University of Waterloo,
1995.

[25] Michael F. Kleyn and Paul C. Gingrich. Graphtrace – understanding object-oriented systems using concur-
rently animated views. InProceedings OOPSLA ’88, ACM SIGPLAN Notices, pages 191–205, November
1988. Published as Proceedings OOPSLA ’88, ACM SIGPLAN Notices, volume 23, number 11.

[26] Danny B. Lange and Yuichi Nakamura. Interactive visualization of design patterns can help in framework
understanding. InProceedings of OOPSLA’95, pages 342–357. ACM Press, 1995.

[27] M. M. Lehman. Laws of software evolution revisited. InEuropean Workshop on Software Process Technol-
ogy, pages 108–124, 1996.

[28] M. M. Lehman and L. Belady.Program Evolution - Processes of Software Change. London Academic Press,
1985.

[29] B. P. Lientz and E. B. Sawson.Software Maintenance Management. Addison-Wesley, 1980.

[30] David C. Luckham, John L. Kenney, Larry M. Augustin, James Vera, Doug Bryan, and Walter Mann. Spec-
ification and analysis of system architecture using rapide.IEEE Transactions on Software Engineering,
21(4):336–355, April 1995.



REFERENCES 21

[31] Mark Lutz. Programming Python. O’Reilly & Associates, Inc., 1996.

[32] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeffrey Kramer. Specifying distributed software architec-
tures. InProceedings ESEC ’95, volume 989 ofLNCS, pages 137–153. Springer-Verlag, September 1995.

[33] M.D. McIlroy. Mass produced software components. In P. Naur and B. Randell, editors,Software Engineer-
ing, pages 138–150. NATO Science Committee, January 1969.

[34] J. R. McKee. Maintenance as a function of design. InProceedings of AFIPS National Computer Conference,
pages 187–193, 1984.

[35] Kim Mens. Automating Architectural Conformance Checking by means of Logic Meta Programming. PhD
thesis, Vrije Universiteit Brussel, 2000.

[36] Robin Milner. Communicating and Mobile Systems: Theπ-calculus. Cambridge University Press, 1999.

[37] H.A. Müller. Rigi - A Model for Software System Construction, Integration, and Evaluation based on Module
Interface Specifications. PhD thesis, Rice University, 1986.

[38] G. Murphy, D. Notkin, and K. Sullivan. Software reflexion models: Bridging the gap between source and
high-level models. InProceedings of SIGSOFT’95, Third ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 18–28. ACM Press, 1995.

[39] J. T. Nosek and P. Palvia. Software maintenance management: changes in the last decade.Software Mainte-
nance: Research and Practice, 2(3):157–174, 1990.

[40] Martin Odersky. Functional nets. InProc. European Symposium on Programming, volume 1782 ofLNCS,
pages 1–25. Springer-Verlag, March 2000.

[41] John K. Ousterhout.Tcl and the Tk Toolkit. Addison Wesley, 1994.

[42] John K. Ousterhout. Scripting: Higher level programming for the 21st century.IEEE Computer, 31(3):23–30,
March 1998.

[43] David Lorge Parnas. Software aging. InProceedings of International Conference on Software Engineering,
1994.

[44] Wim De Pauw, Richard Helm, Doug Kimelman, and John Vlissides. Visualizing the behavior of object-
oriented systems. InProceedings OOPSLA ’93, ACM SIGPLAN Notices, pages 326–337, October 1993.

[45] Wim De Pauw and Gary Sevitsky. Visualizing reference patterns for solving memory leaks in Java. In
R. Guerraoui, editor,Proceedings ECOOP’99, volume 1628 ofLNCS, pages 116–134, Lisbon, Portugal,
June 1999. Springer-Verlag.

[46] Roger S. Pressman.Software Engineering: A Practitioner’s Approach. McGraw-Hill, 1994.

[47] R. Prieto-Diaz and Neighbors J.M. Module interconnection languages.The Journal of Systems and Software,
6(4):307–334, November 1986.

[48] Steven P. Reiss. Interacting with the field environment.Software - Practice and Experience, 20:89–115,
1990.

[49] Neal Sample, Dorothea Beringer, Laurence Melloul, and Gio Wiederhold. CLAM: Composition language
for autonomous megamodules. In Paolo Ciancarini and Alexander L. Wolf, editors,Proceedings of Coordi-
nation’99, volume 1594 ofLNCS, pages 291–306, 1999.



REFERENCES 22

[50] Mary Shaw and David Garlan.Software Architecture: Perspectives on an Emerging Discipline. Prentice-Hall,
1996.

[51] Michael Siff and Thomas Reps. Identifying modules via concept analysis. InProc. of. the Internation
Conference on Software Maintenance, pages 170–179. IEEE Computer Society Press, 1997.

[52] Ian Sommerville.Software Engineering. Addison Wesley, fifth edition, 1996.

[53] John T. Stasko. Tango: A framework and system for algorithm animation.IEEE Computer, 23(9):27–39,
September 1990.

[54] Margaret-Anne D. Storey and Hausi A. Müller. Manipulating and documenting software structures using
shrimp views. InProceedings of the 1995 International Conference on Software Maintenance, 1995.

[55] Paolo Tonella and Giuliano Antoniol. Object oriented design pattern inference. InProceedings ICSM ’99,
pages 230–238, October 1999.

[56] Larry Wall and Randal L. Schwartz.Programming Perl. O’Reilly & Associates, Inc., 2nd edition, 1990.

[57] Sanjiva Weerawarana, Francisco Curbera, Matthew J. Duftler, David A. Epstein, and Joseph Kesselman.
Bean markup language: A composition language for JavaBeans components. InProceedings of the 6th
USENIX Conference on Object-Oriented Technologies and Systems (COOTS-01), pages 173–188, Berkeley,
California, February 2001. USENIX Association.



REFERENCES 23

2.2 Research fields

Oscar Nierstrasz

The Software Composition Group was founded in 1994, and has carried out both fundamental and applied research
since then on issues related to the development of flexible and reconfigurable software systems.

The group has produced a large number of prototypes, publications and theses (diploma and Ph.D.) on the topic
of reengineering (see more below on the contributions of Stéphane Ducasse). A key result of these experiences is
the forthcoming book,Object-Oriented Reengineering Patterns[8], co-authored with Serge Demeyer and Stéphane
Ducasse, which describes a number of recurring solutions that experts apply while reengineering and maintaining
object-oriented systems. The principles and techniques described in this book have been observed and validated in
a number of industrial projects, and reflect best practice in object-oriented reengineering.

In the context of the current and preceding NFS projects, the group has developed an experimentalcomposition
languagecalled “Piccola” [4, 3]. Piccola is designed as a high-level language for expressing applications as com-
positions of software components. With Piccola, one describes both compositional (or “architectural”) styles for a
particular problem domain, and scripts that compose components in that domain. We have developed experimental
styles for various domains [2, 21] in the iterative design of the language. Considerable effort was invested in the
development of a precise semantics for Piccola [1, 17, 28] to enable reasoning about components.

Although Piccola is fast and stable enough [27] to permit larger scale experiments, there are a number of clear
shortcomings. The two most important are: (i) Piccola is missing a suitable type system due to the challenges of
open systems, and (ii) the end-user language is too close to the underlying process calculus semantics, making it
hard for non-experts to model components.

Roel Wuyts

The following aspects of Wuyts’ research are of special interest for this proposal:

• Systems analysis:As validation for his PhD [32], Wuyts implemented a logic programming language (called
“Soul”) to reason about the static structure of object-oriented languages. This language was as the core
mechanism to synchronize simultaneous changes to design and implementation [31], to express, check,
enforce and search for programming patterns [19, 18] and to express software architectures in such a way
that they could be checked against the implementation [20]. Besides reasoning directly on the static structure
of systems, it was also used to do event analysis from dynamic information, where it was also integrated with
the Moose development environment [25].

• Language Symbiosis:The logic programming language that was implemented in the context of the Ph.D.
research features a novel form of reflection between two languages supporting different paradigms [32].
This language symbiosis allows to transparently use, change and create objects in the logic programming
language. The technique used to achieve this promises to be applicable in other contexts as well, such as the
composition of components from different languages.

• Component Models:SCG is currently participating in an European ESPRIT project (Pecos, BBW 00.0170)
where its responsibility is to develop a component model for embedded devices. Because of the context
of small embedded systems, this component model needs to focus on non-functional requirements such as
timing and memory consumption.

Stéphane Ducasse

The contributions of Ducasse which are relevant to this proposal are in the domain of reengineering object-oriented
systems. These are summarized in [13]: The definition of a language independent meta model [9, 10], the imple-



REFERENCES 24

mentation of a reengineering environment [29], the evaluation of software metrics applied to reengineering [5],
[7], the definition of a novel approach for reverse engineering large applications [6, 14], the definition of new
approaches for understanding classes [16], language independent detection of duplicated code [15, 26], the use of
dynamic information for extracting behavioral views [22, 23, 24, 12, 11], the evaluation of language independent
refactorings [30], and the identification of reengineering patterns [8].

References

[1] Franz Achermann.Forms, Agents and Channels - Defining Composition Abstraction with Style. PhD thesis,
University of Berne, January 2002.

[2] Franz Achermann, Stefan Kneubuehl, and Oscar Nierstrasz. Scripting coordination styles. In António Porto
and Gruia-Catalin Roman, editors,Coordination ’2000, volume 1906 ofLNCS, pages 19–35, Limassol,
Cyprus, September 2000. Springer-Verlag.

[3] Franz Achermann, Markus Lumpe, Jean-Guy Schneider, and Oscar Nierstrasz. Piccola – a small composition
language. In Howard Bowman and John Derrick, editors,Formal Methods for Distributed Processing – A
Survey of Object-Oriented Approaches, pages 403–426. Cambridge University Press, 2001.

[4] Franz Achermann and Oscar Nierstrasz. Applications = Components + Scripts – A Tour of Piccola. In
Mehmet Aksit, editor,Software Architectures and Component Technology, pages 261–292. Kluwer, 2001.

[5] Serge Demeyer and Stéphane Ducasse. Metrics, do they really help? In Jacques Malenfant, editor,Pro-
ceedings LMO’99 (Languages et Modèlesà Objets), pages 69–82. HERMES Science Publications, Paris,
1999.

[6] Serge Demeyer, Stéphane Ducasse, and Michele Lanza. A hybrid reverse engineering platform combining
metrics and program visualization. In Francoise Balmas, Mike Blaha, and Spencer Rugaber, editors,Pro-
ceedings WCRE’99 (6th Working Conference on Reverse Engineering). IEEE, October 1999.

[7] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Finding refactorings via change metrics. InPro-
ceedings of OOPSLA’2000, ACM SIGPLAN Notices, pages 166–178, 2000.

[8] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz.Object-Oriented Reengineering Patterns. Morgan
Kaufmann, 2002. to appear, spring 2002.

[9] Serge Demeyer, Stéphane Ducasse, and Sander Tichelaar. Why unified is not universal. UML shortcomings
for coping with round-trip engineering. In Bernhard Rumpe, editor,Proceedings UML’99 (The Second Inter-
national Conference on The Unified Modeling Language), volume 1723 ofLNCS, Kaiserslautern, Germany,
October 1999. Springer-Verlag.

[10] Serge Demeyer, Sander Tichelaar, and Stéphane Ducasse. FAMIX 2.1 - the FAMOOS information exchange
model. Technical report, University of Bern, 2001. to appear.

[11] St́ephane Ducasse. Des techniques de contrôle de l’envoi de messages en smalltalk.L’Objet, 3(4):355–377,
1997.

[12] St́ephane Ducasse. Evaluating message passing control techniques in smalltalk.Journal of Object-Oriented
Programming (JOOP), 12(6):39–44, June 1999.

[13] St́ephane Ducasse. Reengineering object-oriented applications. Technical report, Université Pierre et Marie
Curie (Paris 6), 2001. Habilitation.



REFERENCES 25

[14] St́ephane Ducasse and Michele Lanza. Towards a methodology for the understanding of object-oriented
systems.Technique et science informatiques, 20(4):539–566, 2001.

[15] St́ephane Ducasse, Matthias Rieger, and Serge Demeyer. A language independent approach for detecting
duplicated code. In Hongji Yang and Lee White, editors,Proceedings ICSM’99 (International Conference
on Software Maintenance), pages 109–118. IEEE, September 1999.

[16] Michele Lanza and Stéphane Ducasse. A categorization of classes based on the visualization of their internal
structure: the class blueprint. InProceedings of OOPSLA 2001, pages 300–311, 2001.

[17] Markus Lumpe.A Pi-Calculus Based Approach to Software Composition. Ph.D. thesis, University of Bern,
Institute of Computer Science and Applied Mathematics, January 1999.

[18] K. Mens, I. Michiels, and R. Wuyts. Supporting software development through declaratively codified pro-
gramming patterns.SEKE 2001 Special Issue of Elsevier Journal on Expert Systems with Applications, 2001.
To be published; extended version of [19].

[19] Kim Mens, Isabel Michiels, and Roel Wuyts. Supporting software development through declaratively codified
programming patterns. InSEKE 2001 Proceedings, pages 236–243. Knowledge Systems Institute, 2001.
International conference on Software Engineering and Knowledge Engineering, Buenos Aires, Argentina,
June 13-15, 2001.

[20] Kim Mens, Roel Wuyts, and Theo D’Hondt. Declaratively codifying software architectures using virtual
software classifications. InProceedings of TOOLS-Europe 99, pages 33–45, June 1999.

[21] Oscar Nierstrasz and Franz Achermann. Supporting Compositional Styles for Software Evolution. In
Proceedings International Symposium on Principles of Software Evolution (ISPSE 2000), pages 11–19,
Kanazawa, Japan, Nov 1-2 2000. IEEE.

[22] Tamar Richner. Describing framework architectures: more than design patterns. In Jan Bosch, Helene
Bachatene, G̈orel Hedin, and Kai Koskimies, editors,Proceedings of the ECOOP ’98 Workshop on Object-
Oriented Software Architectures, Research Report 13/98. University of Karlskrona, July 1998.

[23] Tamar Richner and Stéphane Ducasse. Recovering high-level views of object-oriented applications from
static and dynamic information. In Hongji Yang and Lee White, editors,Proceedings ICSM’99 (International
Conference on Software Maintenance), pages 13–22. IEEE, September 1999.

[24] Tamar Richner and Stéphane Ducasse. Using dynamic information for the iterative recovery of collaborations
and roles. Technical Report IAM-01-007, University of Bern, Institute of Computer Science and Applied
Mathematics, December 2001.

[25] Tamar Richner, Stéphane Ducasse, and Roel Wuyts. Understanding object-oriented programs with declarative
event analysis. In Serge Demeyer and Jan Bosch, editors,Object-Oriented Technology (ECOOP’98 Workshop
Reader), LNCS 1543. Springer-Verlag, July 1998.

[26] Matthias Rieger, Stéphane Ducasse, and Georges Golomingi. Tool support for refactoring duplicated oo
code. InObject-Oriented Technology (ECOOP’99 Workshop Reader), number 1743 in LNCS (Lecture Notes
in Computer Science). Springer-Verlag, 1999.

[27] Nathanael Scḧarli. Supporting pure composition by inter-language bridging on the meta-level. Diploma
thesis, University of Bern, September 2001.

[28] Jean-Guy Schneider.Components, Scripts, and Glue: A conceptual framework for software composition.
Ph.D. thesis, University of Bern, Institute of Computer Science and Applied Mathematics, October 1999.



REFERENCES 26

[29] Sander Tichelaar, Juan Carlos Cruz, and Serge Demeyer. Design guidelines for coordination components.
In Janice Carroll, Ernesto Damiani, Hisham Haddad, and Dave Oppenheim, editors,Proceedings ACM SAC
2000, pages 270–277. ACM, March 2000.

[30] Sander Tichelaar, Stéphane Ducasse, Serge Demeyer, and Oscar Nierstrasz. A meta-model for language-
independent refactoring. InProceedings ISPSE 2000, pages 157–167. IEEE, 2000.

[31] Roel Wuyts. Synchronising changes to design and implementation using a declarative meta-programming
language. InInternational Workshop on (Constraint) Logic Programming for Software Engineering, dec
2001.

[32] Roel Wuyts and Stéphane Ducasse. Symbiotic reflection between an object-oriented and a logic programming
language. InECOOP 2001 International workshop on MultiParadigm Programming with Object-Oriented
Languages, 2001.



REFERENCES 27

2.3 Detailed Research Plan

This project builds on results obtained in the ongoing NFS project 20-61655.00, “Meta-models and Tools for
Evolution Towards Component Systems”, which has succeeded in developing (i) a language-independent meta-
model for representing object-oriented software artifacts, (ii) an environment, MOOSE, for storing, analyzing,
viewing, and refactoring these artifacts, and (iii) Piccola, a high-level composition language for wrapping existing
software as components, and expressing new applications as compositions of components. Although these results
are encouraging, there are many open questions. This project proposes to address the following questions:

• How can we recognize architectural artifacts in complex legacy software systems?

• How can we effectively query and navigate through the software information space?

• How can we reconstruct software to make the underlying architecture explicit?

We propose to address these questions by:

1. Developing prototypesto explore innovative techniques for analyzing and composing software.

2. Validatingthe techniques by applying them to industrial and open-source case studies.

3. Disseminatingthe most mature tools and techniques.

The research will be carried out by means of two complementary tracks, as illustrated in the graphic below.
A bottom-upapproach will be used todecomposesoftware, that is, analyze existing code to develop higher level
models in terms of software architecture and component models. Atop-downapproach will be used tocompose
software systems according to high-level models of software components and their corresponding architectural
styles.

code code

De
co
mp

os
e Compose

models

Decomposition

This work builds on experience with our reverse engineering environment,MOOSE, and its related tools. MOOSE
functions as a repository for models extracted from software source code, and supports various tools that can
present and analyze various views of these models. Although the techniques we have developed are good at
getting an overview of the static program structures, they fall short in the following two areas:

• It is hard to extract and evaluate architectural and design elements.

• There is no support for understanding run-time collaborations.

We therefore propose to explore the following approaches:



REFERENCES 28

• Architectural analysis:

The MOOSE environment currently uses a query-based approach to interrogate a language independent
software model. We propose to complement this facility with a rule-based interface by integrating the logic
programming language SOUL. By default SOUL reasons about Smalltalk source code and is used to express
programming conventions, design pattern structures, software architectures and UML class diagrams. We
plan to let SOUL reason about the elements in the MOOSE model instead of directly on Smalltalk code. This
integration extends the kinds of metric-based analysis that can currently be done in Moose. In particular, we
plan to use this to identify architectural artifacts and check for consistency between the actual software base
and design constraints. We will also explore the use of SOUL for type analysis and type reconstruction, and
for the evaluation of non-functional constraints (such as timing constraints).

Whereas logic programming can help us to revealanticipatedarchitectural artifacts in software, Concept
Analysis allows us to discoverunanticipatedand hidden patterns in software. We propose to apply Concept
Analysis to explore natural groupings of software artifacts that share properties, and to use simple classifica-
tion mechanisms to explore alternative groupings of elements. These groupings could have different levels
of granularity depending on the studied software artifacts (classes, instance variables, methods). Concept
Analysis can then be used to detect maximal sets of properties related to a set of entities. This technique
provides a way of discovering unknown relationships between software artifacts, based on combinations of
simple ones.

• Run-time Interaction:MOOSE offers a code-centric infrastructure for reverse engineering. The run-time
architecture of a software system cannot, however, be easily extracted from the source code alone. We
propose to explore a number of techniques to make these run-time structures more explicit.

First of all, we propose to apply the metrics-based visualization mechanisms offered by MOOSE and Code-
Crawler to run-time structures and to program traces. In this approach, simple metrics will be gathered
either at run-time, or extracted from traces, and visualized in various ways. We plan to extend the approach
by using grouping mechanisms to better manage the high volume of data. We further plan to combine the
dynamic views with the existing static views so that the two can be correlated. Other possible paths of ex-
ploration include animated displays and visual or non-visual navigation of run-time information. As with
static visualization, the main challenge is to develop a suite of metrics that can not only be easily gathered,
but actually provide useful insight into the running behaviour of a system.

Second of all, we propose to explore extending the paradigm of interactive debugging to higher-level pro-
gramming constructs, such as groups of collaborating objects. Current debuggers focus on providing de-
tailed, low-level views of program entities to support debugging activities. Instead we would focus on
providing high-level views of sets of program entities, running threads, and relationships between them, to
enable understanding of the run-time characteristics of design artifacts.

Finally, we plan to explore the use of run-time information to interactively develop test cases and test suites
to document knowledge extracted during reverse engineering, and to facilitate future changes. One of the
most useful forms of documentation of a system is a set of test suites that express typical usage scenarios.
Test suites are tedious to program by hand, however, as they consist mainly of boilerplate code. A test
generation assistant would keep track of the sequence of steps needed to play through a particular scenario,
allow the user to identify the interesting states to be tested, and generate the corresponding code for running
the same scenario as a test case.

Composition

Piccola demonstrates the feasibility of a high-level composition language providing component-based, composi-
tional interfaces to services provided by a separate, host language. Nevertheless, Piccola is far from providing the
ease of use of traditional scripting languages due to the conceptual gap between the mechanisms offered by Piccola
and the component-based methodology that it is supposed to support. We plan to address the following issues:



REFERENCES 29

• It is hard to express and reason about domain-specific compositional styles.

• There exists little experience and no guidelines in developing domain-specific styles.

• Existing programming languages continue to be of limited usefulness for component-based development.

We therefore propose the following research activities:

• Composition Languages:We plan to develop a successor to Piccola in which components and connectors
will be first-class entities. A style will be specified by defining the component interfaces supported by a
domain-specific style, and the operators (connectors) that can be used to compose them.

A key challenge will be to develop a suitable type system that can express both the servicesrequiredby
components as well as those that areprovided in such a way that not only global system knowledge is
not required, but also that new components may be introduced and composed at run-time. This is a key
requirement for component composition in open systems. A second major challenge is to express and reason
about non-functional constraints carried by a compositional style, such as component interaction protocols,
real-time constraints, or security restrictions.

We plan to tackle reasoning about composition by associating logical constraints to component interfaces,
and checking constraints at composition time. We will explore the use of SOUL for expressing and checking
constraints.

• Compositional Styles:Existing component frameworks are general heavyweight in the sense that they sup-
port only low-levelwiring of components rather than high-levelplugging. We propose to experiment with
high-level compositional styles using a variety of platforms, including Piccola.

In particular, we propose to develop various domain-specific compositional styles that reflect the composi-
tional characteristics and constraints of domains such as embedded systems and heterogeneous web appli-
cations.

• Composition Mechanisms:

Existing programming languages offer only limited support for defining compositional abstractions, for
plugging components together and for customizing existing components from the outside. We plan to use
our experience with Piccola to explore the definition of more suitable mechanisms for existing programming
languages. First of all we plan to explore new models ofmixinsto (statically or dynamically) extend existing
components from the outside. This would allow composition mechanisms to extend or refine black-box
components to suit particular contexts. Second we would combine this approach with language bridging
mechanisms based on reflection. This would actually be an extension of the current mechanisms that can be
found in both Soul and Piccola. Last but not least we plan to integrate suitable meta-object protocols, so that
components can have different interfaces and meta-information to be used by the composition language.



REFERENCES 30

2.4 Timetable

We expect to achieve the following results over the two years of the project:

Year 1

• Integration of SOUL in MOOSE. Experimental use of SOUL to detect and validate architectural and design
patterns and constraints.

• Visualization of run-time structures.

• Constraint-based type system for Piccola component model.

• Experimental compositional styles for various domains.

• Experimentation with mixins and other compositional mechanisms for various languages, including Small-
talk and Java.

Year 2

• Applications of concept analysis and classification to software artifacts.

• Dynamic interaction with run-time structures. Assisted generation of test scenarios.

• Composition language with first-class components and connectors.

• Guidelines and techniques for developing and reasoning about compositional styles.

• Suite of language features for component-based software development. Evaluation of mainstream languages
and their suitability for CBSD.



REFERENCES 31

2.5 Significance of Research

Despite the adoption of more advanced programming languages, development environments, software develop-
ment methods, and various process and development standards, industry continues to have difficulty developing
and maintaining software. Although software is being developed at a more rapid rate, it is also turning into a
complex “legacy” at a faster rate.

This project promises to deliver a variety of techniques to make complex software easier to understand, to
maintain and to evolve. The proposed research will be validated by carrying out experiments with industrial and
open-source software. Dissemination will be achieved not only by the usual means of publications and talks, but
also by making mature prototypes available for external use (as has been successfully done in the past).


