
Part 2 : Scientific Information

Main applicant: Nierstrasz, Oscar
Project title: Synchronizing Models and Code

Contents

1 Summary of the research plan ii

2 Research plan 1
2.1 Current state of research in the field . 1

2.1.1 Dynamic meta-objects . 1
2.1.2 First-class, active contexts . 2
2.1.3 Linked, active source code . 3
2.1.4 Polyglot systems modeling and analyses . 4

2.2 Current state of own research . 8
2.2.1 Dynamic meta-objects . 8
2.2.2 First-class, active contexts . 9
2.2.3 Linked, active source code . 10
2.2.4 Polyglot systems modeling and analyses . 10

2.3 Detailed Research Plan . 12
2.3.1 Dynamic meta-objects . 13
2.3.2 First-class, active contexts . 14
2.3.3 Linked, active source code . 15
2.3.4 Polyglot systems modeling and analyses . 17

2.4 Schedule and milestones . 19
2.5 Importance and impact . 20

−Id: part2.tex 31178 2010-02-25 09:15:09Z oscar −

i

SNF Proposal — Synchronizing Models and Code ii

1 Summary of the research plan

Successful software systems are under constant pressure to adapt to changing circumstances. Soft-
ware adaptations take many forms, are of varying granularity, and may need to take effect over
extreme variations in time scale. Running software systems are often subject to fine-grained,
short-term adaptation to available resources and run-time context. Modest requirements changes
typically provoke medium-grained, medium and long-term evolution of software source code, with
consequent short-term adaptation of running software. Deeper requirements changes can provoke
coarse-grained, long-term adaptation at the architectural level.

In each of these cases we are faced with the challenge of keeping the source code and the running
software synchronized with changes in the higher-level domain and requirements models. This
synchronization, however, is often difficult because current languages and runtime systems assume
global consistency. They cannot cope with typical inconsistencies of systems with rapidly changing
requirements, such as unpredictable variations in the execution environments, inconsistent versions
of components, or dispersed code sources.

Our current SNF project, Bringing Models Closer to Code, has been exploring various ways
to close the conceptual gap between models and the software systems they apply to. In this new
project we propose to study novel techniques to keep software systems synchronized with models
in the face of varying granularities of change over different time scales.

— Dynamic meta-objects: A running system should be able to dynamically respond to changes
in its environment (fine-grained and short-term adaptations). Most common approaches
to realize run-time adaptation are low-level, fragile, and unsuitable for composition. We
propose to address these problems by means of dynamic meta-objects. These meta-objects
will manipulate high-level representations of an object’s behavior, they can be introduced
on a per-object basis, and they can be composed to address multiple adaptations at a time.

— First-class, active contexts: A software system needs to be able to locally and incrementally
update code and program state (medium-grained and medium-term adaptations). Run-
ning applications must increasingly cope with interface and data representation mismatches.
Instead of placing strict barriers between software components of different versions, we pro-
pose to associate versions to first-class, active contexts. A running object that enters such
a context may need to be dynamically updated to reflect different versions of interfaces,
behavior, or even state. Objects may even be in multiple contexts at once, yet still behave
in a predictable way.

— Linked, active source code: Current software development tools fail to address synchroniza-
tion of code shared between independent systems (medium-grained and medium-term as well
as long-term adaptations). As software evolves, libraries, components and even fragments
are frequently duplicated, adapted and specialized across software projects. Instead of treat-
ing software source code as passive text, we propose a novel approach in which source code is
linked to other source code, to other relevant semantic information, and to high-level models.
We plan to draw inspiration not only from sites such as Wikipedia as possible models for
linked software, but also from popular social networking sites.

— Polyglot systems modeling and analyses: Novel analyses are needed to help software ar-
chitects assess the impact of changes (coarse-grained and long-term adaptations). These
analyses need to account for sub-systems built with diverse technologies and programming
languages. We propose to analyze these “polyglot” systems focusing on the technologies
involved. To detect hidden architectural dependencies between diverse sub-systems we need
to develop a new meta-model that captures and connects the idiosyncrasies of each involved
technology. We then plan to research novel metrics-based visualizations to support analyses
such as the detection of architectural patterns.

SNF Proposal — Synchronizing Models and Code 1

2 Research plan

2.1 Current state of research in the field

Effective support for software evolution entails the construction of detailed models of software at a
variety of levels of abstraction. As the literature on software modeling is vast, we briefly summarize
some of the most significant developments in recent years related to modeling of software evolution
with particular focus on dynamic adaptation, context-dependent adaptation, modeling of change,
and mining architectural information.

2.1.1 Dynamic meta-objects

Structural and behavioral reflection are well-known techniques to enable run-time change. Nev-
ertheless, these techniques can be cumbersome and unwieldy in the face of complex and evolving
domain knowledge, and unanticipated requirements changes. For this reason many new models of
reflection have been developed over the past two decades.

Smalltalk provides a number of reflective features [Duc99], most of these being concerned with
structure. Reflective facilities for changing behavior are only supported in a rudimentary way.
There is no meta-object protocol to allow for fine-grained control of behavior. For example, we
cannot re-define what a message send is, and we cannot hook into variable access easily.

The model of reflection offered by a programming language limits and restricts what we can
express. If a language does not reify certain abstractions we will not be able to reflect on them.
Although it is sometimes possible to add missing abstractions post hoc, in general it is not possible
to provide a reflection model that can anticipate all potential uses [MW88, DS01, Tan09]. We
therefore need an open approach to reflection.

Mirrors offer a first attempt to model the reflection problem domain. In this approach objects
themselves do not have any reflective capability, but reflection is provided by mirror objects [BU04].
Mirrors offer a clear separation of the base level and the meta layer.

There has been some attempts to provide a meta-object model by selectively specifying what
should be reified in an application in each particular case. Iguana/J [RC02, RC00] offers a form
of selective reification which makes it possible to select program elements down to individual
expressions. Other tools like Dalang [WS99], Reflective Java [Wu98], Kava [WS01], the ProAc-
tive MOP [CHV01], MetaXa [GK99] and Guaranà [OB99] are targeted specifically at controlling
method invocation for Java.

Partial-behavioral reflection [TNCC03] restricts the introduction of reflective capabilities to
the parts of a system where they are needed, thus eliminating the cost of reflection when these
capabilities are not used. Partial behavioral reflection was conceived using bytecode transformation
in Java.

Most reflective approaches have been developed in the context of class-based object-oriented
languages. Binding reflective behavior to classes only delivers reflective models that can reflect
on the structure and behavior of a class of objects instead of individual instances. To date there
exists no thorough analysis of object-specific reflective systems. CLOS [BDG+88] offered some
object-specific behavior capabilities, however, they have not been adopted by other languages.

Self [US87] offers object-specific behavior since it is prototype-based rather than class-based.

SNF Proposal — Synchronizing Models and Code 2

Each object is built from a prototype with which it shares its behavior and structure. An object
can evolve by differentiating itself from its base prototype. The behavior specification is obtained
by the use of slots.

Aspect-Oriented Programming (AOP) [KLM+97] addresses the problem of adapting code to
accommodate cross-cutting concerns (such as instrumentation, or persistence). Adapted behav-
ior is packaged into an “aspect”, which modularizes cross-cutting concerns of the applications.
Although aspects can be dynamically enabled or disabled, they are specified statically.

For instance, these reflection models can be used for providing dynamic language reification
like CodA [McA95]. CodA reifies the message send process from an operational decomposition
point of view of the meta-level.

2.1.2 First-class, active contexts

Software applications increasingly need to adapt their behavior to changing context, and numerous
programming constructs have been proposed to address this need. In its most basic form, we have
object-oriented programming, in which dynamic dispatch allows different code to be evaluated
depending on the context of the receiver of a message.

The idea of adapting the behavior of objects according to a more general notion of context
was pioneered in subject-oriented programming [HO93]. The behavior of an object depends on
the caller, and the system behaves differently under various perspective. The notion of multi-
dimensional method dispatch is central to these approaches where the behavior of an object may
depend on several contextual parameters. The Us system [SU96] is based on the Self programming
language and supports subjective programming. In subjective programming, message lookup
depends not only on the receiver of a message, but also on a second object, called the perspective.
Each perspective contains an ordered sequence of layers, which determines the currently active
behavior. In AOP, join points define the context where a concern will be applied.

The mechanisms described above are all based on a structural notion of scope or context. To
provide more flexibility at run-time, temporal mechanisms have also been proposed. Dynamic
AOP allows aspects to be enabled or disabled at run-time. Lasagne [TJV02] is a model that
supports the context-sensitive selection of aspects, enabling client-specific customization of sys-
tems. ContextL [CH05] is an extension of CLOS where co-related modification can be organized
into layers that can be activated or deactivated dynamically. The term context-oriented program-
ming [HCN08] has emerged to refer to such highly dynamic models where variations are applied
selectively based on the changing context.

These approaches have focused mostly on behavioral variations. State adaptations have not
been much covered from this perspective, apart from a proposal by Tanter to provide contextual
values [Tan08]. There is, however, a large body of work covering the adaptation of persistent
object stores resulting from schema changes. One of the most comprehensive platforms in this
area is Gemstone [BOS91]. The right way to deal with mutable state and persistent entities in
programming languages is still an open question, and interesting proposals continue to emerge.
Examples include Clojure [Hic08], which takes a novel approach on shared state, or “Declarative
object identity using relation types” by Vaziri et al. [VTFD07] who propose to introduce the notion
of keys in the type system to solve the problem of object equality.

Another important issue is the consistent application of such contextual modification. Various

SNF Proposal — Synchronizing Models and Code 3

models were devised to reason about the correctness of object updates, as for instance in the work
by Chandrasekhar et al. [BLS+03], who use ownership types for this purpose. The concept of
transaction was also proposed as to delimit the safe update points [NHFP08].

2.1.3 Linked, active source code

In recent years there has been an increased interest in identifying links between artifacts, primarily
between software clones. The conventional attitude towards code duplication and redundancy has
been to avoid it [Kos08, FBB+99]. Xie and Engler go so far as to use the term redundant code as a
synonym for superfluous code [XE02]. On the other hand, code duplication is ubiquitious [Kos08,
Bak95], and has found a kinder judgement more recently as unavoidable [KSNM05] and even
beneficial in certain situations [KG06]. Koschke gives an overview [Kos08].

Tools are developed that help cope with the downsides of software clones, without removing
them. The tools aid in the following activities, which we will explain.

• detecting clones

• capturing and modeling clones (for further tracking)

• editing clones

• collecting information about clones

Bellon et al. [BKA+07] give an overview of how to detect clones. Automatic clone detection
serves as a foundation for some tools that aid with software clones, while other tools require the
users to manually specify all clones that they wish to be aided with.

Rather than being detected from the source base, clones can be captured at the time of creation
in the IDE, and then tracked further. A tool called CloneTracker [ER08] keeps track of clones
and notifies users in case any clone updates. However, it assumes that code duplication does
not transgress project boundaries. Thus, code snippets found in a code search engine cannot be
associated with their origin.

To edit cloned software snippets simultaneously in different places in one software reposi-
tory, linked editing has been proposed [TBG04], a clone-specific adaptation of synchronous edit-
ing [MM01] which edits several places in a software repository at once.

Codebook [BD09] provides a Facebook-like platform to keep track of exchange notifications
across different software projects. It is intended to connect developers to the originals of snippets
that they cloned. However, Codebook has no automatic mechanism to follow clones as they
continue evolving.

A number of tools visualize clones in the IDE to aid reasoning about them. The tool CSeR
shows the same parts of clones in one color and the diverging parts in another [HJJ09]. Another
tool, intensional views, accepts a query expression that defines any measure of structural similarity
and then visualizes those parts of the software repository that are deemed similar according to
the measure [MKPW06].

Since we plan to store the data on clones in a version control system and then leverage the
captured information, we present some related work to leveraging version control systems. Version
control systems have become very popular [CW98] to store professionally developed code. Tools

SNF Proposal — Synchronizing Models and Code 4

leverage the information stored in software control systems, e.g., Mock et al. quantify a pro-
grammer’s expertise [MH02]. More recent tools try to capture the development process at more
fine grained level [RL07], which is used to improve programmer’s productivity by improving code
completion [RL08].

Git’s submodule function allows developers to keep a modified library, and both integrate
distant changes and publish local changes back into the project [Cha09].

The Jazz development environment integrates bug reports, online discussion and commit mes-
sages to a useful whole [HCRP04].

2.1.4 Polyglot systems modeling and analyses

Enterprise applications (EAs) are typically large, distributed, polyglot software systems imple-
mented using multiple technologies and programming languages. Numerous architectural patterns
for enterprise applications have been identified [Fow05, JPnMK+09, ACM03] in an effort to help
developers address common design problems arising in the development of these systems. The
selection of suitable architectural patterns in the early phases of development can influence crucial
decisions about further design or implementation stages. Therefore it is important to support the
identification of those patterns to aid the evolution of the system.

Detection of architectural patterns requires a meta-model that not only captures all structural
elements but also conceptual elements (e.g., layers) that constitute the design of the application.

Marinescu has proposed such a meta-model for enterprise applications [MJ06] including a meta-
model for relational databases, and she has proposed a technique to enrich the latter with infor-
mation contained in the source code [Mar07a]. She has also worked on quality assessment of EAs,
proposing an approach to detect and remove discrepancies between the database schemas [Mar07b]
and the source code and to assess design quality in EAs [Mar06].

Various research teams have worked on architecture recovery and validation using reflexion
models [MNS95, MN97]. These models are used to recover architecture by capturing developer
knowledge and then mapping this knowledge to the source code [KS03, CKS05]. Intensional views,
proposed by Mens [MMW02, MPG03, MKPW06], codify the conceptual structure of software
systems. A variety of software maintenance and evolution tasks can then be facilitated by checking
conformance of intentional views against the source code. Some tools for architecture recovery
and validation are commercially available, such as Sotograph [BKL04]. Sotograph is a software
analysis tool that can check architectural conformance, visualize the static structure of the code
and assist the user in evaluating the impact of potential modifications on the code.

Due to their complexity and variety, polyglot systems require a sophisticated build system
to manage all compilation and deployment dependencies. MAKAO [Ada09, ADTM07] is a re-
engineering framework that analyses systems built using Makefiles. MAKAO constructs a depen-
dency graph and uses it to support the identification of bad smells.

References

[ACM03] Deepak Alur, John Crupi, and Dan Malks. Core J2EE Patterns: Best Practices and Design
Strategies 2nd edition. Prentice Hall, Sun Microsystems Press, June 2003.

SNF Proposal — Synchronizing Models and Code 5

[Ada09] Bram Adams. Co-evolution of source code and the build system - impact on the introduction
of aosd in legacy systems. In PhD Symposium at the 25th IEEE International Conference
on Software Maintenance (ICSM), Edmonton, Canada, September 2009. To appear.

[ADTM07] Bram Adams, Kris De Schutter, Herman Tromp, and Wolfgang De Meuter. Design recovery
and maintenance of build systems. In Ladan Tahvildari and Gerardo Canfora, editors,
Proceedings of the 23rd International Conference on Software Maintenance (ICSM), pages
114–123, Paris, France, October 2007. IEEE Computer Society.

[Bak95] Brenda S. Baker. On finding duplication and near-duplication in large software systems.
In Proceedings of the Second IEEE Working Conference on Reverse Engineering (WCRE),
pages 86–95, July 1995.

[BD09] Andrew Begel and Robert DeLine. Codebook: Social networking over code. In ICSE
Companion, pages 263–266, 2009.

[BDG+88] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonia E. Keene, Gregor Kiczales,
and D.A. Moon. Common Lisp Object System specification, X3J13. Technical Report 88-
003, (ANSI COMMON LISP), 1988.

[BKA+07] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo. Compar-
ison and evaluation of clone detection tools. IEEE Transactions on Software Engineering,
33(9):577–591, 2007.

[BKL04] Walter Bischofberger, Jan Kühl, and Silvio Löffler. Sotograph – a pragmatic approach to
source code architecture conformance checking. In Software Architecture, volume 3047 of
LNCS, pages 1–9. Springer-Verlag, 2004.

[BLS+03] Chandrasekhar Boyapati, Barbara Liskov, Liuba Shrira, Chuang-Hue Moh, and Steven
Richman. Lazy modular upgrades in persistent object stores. SIGPLAN Not., 38(11):403–
417, 2003.

[BOS91] Paul Butterworth, Allen Otis, and Jacob Stein. The GemStone object database management
system. Commun. ACM, 34(10):64–77, 1991.

[BU04] Gilad Bracha and David Ungar. Mirrors: design principles for meta-level facilities of object-
oriented programming languages. In Proceedings of the International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA’04), ACM SIG-
PLAN Notices, pages 331–344, New York, NY, USA, 2004. ACM Press.

[CH05] Pascal Costanza and Robert Hirschfeld. Language constructs for context-oriented program-
ming: An overview of ContextL. In Proceedings of the Dynamic Languages Symposium
(DLS) ’05, co-organized with OOPSLA’05, pages 1–10, New York, NY, USA, October 2005.
ACM.

[Cha09] Scott Chacon. Pro Git. Apress, xxii, 265 p. edition, August 2009.

[CHV01] Denis Caromel, Fabrice Huet, and Julien Vayssière. A simple security-aware MOP for
Java. In In Metalevel Architectures and Separation of Crosscutting Concerns, Third Inter-
national Conference, REFLECTION 2001, volume LNCS 2192, pages 118–125. Springer-
Verlag, 2001.

[CKS05] Andreas Christl, Rainer Koschke, and Margaret-Anne Storey. Equipping the reflex-
ion method with automated clustering. In Working Conference on Reverse Engineering
(WCRE), pages 89–98, 2005.

[CW98] Reidar Conradi and Bernhard Westfechtel. Version models for software configuration man-
agement. ACM Computing Surveys, 30(2):232–282, June 1998.

[DS01] Rémi Douence and Mario Südholt. A generic reification technique for object-oriented re-
flective languages. Higher Order Symbol. Comput., 14(1):7–34, 2001.

[Duc99] Stéphane Ducasse. Evaluating message passing control techniques in Smalltalk. Journal of
Object-Oriented Programming (JOOP), 12(6):39–44, June 1999.

[ER08] Ekwa D. Ekoko and Martin P. Robillard. Clonetracker: tool support for code clone manage-
ment. In ICSE ’08: Proceedings of the 30th international conference on Software engineering,
pages 843–846, New York, NY, USA, 2008. ACM.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactoring:
Improving the Design of Existing Code. Addison Wesley, 1999.

SNF Proposal — Synchronizing Models and Code 6

[Fow05] Martin Fowler. Patterns of Enterprise Application Architecture. Addison Wesley, 2005.

[GK99] Michael Golm and Jürgen Kleinöder. Jumping to the meta level: Behavioral reflection can
be fast and flexible. In Reflection ’99: Proceedings of the Second International Conference on
Meta-Level Architectures and Reflection, pages 22–39, London, UK, 1999. Springer-Verlag.

[HCN08] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented programming.
Journal of Object Technology, 7(3), March 2008.

[HCRP04] Susanne Hupfer, Li T. Cheng, Steven Ross, and John Patterson. Introducing collaboration
into an application development environment. In CSCW ’04: Proceedings of the 2004 ACM
conference on Computer supported cooperative work, pages 21–24, New York, NY, USA,
2004. ACM.

[Hic08] Rich Hickey. The Clojure programming language. In DLS ’08: Proceedings of the 2008
symposium on Dynamic languages, pages 1–1, New York, NY, USA, 2008. ACM.

[HJJ09] Daqing Hou, Patricia Jablonski, and Ferosh Jacob. Cnp: Towards an environment for the
proactive management of copy-and-paste programming. In 2009 IEEE 17th International
Conference on Program Comprehension, pages 238–242. IEEE, May 2009.

[HO93] William Harrison and Harold Ossher. Subject-oriented programming (a critique of pure
objects). In Proceedings OOPSLA ’93, ACM SIGPLAN Notices, volume 28, pages 411–428,
October 1993.

[JPnMK+09] Ricardo Jimenez-Peris, Marta Pati no Martinez, Bettina Kemme, Francisco Perez-Sorrosal,
and Damian Serrano. A System of Architectural Patterns for Scalable, Consistent and
Highly Available Multi-Tier Service Oriented Infrastructure, volume 5835 of LNCS, pages
1–23. Springer, 2009.

[KG06] Cory Kapser and Michael W. Godfrey. ”cloning considered harmful” considered harmful.
WCRE ’06, 0:19–28, 2006.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In Mehmet Aksit and
Satoshi Matsuoka, editors, Proceedings ECOOP ’97, volume 1241 of LNCS, pages 220–242,
Jyvaskyla, Finland, June 1997. Springer-Verlag.

[Kos08] Rainer Koschke. Identifying and removing software clones. In Software Evolution, chapter 2,
pages 15–36. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[KS03] Rainer Koschke and Daniel Simon. Hierarchical reflexion models. In Proceedings of the
10th Working Conference on Reverse Engineering (WCRE 2003), page 36. IEEE Computer
Society, 2003.

[KSNM05] Miryung Kim, Vibha Sazawal, David Notkin, and Gail C. Murphy. An empirical study
of code clone genealogies. In Proceedings of European Software Engineering Conference
(ESEC/FSE 2005), pages 187–196, New York NY, 2005. ACM Press.

[Mar06] Cristina Marinescu. Identification of design roles for the assessment of design quality in
enterprise applications. In Proceedings of International Conference on Program Compre-
hension (ICPC 2006), pages 169–180, Los Alamitos CA, 2006. IEEE Computer Society
Press.

[Mar07a] Cristina Marinescu. Discovering the objectual meaning of foreign key constraints in enter-
prise applications. Reverse Engineering, Working Conference on, 0:100–109, 2007.

[Mar07b] Cristina Marinescu. Identification of Relational Discrepancies between Database Schemas
and Source-Code in Enterprise Applications. In Symbolic and Numeric Algorithms for Sci-
entific Computing, 2007. SYNASC. International Symposium on, pages 93–100, September
2007.

[McA95] Jeff McAffer. Meta-level programming with coda. In W. Olthoff, editor, Proceedings ECOOP
’95, volume 952 of LNCS, pages 190–214, Aarhus, Denmark, August 1995. Springer-Verlag.

[MH02] Audris Mockus and James D. Herbsleb. Expertise browser: a quantitative approach to
identifying expertise. In ICSE ’02: Proceedings of the 24th International Conference on
Software Engineering, pages 503–512, New York, NY, USA, 2002. ACM.

SNF Proposal — Synchronizing Models and Code 7

[MJ06] Cristina Marinescu and Ioan Jurca. A meta-model for enterprise applications. In SYNASC
’06: Proceedings of the Eighth International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing, pages 187–194, Washington, DC, USA, 2006. IEEE Com-
puter Society.

[MKPW06] Kim Mens, Andy Kellens, Frédéric Pluquet, and Roel Wuyts. Co-evolving code and design
with intensional views — a case study. Journal of Computer Languages, Systems and
Structures, 32(2):140–156, 2006.

[MM01] Robert C. Miller and Brad A. Myers. Interactive simultaneous editing of multiple text
regions. In Proceedings of the General Track: 2002 USENIX Annual Technical Conference,
pages 161–174, Berkeley, CA, USA, 2001. USENIX Association.

[MMW02] Kim Mens, Tom Mens, and Michel Wermelinger. Maintaining software through intentional
source-code views. In Proceedings of SEKE 2002, pages 289–296. ACM Press, 2002.

[MN97] Gail C. Murphy and David Notkin. Reengineering with reflexion models: A case study.
IEEE Computer, 8:29–36, 1997.

[MNS95] Gail Murphy, David Notkin, and Kevin Sullivan. Software reflexion models: Bridging the
gap between source and high-level models. In Proceedings of SIGSOFT ’95, Third ACM SIG-
SOFT Symposium on the Foundations of Software Engineering, pages 18–28. ACM Press,
1995.

[MPG03] Kim Mens, Bernard Poll, and Sebastian Gonzalez. Using intentional source-code views
to aid software maintenance. In Software Maintenance, 2003. ICSM 2003. Proceedings.
International Conference on, pages 169–178, September 2003.

[MW88] Daniel P. Friedman M. Wand. The mystery of the tower revealed: A non-reflective descrip-
tion of the reflective tower. In Lisp and Symbolic Computation, pages 298–307, 1988.

[NHFP08] Iulian Neamtiu, Michael Hicks, Jeffrey S. Foster, and Polyvios Pratikakis. Contextual ef-
fects for version-consistent dynamic software updating and safe concurrent programming.
SIGPLAN Not., 43(1):37–49, 2008.

[OB99] Alexandre Oliva and Luiz Eduardo Buzato. The design and implementation of Guarana. In
Proceedings of the 5th USENIX Conference on Object-Oriented Technologies and Systems
(COOTS’99), pages 203–216, San Diego, California, USA, May 1999.

[RC00] Barry Redmond and Vinny Cahill. Iguana/J: Towards a dynamic and efficient reflective
architecture for java. In Proceedings of European Conference on Object-Oriented Program-
ming, workshop on Reflection and Meta-Level Architectures, 2000.

[RC02] Barry Redmond and Vinny Cahill. Supporting unanticipated dynamic adaptation of appli-
cation behaviour. In Proceedings of European Conference on Object-Oriented Programming,
volume 2374, pages 205–230. Springer-Verlag, 2002.

[RL07] Romain Robbes and Michele Lanza. A change-based approach to software evolution. Elec-
tronic Notes in Theoretical Computer Science (ENTCS), 166:93–109, January 2007.

[RL08] Romain Robbes and Michele Lanza. How program history can improve code completion. In
Proceedings of ASE 2008 (23rd International Conference on Automated Software Engineer-
ing), pages 317–326, 2008.

[SU96] Randall B. Smith and Dave Ungar. A simple and unifying approach to subjective objects.
TAPOS special issue on Subjectivity in Object-Oriented Systems, 2(3):161–178, 1996.

[Tan08] Éric Tanter. Contextual values. In Proceedings of the 4th ACM Dynamic Languages Sym-
posium (DLS 2008), Paphos, Cyprus, July 2008. ACM Press. To appear.

[Tan09] Éric Tanter. Reflection and open implementations. Technical Report TR/DCC-2009-13,
University of Chile, November 2009.

[TBG04] Michael Toomim, Andrew Begel, and Susan L. Graham. Managing duplicated code with
linked editing. In VLHCC ’04: Proceedings of the 2004 IEEE Symposium on Visual Lan-
guages - Human Centric Computing, pages 173–180, Washington, DC, USA, 2004. IEEE
Computer Society.

[TJV02] Eddy Truyen, Wouter Joosen, and Pierre Verbaeten. Consistency management in the pres-
ence of simultaneous client-specific views. In ICSM ’02: Proceedings of the International
Conference on Software Maintenance (ICSM’02), page 501, Washington, DC, USA, 2002.
IEEE Computer Society.

SNF Proposal — Synchronizing Models and Code 8

[TNCC03] Éric Tanter, Jacques Noyé, Denis Caromel, and Pierre Cointe. Partial behavioral reflec-
tion: Spatial and temporal selection of reification. In Proceedings of OOPSLA ’03, ACM
SIGPLAN Notices, pages 27–46, nov 2003.

[US87] David Ungar and Randall B. Smith. Self: The power of simplicity. In Proceedings OOPSLA
’87, ACM SIGPLAN Notices, volume 22, pages 227–242, December 1987.

[VTFD07] Mandana Vaziri, Frank Tip, Stephen Fink, and Julian Dolby. Declarative object identity
using relation types. In ECOOP, pages 54–78, 2007.

[WS99] Ian Welch and Robert Stroud. Dalang – a reflective Java extension, 1999. In Proceedings
of the OOPSLA 99 Workshop on Reflective Programming in C++ and Java, Vancouver,
Canada, Oct.

[WS01] Ian Welch and Robert J. Stroud. Kava — using bytecode rewriting to add behavioural reflec-
tion to Java. In Proceedings of the 6th USENIX Conference on Object-Oriented Technology
(COOTS’2001), pages 119–130, San Antonio, Texas, USA, February 2001.

[Wu98] Zhixue Wu. Reflective Java and a reflective component-based transaction architecture, 1998.
In Proceedings of the ACM OOPSLA 98 Workshop on Reflective Programming in Java and
C++, Oct. 1998.

[XE02] Yichen Xie and Dawson Engler. Using redundancies to find errors. In Proceedings of the
Tenth ACM SIGSOFT Symposium on Foundations of Software Engineering, pages 51–60.
ACM Press, 2002.

2.2 Current state of own research

The Software Composition Group has extensive experience with reflection in programming lan-
guages, software (meta-)modeling, static and dynamic analysis of complex software systems, and
reverse and re-engineering. We briefly summarize some of the more significant research results
and publications which form the background to this proposal. In particular, we point to the
paper Model-centric, Context-aware Software Adaptation [NDR09] (included with this proposal),
which summarizes the research in our current SNF project, Bringing Models Closer to Code1, and
anticipates the research proposed here.

All papers are accessible online from: http://scg.unibe.ch/publications/.

2.2.1 Dynamic meta-objects

Piccola is a simple, formally specified composition language [AN05] for building applications from
components. Piccola makes use of reflection to build up component models at run-time. Since
Piccola provides a bridge to Java, it makes use of dynamically generated adaptors to communicate
between Java objects and Piccola components [NAK03].

ByteSurgeon [DDT06] is a framework for transforming and annotating Smalltalk bytecode at
runtime. Geppetto [Röt06] is a dynamic runtime meta object protocol for behavioral reflection
that has been built on top of ByteSurgeon. Geppetto allows for a very fine-grained control of
behavioral reflection. Since bytecode adaptation has several limitations, tools which are closer to
the source code were developed. Persephone [DDLM07] introduced an approach to sub-method
reflection using a model of methods based on abstract syntax trees (ASTs). Persephone works
by annotating the AST nodes with metadata that can later be used for modifying execution.
One application of Persephone’s sub-method reflection was TypePlug [HDN09], a pluggable type
system for Smalltalk.

1http://scg.unibe.ch/research/snf08

http://scg.unibe.ch/publications/
http://scg.unibe.ch/research/snf08

SNF Proposal — Synchronizing Models and Code 9

ByteSurgeon, Geppetto and Persephone were used to develop Reflectivity [Den08], which pro-
vides unanticipated partial behavioral and structural reflection at the sub-method level, using
ASTs rather than source code or bytecode as underlying model of the software.

Dynamic Synchronization [RN09] provides first-class synchronization specifications which ex-
press safety requirements, and a mechanism built on top of Reflectivity which dynamically adapts
objects to different runtime situations.

Pinocchio2 is an open language system bootstrapped from a fully reflective runtime. A key
goal of Pinocchio is to eliminate the barrier between the virtual machine and the run-time system
of a programming language. Pinocchio is still in an early stage of development.

Although none of the previous work listed above fully addresses the problem of dynamic adap-
tation of individual objects, sub-method partial behavioral reflection offers the finest degree of
control. For this reason we are proposing to extend this approach with dynamic meta-objects to
run-time object adaptation.

2.2.2 First-class, active contexts

The semantics of Piccola (see above) is based on the notion of a form, which serves not only as
an extensible record (i.e., a primitive form of object), but also as a kind of first-class dynamic
namespace [AN00]. This simple mechanism turned out to be extremely useful for constructing
multiple contexts for code to execute. By controlling the visibility of services within a namespace,
one could, for example, define a sandbox for running untrusted code, or provide special namespaces
with limited or extended resources. At the core, Piccola is purely functional, so it is not possible
for components to move from one context to another.

Classboxes [BDNW05] addressed the problem of extending existing software in a controlled
way. Classboxes form a module system in which imported classes may be extended with purely
local adaptations. Classboxes provide so-called local rebinding of method changes. Objects of the
same class instantiated from other classboxes will not see those extensions. Classboxes were first
used for structural scoping of the extensions, but could easily be extended to provide dynamic
adaption of the behavior of objects upon a particular context.

Changeboxes [DGL+07] are loosely inspired by classboxes, but they address several different
issues within a consistent model: (i) they capture the semantics of changes as they happen, (ii) they
limit the scope of changes to a particular changebox and (iii) they are activated and deactivate
dynamically on the context. Unlike classboxes, which focus on class extensions, changeboxes
treat changes as first class entities. Although changeboxes can be activated dynamically, objects
cannot migrate from one changebox to another. Context-dependent adaptations are therefore not
supported.

Object Flow Analysis [LGN08] uses first-class aliases to keep track of of the flow of objects
during execution. As a side effect, the complete historical context of objects is maintained, thus
enabling back-in time debugging [LFN09].

An initial attempt has been made to develop a formal model of evolving objects that adapt to
changing context [DCGN08].

2http://scg.unibe.ch/research/pinocchio

http://scg.unibe.ch/research/pinocchio

SNF Proposal — Synchronizing Models and Code 10

2.2.3 Linked, active source code

Clone detection has been intensively studied by the Software Composition Group. Research at
the SCG has compared techniques for clone detection [DNR06, RDL04], and found a lightweight
method that is fast and easy to implement and provides state of the art accuracy in detecting
clones.

Hermion [RGN08] and Senseo [RHV+09] augment the traditional static source code view pro-
vided by an Integrated Development Environment (IDE) with dynamic information in an attempt
to support development and maintenance tasks that can benefit from such precise information.

Moose [NDG05] is a platform for software reverse and re-engineering based on an extensible,
language-independent meta-model. It provides basic infrastructure for modeling existing software
projects, querying models, collecting software metrics, and generating visualizations of models.
Moose has been used as the basis for a large range of research projects in program comprehension
resulting in numerous publications3.

2.2.4 Polyglot systems modeling and analyses

Moose has been used to develop various techniques to recover high-level information implicit in
complex software systems. A technique for iteratively recovering implicit information concerning
roles and collaborations was developed, exploiting the correlation between static and dynamic
information [RD99, RD02]. In another project, formal concept analysis was used to recover col-
laboration patterns from static source code [ABN04]. Yet another project addressed the problem
of understanding how features evolve in a software system by recovering the relationship between
features and software components [GDG06].

Software metrics and visualization play an important role in reducing the large amount of data
in a complex software system and extracting useful information from it. Polymetric views [LD03]
offer a lightweight technique to map various direct metrics to simple visualizations that provide
compact, high-level views of a software system. Mondrian [MGL06] is a component-based visu-
alization framework that allows polymetric views to be interactively scripted using an internal
domain specific language.

Tool-building is an important but often underrated aspect of software engineering. Glam-
our [BGR+09] is a component-based framework for building model browsers. Like Mondrian,
Glamour offers an internal domain specific language for scripting browsers. In this way, a ded-
icated browser to support specialized development or analysis tasks can be quickly and cheaply
produced.

We have already spent initial effort to analyze technical problems in polyglot systems [Per09],
such as the identification of inconsistent transaction scopes inside Java Enterprise Applications
(JEAs). In this work we identified that the FAMIX Meta-Model [TDDN00] is not expressive
enough to capture the idiosyncrasies of JEAs. Therefore, to perform high-level analyses of polyglot
systems, we need a more expressive meta-model.

3http://www.moosetechnology.org/publications/list

http://www.moosetechnology.org/publications/list

SNF Proposal — Synchronizing Models and Code 11

References

[ABN04] Gabriela Arévalo, Frank Buchli, and Oscar Nierstrasz. Detecting implicit collaboration pat-
terns. In Proceedings of WCRE ’04 (11th Working Conference on Reverse Engineering), pages
122–131. IEEE Computer Society Press, November 2004.

[AN00] Franz Achermann and Oscar Nierstrasz. Explicit namespaces. In Jürg Gutknecht and Wolf-
gang Weck, editors, Modular Programning Languages, Proceedings of JMLC 2000 (Joint Mod-
ular Languages Conference), volume 1897 of LNCS, pages 77–89, Zürich, Switzerland, Septem-
ber 2000. Springer-Verlag.

[AN05] Franz Achermann and Oscar Nierstrasz. A calculus for reasoning about software components.
Theoretical Computer Science, 331(2-3):367–396, 2005.

[BDNW05] Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel Wuyts. Classboxes: Con-
trolling visibility of class extensions. Journal of Computer Languages, Systems and Structures,
31(3-4):107–126, December 2005.

[BGR+09] Philipp Bunge, Tudor Gı̂rba, Lukas Renggli, Jorge Ressia, and David Röthlisberger. Scripting
browsers with Glamour. European Smalltalk User Group 2009 Technology Innovation Awards,
August 2009. Glamour was awarded the 3rd prize.

[DCGN08] Mariangiola Dezani-Ciancaglini, Paola Giannini, and Oscar Nierstrasz. A calculus of evolving
objects. Scientific Annals of Computer Science, XVIII:63–98, 2008.

[DDLM07] Marcus Denker, Stéphane Ducasse, Adrian Lienhard, and Philippe Marschall. Sub-method
reflection. In Journal of Object Technology, Special Issue. Proceedings of TOOLS Europe 2007,
volume 6/9, pages 231–251. ETH, October 2007.

[DDT06] Marcus Denker, Stéphane Ducasse, and Éric Tanter. Runtime bytecode transformation for
Smalltalk. Journal of Computer Languages, Systems and Structures, 32(2-3):125–139, July
2006.

[Den08] Marcus Denker. Sub-method Structural and Behavioral Reflection. PhD thesis, University of
Bern, May 2008.

[DGL+07] Marcus Denker, Tudor Gı̂rba, Adrian Lienhard, Oscar Nierstrasz, Lukas Renggli, and Pascal
Zumkehr. Encapsulating and exploiting change with Changeboxes. In Proceedings of the 2007
International Conference on Dynamic Languages (ICDL 2007), pages 25–49. ACM Digital
Library, 2007.

[DNR06] Stéphane Ducasse, Oscar Nierstrasz, and Matthias Rieger. On the effectiveness of clone
detection by string matching. Journal of Software Maintenance and Evolution: Research and
Practice (JSME), 18(1):37–58, January 2006.

[GDG06] Orla Greevy, Stéphane Ducasse, and Tudor Gı̂rba. Analyzing software evolution through fea-
ture views. Journal of Software Maintenance and Evolution: Research and Practice (JSME),
18(6):425–456, 2006.

[HDN09] Niklaus Haldimann, Marcus Denker, and Oscar Nierstrasz. Practical, pluggable types for a
dynamic language. Journal of Computer Languages, Systems and Structures, 35(1):48–64,
April 2009.

[LD03] Michele Lanza and Stéphane Ducasse. Polymetric views—a lightweight visual approach to
reverse engineering. Transactions on Software Engineering (TSE), 29(9):782–795, September
2003.

[LFN09] Adrian Lienhard, Julien Fierz, and Oscar Nierstrasz. Flow-centric, back-in-time debugging. In
Objects, Components, Models and Patterns, Proceedings of TOOLS Europe 2009, volume 33
of LNBIP, pages 272–288. Springer-Verlag, 2009.

[LGN08] Adrian Lienhard, Tudor Gı̂rba, and Oscar Nierstrasz. Practical object-oriented back-in-time
debugging. In Proceedings of the 22nd European Conference on Object-Oriented Programming
(ECOOP’08), volume 5142 of LNCS, pages 592–615. Springer, 2008. ECOOP distinguished
paper award.

[MGL06] Michael Meyer, Tudor Gı̂rba, and Mircea Lungu. Mondrian: An agile visualization framework.
In ACM Symposium on Software Visualization (SoftVis’06), pages 135–144, New York, NY,
USA, 2006. ACM Press.

SNF Proposal — Synchronizing Models and Code 12

[NAK03] Oscar Nierstrasz, Franz Achermann, and Stefan Kneubühl. A guide to JPiccola. Technical
Report IAM-03-003, Institut für Informatik, Universität Bern, Switzerland, June 2003.

[NDG05] Oscar Nierstrasz, Stéphane Ducasse, and Tudor Gı̂rba. The story of Moose: an agile
reengineering environment. In Proceedings of the European Software Engineering Conference
(ESEC/FSE’05), pages 1–10, New York NY, 2005. ACM Press. Invited paper.

[NDR09] Oscar Nierstrasz, Marcus Denker, and Lukas Renggli. Model-centric, context-aware software
adaptation. In Betty H.C. Cheng, Rogerio de Lemos, Holger Giese, Paola Inverardi, and Jeff
Magee, editors, Software Engineering for Self-Adaptive Systems, volume 5525 of LNCS, pages
128–145. Springer-Verlag, 2009.

[Per09] Fabrizio Perin. Enabling the evolution of J2EE applications through reverse engineering
and quality assurance. In Proceedings of the PhD Symposium at the Working Conference on
Reverse Engineering (WCRE 2009), pages 291–294. IEEE Computer Society Press, October
2009.

[RD99] Tamar Richner and Stéphane Ducasse. Recovering high-level views of object-oriented appli-
cations from static and dynamic information. In Hongji Yang and Lee White, editors, Pro-
ceedings of 15th IEEE International Conference on Software Maintenance (ICSM’99), pages
13–22, Los Alamitos CA, September 1999. IEEE Computer Society Press.

[RD02] Tamar Richner and Stéphane Ducasse. Using dynamic information for the iterative recovery
of collaborations and roles. In Proceedings of 18th IEEE International Conference on Software
Maintenance (ICSM’02), page 34, Los Alamitos CA, October 2002. IEEE Computer Society.

[RDL04] Matthias Rieger, Stéphane Ducasse, and Michele Lanza. Insights into system-wide code du-
plication. In Proceedings of 11th Working Conference on Reverse Engineering (WCRE’04),
pages 100–109. IEEE Computer Society Press, November 2004.

[RGN08] David Röthlisberger, Orla Greevy, and Oscar Nierstrasz. Exploiting runtime information in
the IDE. In Proceedings of the 16th International Conference on Program Comprehension
(ICPC 2008), pages 63–72, Los Alamitos, CA, USA, 2008. IEEE Computer Society.

[RHV+09] David Röthlisberger, Marcel Härry, Alex Villazón, Danilo Ansaloni, Walter Binder, Oscar
Nierstrasz, and Philippe Moret. Augmenting static source views in IDEs with dynamic metrics.
In Proceedings of the 25th International Conference on Software Maintenance (ICSM 2009),
pages 253–262, Los Alamitos, CA, USA, 2009. IEEE Computer Society.

[RN09] Jorge Ressia and Oscar Nierstrasz. Dynamic synchronization — a synchronization model
through behavioral reflection. In Proceedings of International Workshop on Smalltalk Tech-
nologies (IWST 2009). ACM Digital Library, 2009. To appear.

[Röt06] David Röthlisberger. Geppetto: Enhancing Smalltalk’s reflective capabilities with unantici-
pated reflection. Master’s thesis, University of Bern, January 2006.

[TDDN00] Sander Tichelaar, Stéphane Ducasse, Serge Demeyer, and Oscar Nierstrasz. A meta-model for
language-independent refactoring. In Proceedings of International Symposium on Principles
of Software Evolution (ISPSE ’00), pages 157–167. IEEE Computer Society Press, 2000.

2.3 Detailed Research Plan

This project addresses synchronization of source code and running software with changing require-
ments at various granularities and time scales.

• Dynamic meta-objects will support fine-grained behavioral adaptation of individual objects
or groups of objects

• First-class, active contexts will enable dynamic adaptation of running applications to mul-
tiple software versions

• Linked, active source code will support medium and long-term synchronization of multiple
versions of evolving source code

SNF Proposal — Synchronizing Models and Code 13

• Polyglot systems modeling and analyses will target coarse-grained, long-term evolution of
complex, polyglot systems

2.3.1 Dynamic meta-objects

Applications today are subject to many forms of dynamic adaptation, but these are usually re-
stricted to limited policies that are fixed in advance. Consider the classical cases of concurrency
and persistence. Multithreaded applications need to synchronize their use of resources in order
to avoid data races and other safety and liveness issues. Synchronization code is typically in-
terspersed with functional code, thereby impacting understandability and maintainability of the
code base. The synchronization policy is fixed, and cannot be dynamically enabled or disabled
when needed. Transactional behavior for persistence is similar. The transactional mechanisms to
be used as well as the policy in place (e.g., pessimistic or optimistic) is hard-wired in the source
code, and cannot be adapted at run-time depending on the current platform or the persistence
infrastructure available at different sites in a distributed environment.

Existing approaches to support run-time adaptation are generally low-level, fragile with respect
to source code evolution, and are not designed to enable composition of multiple adaptations.
Bytecode manipulation, for example, works at a much lower level of abstraction than source code.
With AST annotation approaches we make the semantic gap smaller but we only rely on a link
abstraction which will delegate responsibility for intervention to a meta-object. Both of these
approaches are difficult to use and at a low level, since we either have to know how and where
to manipulate the bytecode, or we have to explicitly add links to the AST representation. Some
approaches like Iguana provide an meta-object abstraction on top of bytecode manipulation, but
they limit which reifications you can reflect on.

We propose to develop an approach to run-time adaptation based on dynamic meta-objects.
Dynamic meta-objects will not be restricted to reifications offered by the host language, but will
be able to reify arbitrary domain abstractions. Furthermore, they can be assigned to individual
objects or groups of objects, not just classes.

Meta-object framework. We plan to extend the behavioral reflection framework offered by
Reflectivity with dynamic meta-objects. Each meta-object will maintain a set of links that
adapt the base object behavior and structure. The framework will also extend the meta-
object model of Iguana by allowing meta-objects to be composed of other meta-objects. For
example, a meta-object to provide CodA-like message sends will be composed of an existing
message send reification meta-object. To provide dynamically synchronized access to objects
we will use the meta-object that reifies the instance variable accesses and then synchronizes
the process of accessing the instance variable.

Case studies. We will use the domain of synchronization as a case study for validating dynamic
meta-objects. Synchronization policies can be modeled as meta-objects shared by the con-
cerned objects. Meta-objects can abstract from the functional details of the base-level objects
and encapsulate the technical details of a particular synchronization policy. Given a change
in the the runtime environment, the meta-objects may be dynamically enabled or disabled.
For example, if the concerned objects are in a single-threaded environment, synchronization
may be safely switched off. We also plan to explore other suitable case studies to assess the

SNF Proposal — Synchronizing Models and Code 14

composability of dynamic meta-objects for concurrency with others for, say, transactional
behavior, authorization, or localization.

Object-specific behavior. Reflection facilities need to be able to specify behavior and structure
for a single object as well as for a group of objects. Instead of binding meta-objects strictly
to classes, as is common in most reflective approaches, we propose to introduce meta-objects
that can adapt the structure and behavior of an arbitrary group of objects, even if they do
not belong to the same class. Furthermore, meta-objects should be dynamically composable
to address dynamic run-time changes of, say, policies or service availability.

Language design. In the long term, we plan to explore the design and implementation of a core
language in which the state and behavior is no longer defined by a class but by dynamic
meta-objects. Such a language model would be maximally dynamic, leaving an object to be
nothing but an identifier controlled by multiple meta-objects. Classes could be modeled by
a specific meta-object that defines the structure and behavior of its instances. Although we
plan to use Smalltalk as the platform for modeling, implementing and validating dynamic
meta-objects, Smalltalk’s virtual machine inherently assumes a class-based language model.
We therefore plan to use Pinocchio as a platform for experimenting with the language design,
since Pinocchio offers a fully bootstrapped open language system in which there exists no
separation between the virtual machine and the runtime system.

2.3.2 First-class, active contexts

Whereas dynamic meta-objects enable fine-grained object adaptation, they do not offer a sufficient
mechanism to synchronize modules or whole programs with changing contexts and requirements.
Similarly, existing context-oriented approaches offer mechanisms (based on layers) to adapt code
to contexts, but they do not model context directly. The notion of a declarative context switch
has scarcely been investigated. Instead, context is typically hard-coded in rules that sample and
test arbitrary environmental attributes.

Existing context-oriented approaches are also limited to certain types of behavioral variations.
Modification of state is either missing (as in Classboxes and Changeboxes) or is supported only
to a limited extent (as in ContextL).

We plan to develop a comprehensive context-oriented platform based on first-class contexts
that play an active role in triggering changes in state and behavior of concerned objects. This
work will build on the infrastructure offered by dynamic meta-objects, especially during the first
year where these two tracks will be developed in close cooperation. The main goal of this research
is to elaborate a comprehensive set of abstractions to express and reason about contextual mod-
ifications, in particular context switching. The impact of context switching on existing objects
will be studied, and this should in particular bring state modification to the area of possible con-
textual modifications. A particularly compelling use case is to dynamically adapt the state and
behavior of objects to contexts in which the software versions change. Not only the object, but its
clients and providers may behave differently in a heterogeneous, distributed, and evolving system.
Objects undergoing context changes should nevertheless behave predictably.

The research will consist of the following tracks:

SNF Proposal — Synchronizing Models and Code 15

Model. We will develop a model where the behavior, interface, and state of an object is contextual.
We will also design a declarative language to express context switches, inspired partly by
AOP point-cut languages. Context switches will occur at certain points in the execution,
resulting in object behavior to vary over time. In case of a context switch, an object may be
adapted lazily using context-dependent adaptation logic. The model will focus on objects
instead of classes. The identical object may be seen as an instance of a different class (or
different class version) depending on the context.

Semantics. The concrete model will be formalized with operational semantics to reason about
its soundness. A first goal is to prove that the model preserves the semantics of existing
programs. We then plan to prove two important properties: (i) existing thread-safe program
remain thread-safe in our model and (ii) the behavior of an object is always predictable.
A second goal is to prove that custom adaptation logic (which can be user-provided) can
be safely composed. Programs making explicit usage of contexts will be highly dynamic.
Therefore, even if the model is sound, a program may still contain subtle bugs (in a similar
way that a lock acquired and never released is likely a bug). A third goal is then to carry out
static or dynamic analysis of contextual programs in order to increase the confidence in the
program correctness. We plan in particular to extend dynamic type inference to dynamic
context inference and be able to identify which sections of the code run in which contexts.

Run-time support. We expect the execution and memory overhead of contextual method dis-
patch and contextual state to be large unless implemented efficiently in the VM. Memory
management will be addressed first. We will devise an efficient memory management scheme
to reduce the memory footprint, for instance by implementing a “copy-on-write” strategy.
We expect most objects to “die young” (as assumed by generational garbage collection),
which would imply little or no overhead for such objects. The memory usage of long-lived
objects in our model will need to be studied first to devise further optimizations. In a sec-
ond step we will implement an efficient multi-dimensional dispatch to support active contexts
with low performance overhead.

Case studies. We will assess the applicability of our model to solve well-known problems at
different levels. At the code level, we plan to show how selected idioms and design patterns,
such as Memento and Adaptor, can be re-implemented with contexts. At the module level,
we plan to study and assess which incompatibilities between modules can be accommodated
with active contexts. At the system level, we will show that context also provide a foundation
for incremental dynamic software update of whole programs. We will evaluate these case
studies according to two criteria, namely practicability and performance.

2.3.3 Linked, active source code

As complex software systems evolve and similar but distinct versions of software components
proliferate, it becomes harder to keep track of the origins of software artifacts and how changes
may impact their descendants.

We plan to investigate how collaboration takes place and how it can be aided across project
boundaries. As a platform for experiments we plan to implement a prototype of a scheme to

SNF Proposal — Synchronizing Models and Code 16

initially create and then maintain links between clones of software snippets. In this prototype, a
code search engine will assist the developer by integrating its results into the source code. The
IDE then remembers the origin of the code snippet and informs the repository that a clone was
created, thus creating a link between original and copy. We will refer to clones created in this
way as hot clones. Whenever a hot clone changes, the linked clones’ developers are informed and
offered the option to update their instance. Also, whenever a method is inspected, its clones will
be inspectable, too, thus providing valuable information for developers. The connections between
clone instances are therefore proactive and bidirectional.

Specifically, we plan to follow the following research tracks:

Hot clone model. We will develop a model of hot clones and a prototype implementing the
model. We plan to increase the value of locally fixing bugs by extending the IDE so that
the provider of a library is informed when local changes occur. This should increase the
chance of the revision being incorporated into the supplier’s version. We plan to use the
same approach to establish links between software clones across project boundaries, thus
making code duplication visible, and trackable. Thus, when code is changed by supplier
or consumer, the other party is informed of the change and asked whether they wish to
integrate the change or not.

Publishability. In our view, the tight integration between supplier and consumer of code snippets
will benefit both parties. It may then become interesting to allow suppliers to take special
care that components of their application can be found and copied into other applications.
We plan to investigate how suppliers can mark individual components of their applications
as copyable, and integrate that information with code search engines. If the supplier and
consumer of a code snippet use different coding conventions, integration may pose difficulties
in ensuring that the respective local conventions are followed. We plan to investigate how
the integration of updates in distant clones can be aided programatically.

Clone usage analysis. Establishing a link between consumer and supplier of a code snippet will
create data on code duplication that will give us greater insight into how developers use
code duplication. Conversely, we plan to investigate whether knowledge of the cloned usage
of their own software snippets may aid developers understand possible flaws in their own
design, because clones may be modified to circumvent possibly needless limitations of the
original code.

Linking other software artifacts. Once we’re able to link software clones, we should also link
other kinds of software artifacts. Discussions of a code snippets will be linked with these
code snippets, bug tracker entries that refer to specific software artifacts should be linked
to these software artifacts. Even design sketches and drawings of a user interface could be
linked to the code that generates that user interface. Thus, browsing the source code should
reveal more information than it classically does.

Trustability. We plan to build a central repository of example domain objects and methods.
Going beyond cloned code snippets, entire cloned libraries will be integrated. Developers
can mark fragments of their projects as shareable and then these fragments can serve as

SNF Proposal — Synchronizing Models and Code 17

examples of common domain objects. We plan to allow developers that only copied the
example domain objects to easily modify, discuss them and set a level of trustability. We
plan to investigate how the trustability of examples can be verified and maintained despite
easy accessibility. A promising path is to draw inspiration from Wikipedia and Web 2.0 by
letting the community verbally critique and modify (as in Wikipedia) or vote on (as in many
Web 2.0 applications) these provided examples. We plan to extend the code search engine
to run as the developer is typing and suggest implementations of classes and methods from
the examples repository.

Each of the research tracks we plan to assess by qualitative user studies, where we monitor
the usage of our prototype and assess whether our tools suit the developer’s mental model and
whether it aids the engineering process.

2.3.4 Polyglot systems modeling and analyses

Large software systems such as enterprise applications are generally built using multiple technolo-
gies and languages. The polyglot nature of these systems makes it difficult to obtain an overview
that accurately captures dependencies between the various parts, and consequently to evaluate
their evolution and assess the impact of changes.

In order to enable such analyses we need a unified description of polyglot systems that incor-
porates not only structural elements but also higher-level, architectural concepts. We propose to
model such systems from the perspective of the technologies used to build them. We plan also
to develop new types of analyses in terms of software visualizations, metrics, and architectural
pattern detection, and to validate the meta-model through real-life case studies.

Consider, for example, Java Enterprise Applications (JEAs) composed of Java source code,
various kinds of Enterprise Java Beans (EJBs), XML configuration files, SQL, and various sub-
systems to support persistence, transactions and physical distribution. In such a system it can
be hard to manually determine the scope of existing transactions. As a consequence, changes to
code that accesses the database layer may incorrectly impose redundant or lacking transactions.
Similar difficulties may arise when attempting to reason about other non-functional aspects that
may be specified in a distributed or heterogeneous fashion, such as security and access rights,
reliability, or testability.

The previous example illustrates the difficulties that developers face when trying to understand
dependencies in heterogenous systems like JEAs, for instance to fix a bug or introduce a new
feature. We plan to develop a unified model of polyglot systems to be able to automatically detect
previously hidden dependencies. By raising the level of abstraction our analysis will help software
developers and architects to detect inconsistencies and support the navigation of relationships
between components.

The research will consist of the following tracks.

Polyglot systems modeling. We will develop a technology-centric approach to modeling poly-
glot systems. We will research ways to connect the technology-specific aspects by repre-
senting them in a unified model. We plan to integrate the new meta-model into Moose to
be able to use our existing infrastructure. To drive the modeling effort, we will identify
potential case studies based on open-source and industrial software, and establish modeling

SNF Proposal — Synchronizing Models and Code 18

requirements for querying, navigation and analysis. We plan to seek out partners who can
provide objective analysis requirements for actual applications in use. (We are currently
collaborating with various academic and industrial partners who would be candidates for
this role.). We plan to validate the effectiveness of our approach using the technical issues
provided by our partners as case studies.

Information extraction. Based on the identified case studies and analysis requirements, we will
develop the needed static and dynamic techniques to extract and synchronize models from
the heterogeneous sources of polyglot systems. We plan to collect information from sources
such as Java (DTOs, JSPs, EJBs, Distributed Objects etc.), Smalltalk, SQL, and XML
configurations files of different applications like Hibernate, Toplink, Maven, and Ant.

Analyses. Initially we plan to focus on the analysis of the persistency system and its relations to
the other components. To extract dependencies between system components we plan to also
investigate the build system. In a second step we will focus on the identification of archi-
tectural patterns and violations of architectural constraints, and on change impact analysis.
This research will entail the development of dedicated metrics, queries, and visualizations.
We will develop experimental prototypes supporting the analyses on top of Moose, using
Mondrian and Glamour.

Case studies. We will experimentally validate our approach using the open source and industrial
case studies identified earlier. In controlled experiments we want to evaluate how effective
our approach is to solve the concrete problems that our industrial partners have reported.
Furthermore, based on large open-source systems, we want to evaluate how well our approach
supports developers understanding how changes in one part of the system may affect other
components.

SNF Proposal — Synchronizing Models and Code 19

2.4 Schedule and milestones

Year 1
Dynamic meta-objects – Meta-object framework: extend Reflectivity with dy-

namic meta-objects
– Case studies: analyze existing approaches to dynamic

adaptation, and explore application of dynamic meta-
objects to overcome limitations

First-class, active contexts – Model: develop a model of active contexts and imple-
ment a prototype in Smalltalk

– Semantics: formalize operational semantics of active
contexts

Linked, active source code – Hot clone model: Develop a model of linked software
clones. Implement a prototype that keeps track of clones
introduced by copying from software searches

– Publishability: Extend the prototype to allow sharing
of common business domain objects and procedures.
Carry out case study to establish how people clone,
share, and exchange code snippets

Polyglot systems modeling and
analyses

– Polyglot systems modeling: Develop a meta-model to
capture technological aspects of polyglot software sys-
tems, based on identified case studies

– Information extraction: develop static and dynamic
techniques to extract model data from polyglot software

Year 2
Dynamic meta-objects – Object-specific behavior: explore application of dy-

namic meta-objects to adapt individual objects and
groups of objects.

– Language design: explore dynamic meta-objects as a
foundation for a reflective language without built-in
classes

First-class, active contexts – Run-time support: investigate time and space-
efficient sharing between contexts and efficient context-
dependent dispatch

– Case studies: develop case studies to assess performance
and practicability of active contexts

Linked, active source code – Clone usage analysis: support analysis of clone usage
based on gathered code duplication data

– Linking other software artifacts: the model and ap-
proach will be extended to accommodate other artifacts

– Trustability: extend hot clone model to incorporate
means to assess trust. Implement IDE tools that pro-
pose snippets as one is editing.

Polyglot systems modeling and
analyses

– Analyses: develop analysis techniques, metrics and vi-
sualizations for polyglot systems

– Case studies: carry out empirical studies on open source
and industrial systems previously identified

SNF Proposal — Synchronizing Models and Code 20

2.5 Importance and impact

Software continues to become more complex and heterogeneous, while pressure is increasing for
software to be adapted to changing conditions, both in the long term and in the short term. Despite
this pressure, few novel mechanisms have been developed to support dynamic and disciplined
adaptation of software to continuously changing requirements. This project aims to make several
advances of both academic and industrial interest.

The research proposed here is foundational, and will be mainly disseminated through scientific
venues (i.e., high-impact, peer-reviewed journals and conferences accepting full papers).

The first two tracks focus on aspects of programming language design and run-time support,
and are primarily of interest to language designers and researchers. The second two tracks target
more directly support for developers, and promise to produce not only results of academic interest,
but also prototypes of tools that may influence future development environments.

We are already collaborating informally with partners in the Bern area on analysis of industrial
software, and hope to intensify these partnerships in the context of the proposed project.

We are also actively involved in the development of Pharo4, an open-source Smalltalk devel-
opment environment which aims to offer a clean and stable platform for both academic research
into dynamic languages and professional development with Smalltalk.

Moose is an open-source reengineering platform original developed at the University of Bern
in the context of several EU and SNF projects. We are continuing to develop Moose together
with academic and industrial partners5. The research carried out in this project will influence the
development of Moose, and promote its further dissemination.

4http://www.pharo-project.org
5http://www.moosetechnology.org

http://www.pharo-project.org
http://www.moosetechnology.org

	Summary of the research plan
	Research plan
	Current state of research in the field
	Dynamic meta-objects
	First-class, active contexts
	Linked, active source code
	Polyglot systems modeling and analyses

	Current state of own research
	Dynamic meta-objects
	First-class, active contexts
	Linked, active source code
	Polyglot systems modeling and analyses

	Detailed Research Plan
	Dynamic meta-objects
	First-class, active contexts
	Linked, active source code
	Polyglot systems modeling and analyses

	Schedule and milestones
	Importance and impact

