
Final Scientific Report SNF Project no. 200020-131827
“Synchronizing Models and Code”

January 31, 2016

1 Summary of results
The goal of this project was to enable software developers to quickly and effectively analyze complex
software systems with the help of tools to rapidly construct, query and manipulate software models. The
key results achieved in each of the tracks of this project are as follows:

1. Agile Modeling: we developed and published a novel approach to imprecise parsing, called Bounded
Seas.

2. Meta-Tooling: we developed several advanced prototypes of “moldable” developer tools that can be
easily adapted to various application domains, and tested them extensively with professional devel-
opers.

3. Large-Scale Software Analysis: we have been exploring several parallel tracks on mining software
ecosystems to support developer tasks and activities, such as lightweight type inference for dynamic
languages, and fixes for frequently occurring bugs.

4. Architectural Monitoring: based on extensive empirical surveys, we have developed a high-level
DSL for specifying and monitoring architectural constraints, and validated it with industrial case
studies.

Results
The overall goals of the project have been described in a keynote paper presented at the International
Conference on Program Comprehension [NL12].

Agile Modeling

In this track we have been exploring techniques to rapidly construct models from source code by using
imprecise parsers. An overview paper [NK15] describes both the prior work and the research plan to
explore island parsing, indentation-aware parsing and automatic keyword recognition as steps towards
rapidly building imprecise parsers for a given language.

Island grammars are very promising, but they are very difficult to specify correctly, and they are very
fragile to change, since the specification of the “water” to be ignored depends on the islands to be ex-
tracted. We have therefore been developing a new approach to island parsing called bounded seas, in which
the water is effectively computed from the context of the islands to be recognized [KLN14a] [KLN14b]
[KLIN15].

A prototype of bounded seas has been implemented in PetitParser, a framework for building compos-
able parsers developed at the SCG [KLR+13]. With the help of Masters and Bachelor students, we have
been carrying out case studies with Java and Ruby to determine the effectiveness and robustness of bounded
seas vs. traditional island parsers.

1



Since we also want to exploit structural clues in code to infer model elements, we have been extending
PetitParser to support indentation-aware operators. Numerous languages, like Python, Haskell and F#, rely
on indentation to define structure, but their indentation-aware features differ in significant ways. An early
prototype was developed as a Bachelors project [Giv13].

We have also started with the help of another Bachelors student to explore the use of heuristics to
automatically identify different classes of tokens, such as keywords, in unknown programming languages.
Initial results are quite promising, and we plan to extend the set of heuristics in a followup project [Gug15].

Meta-Tooling

In this track we are investigating how to enable developers in rapidly adapting development tools to support
specific application domains [CGN15].

To this end, we have produced a number of “moldable” developer tools. The Moldable Debugger
[CNG13] [CGN14b] [CDGN15] is a debugging framework that can be easily adapted to different domains,
such as event-driven systems, or parsing.

Another example of such a tool is the Moldable Inspector, a configurable object inspector that can easily
be adapted to a given domain [CGN14a] [CGNS15a] [CGNS15b], and Spotter, a search tool that similarly
adapts itself to various application domains [KBC+15] [SCG+15]. Domain-specific visualizations are a
recurring theme in this work [GC15].

The moldable tools have been integrated into the latest version of the open-source Pharo development
environment1 and are used on a daily basis by professional developers.

In related work, we have been investigating how to offer very high-level support for analysis and soft-
ware visualization of large software corpora [Mer14] [MLN15a] [MLN15b].

Finally, we have completed and published work started in the predecessor project on dynamic updates of
running applications [WLN13] and supporting behavioural variations in running applications [WNTD14]
[TWDN15].

Large-Scale Software Analysis

In this track we have been exploring numerous ways to exploit the large amount of data available in both
the immediate ecosystem of a given application, and the broader context of open source software written
in the same language.

In early work, we analysed the legacy PL/1 ecosystem of a large Swiss financial organization [ALNW13]
[Aes13]. In other work initiated earlier but completed in the current project, we have developed novel tech-
niques to efficiently detect software clones in very large corpora (i.e., all available open-source Java code)
[Vog14] [Sch14b]. These works have inspired many of the threads outlined below.

Pangea2 is a workbench for analysing multi-language software corpora [CCSL14]. Pangea provides a
parallel infrastructure together with a specialized DSL that eases the analysis of a large number of software
models interpreted by the Moose analysis platform.

We have been exploring numerous applications of large-scale software analysis. By ranking most
commonly accessed methods based on their popularity in the ecosystem, we can offer developers a more
productive browsing experience that leads more quickly to relevant source code [SLN14] [SLN14b]. With
Ecosystem-Aware Type Inference (EATI), we analyse the ecosystem of Smalltalk source code to deter-
mine to which concrete types given polymorphic variables are most commonly bound, and exploit this
information back in the IDE [SLN14a]. We have analysed the prevalence of polymorphism in open-source
Smalltalk and Java systems [MCL+15], and we are investigating how to combine static and dynamic anal-
yses to detect polymorphic usages cheaply and efficiently [Mil14]. Most recently, we exploit type hints in
method argument names to effectively infer missing type information [SLN16].

We are also analysing software corpora to mine which kinds of bug fixes occur most frequently. Inter-
estingly, in Java code the most common bug fix is to insert a “null-check” to ensure that a variable being
accessed is properly initialised [OLN14]. An analysis of null checks in 810 open-source Java projects
shows that 35% of all conditionals contain null checks and 71% of the value checked are return values

1http://pharo.org
2http://scg.unibe.ch/research/pangea

2

http://pharo.org
http://scg.unibe.ch/research/pangea


from method calls, suggesting interesting opportunities for improvements to the programming language
and development environment to reduce the prevalence of such bugs [Osm15] [OLLN16].

In other related activity we have explored the impact of identifier names on program readability [LK13],
tracked geographical knowledge transfer within StackOverflow [SL13], and developed a framework for
hierarchical data analysis. [Sch14a]

Finally, we have carried out empirical studies with developers to better understand their needs with
respect to the upstream (i.e., providers) and downstream (i.e., users) of ecosystem resources (i.e., libraries
and tools) [HLSN13] [HLSN14] [Hae14].

Architectural Monitoring

In this track we are exploring ways to track the evolution of a complex software system and monitor
possible violations of architectural constraints.

In the conclusion of earlier work, we have developed tools and techniques to recover software archi-
tecture from an existing code base [LLN14] and we have developed techniques to predict dependencies in
software systems using domain-based coupling [APL+14].

We carried out two extensive empirical studies of software practitioners to determine what kinds of
architectural constraints are most important in practice. A first qualitative study identified which kinds of
constraints and concerns arise in industrial projects in practice and a second, quantitative study measured
the relative importance of these constraints [CLN14a]. An important outcome was to identify the areas
practitioners consider critical and where tool support is lacking.

In subsequent work, we have developed Dictō, a high-level domain specific language for specifying
and testing architectural rules [CLN14b] [CLN14c] [Car15b] [CLN15] [Car15a] [CLT+16]. Based on
the results of the empirical studies, Dictō was designed to be able to easily express a large variety of
architectural constraints. Dictō can be connected to various back-end tools to perform the actual analyses.
Dictō has already been connected to a large variety of tools, and we have carried out several case studies
with external partners to assess its effectiveness [Car16] [Tru15].

In related work, we have developed Marea, a tool to detect and break dependency cycles in software
systems using an explicit profit and cost model to determine which dependencies are most “profitable” to
break [Aga15] [CALN16].

Staff contributions
This project was supervised by Oscar Nierstrasz (Full Professor) and Mircea Lungu (Postdoc). Please
note that Dr. Lungu has left Switzerland to assume a position as Assistant Professor (tenure-track) at the
University of Groningen (Netherlands).

Here we summarize the contributions of the project staff (PhD students) throughout the project. Note
that we only report on the staff whose salaries are paid from this project. In addition, Leonel Merino,
Nevena Milojković and Haidar Osman have been contributing to this project, while their salaries have been
paid by the University of Bern.

• Andrea Caracciolo has contributed to the Architectural Monitoring track, in which he carried out
extensive qualitative and quantitative studies with software developers to determine how software
architecture is specified and checked in practice [CLN14a]. He subsequently developed a high-
level architectural monitoring language, Dictō [CLN14b] [CLN15] [CLN14c] [Car15b] [Car15a]
[CLT+16], that offers a uniform interface to underlying tools to check constraints. An example is
Marea [CALN16], a tool to detect and break dependency cycles. Andrea Caracciolo co-supervised
two MSc theses related to this work [Tru15] [Aga15]. He is scheduled to defend his PhD thesis
[Car16] on March 22, 2016.

• Andrei Chiş has been working on the Meta-Tooling track on adaptable, or “moldable” development
tools [CGN15]. He received the Best Student Paper award for his full paper on the Moldable Debug-
ger at the Software Language Engineering (SLE) conference 2014 [CGN14b]. An extended journal
paper has also been published on the Moldable Debugger [CDGN15]. Andrei Chiş received a Euro-
pean Smalltalk User Group 2014 Technology Innovation Award (1st prize) for his implementation of

3



the Moldable Inspector [CGNS15a] [CGNS15b]. He also received a SPLASH 2015 Distinguished
Demo Award for presenting the Moldable Inspector [CGN14a] [GC15], and a European Smalltalk
User Group 2015 Technology Innovation Award (1st prize) for the Spotter search tool [SCG+15]
[KBC+15]. Andrei Chiş is scheduled to defend his thesis in September 2016.

• Jan Kurš has been working on the Agile Modeling track [NK15]. He developed Bounded Seas, a
novel approach to imprecise parsing [KLN14a] [KLN14b], and has published a journal paper on
the approach [KLIN15]. The approach has been validated in the PetitParser parsing framework
[KLR+13]. Jan Kurš has co-supervised two Bachelors theses on related themes [Giv13] [Gug15] and
a further MSc thesis (in progress). He is currently on a four month internship at Google (Mountain
View CA), and plans to defend his thesis in the Spring of 2016.

• Nikolaus Schwarz was mainly employed on the predecessor project (Synchronizing Models and
Code, 200020 131827), and worked for only one month on this project. He successfully defended
his PhD thesis, entitled Scaleable Code Clone Detection [Sch14b], in February 2014. Since then he
has been employed as a researcher at Google (Zürich).

• Boris Spasojević has been working on the Large-Scale Software Analysis track, specifically on
ecosystem mining tools [CCSL14], on mining the software ecosystem to improve type inference
[SLN14a] [SLN16], and on helping developers to rapidly identify relevant source code [SLN14]
[SLN14b]. He spent three months at Google (Munich) on an internship in the summer of 2015.
Boris Spasojević is scheduled to defend his PhD at the end of 2016 or early 2017.

4



2 Research output
All reported publications are available electronically from the project’s home page:

http://scg.unibe.ch/asa

We also list selected Bachelors and Masters theses directly relevant to this project.

Journal papers
[APL+14] Amir Aryani, Fabrizio Perin, Mircea Lungu, Abdun Naser Mahmood, and Oscar Nierstrasz. Predicting dependencies

using domain-based coupling. Journal of Software: Evolution and Process, 26(1):50–76, 2014. URL: http://scg.
unibe.ch/archive/papers/Arya14aJSME.pdf, doi:10.1002/smr.1598.

[CDGN15] Andrei Chiş, Marcus Denker, Tudor Gı̂rba, and Oscar Nierstrasz. Practical domain-specific debuggers using the mold-
able debugger framework. Computer Languages, Systems & Structures, 44, Part A:89–113, 2015. Special issue on the
6th and 7th International Conference on Software Language Engineering (SLE 2013 and SLE 2014). URL: http:
//scg.unibe.ch/archive/papers/Chis15c-PracticalDomainSpecificDebuggers.pdf, doi:
10.1016/j.cl.2015.08.005.

[KLIN15] Jan Kurš, Mircea Lungu, Rathesan Iyadurai, and Oscar Nierstrasz. Bounded seas. Computer Languages, Systems
& Structures, 44, Part A:114 – 140, 2015. Special issue on the 6th and 7th International Conference on Soft-
ware Language Engineering (SLE 2013 and SLE 2014). URL: http://scg.unibe.ch/archive/papers/
Kurs15a-BoundedSeas.pdf, doi:10.1016/j.cl.2015.08.002.

[LLN14] Mircea Lungu, Michele Lanza, and Oscar Nierstrasz. Evolutionary and collaborative software architecture recovery
with Softwarenaut. Science of Computer Programming, 79(0):204 – 223, 2014. URL: http://scg.unibe.ch/
archive/papers/Lung14a.pdf, doi:10.1016/j.scico.2012.04.007.

[NK15] Oscar Nierstrasz and Jan Kurš. Parsing for agile modeling. Science of Computer Programming, 97, Part 1(0):150–
156, 2015. URL: http://scg.unibe.ch/archive/papers/Nier13cAgileModeling.pdf, doi:10.
1016/j.scico.2013.11.011.

[TWDN15] Camille Teruel, Erwann Wernli, Stéphane Ducasse, and Oscar Nierstrasz. Propagation of behavioral vari-
ations with delegation proxies. Transactions on Aspect-Oriented Software Development XII, 8989:63–95,
2015. URL: http://scg.unibe.ch/archive/papers/Teru15a-delegation-proxies.pdf, doi:
10.1007/978-3-662-46734-3_2.

[WLN13] Erwann Wernli, Mircea Lungu, and Oscar Nierstrasz. Incremental dynamic updates with first-class contexts. Journal of
Object Technology, 12(3):1:1–27, August 2013. URL: http://scg.unibe.ch/archive/papers/Wern13a.
pdf, doi:10.5381/jot.2013.12.3.a1.

Conference papers
[ALNW13] Erik Aeschlimann, Mircea Lungu, Oscar Nierstrasz, and Carl Worms. Analyzing PL/1 legacy ecosystems: An ex-

perience report. In Proceedings of the 20th Working Conference on Reverse Engineering, WCRE 2013, pages 441
– 448, 2013. URL: http://scg.unibe.ch/archive/papers/Aesc13a-PL1Ecosystem.pdf, doi:
10.1109/WCRE.2013.6671320.

[CALN16] Andrea Caracciolo, Bledar Aga, Mircea Lungu, and Oscar Nierstrasz. Marea: a semi-automatic decision support system
for breaking dependency cycles. In Proceedings of the 23rd IEEE International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER), March 2016. to appear. URL: http://scg.unibe.ch/archive/papers/
Cara16b.pdf.

[CCSL14] Andrea Caracciolo, Andrei Chiş, Boris Spasojević, and Mircea Lungu. Pangea: A workbench for statically analyz-
ing multi-language software corpora. In Source Code Analysis and Manipulation (SCAM), 2014 IEEE 14th Interna-
tional Working Conference on, pages 71–76. IEEE, September 2014. URL: http://scg.unibe.ch/archive/
papers/Cara14c.pdf, doi:10.1109/SCAM.2014.38.

[CGN14b] Andrei Chiş, Tudor Gı̂rba, and Oscar Nierstrasz. The Moldable Debugger: A framework for developing domain-specific
debuggers. In Benoı̂t Combemale, DavidJ. Pearce, Olivier Barais, and Jurgen J. Vinju, editors, Software Language
Engineering, volume 8706 of Lecture Notes in Computer Science, pages 102–121. Springer International Publishing,
2014. URL: http://scg.unibe.ch/archive/papers/Chis14b-MoldableDebugger.pdf, doi:10.
1007/978-3-319-11245-9_6.

[CGNS15a] Andrei Chiş, Tudor Gı̂rba, Oscar Nierstrasz, and Aliaksei Syrel. The Moldable Inspector. In Proceedings of the
2015 ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software,
Onward! 2015, pages 44–60, New York, NY, USA, 2015. ACM. URL: http://scg.unibe.ch/archive/
papers/Chis15a-MoldableInspector.pdf, doi:10.1145/2814228.2814234.

[CLN14a] Andrea Caracciolo, Mircea Lungu, and Oscar Nierstrasz. How do software architects specify and validate
quality requirements? In European Conference on Software Architecture (ECSA), volume 8627 of Lec-
ture Notes in Computer Science, pages 374–389. Springer Berlin Heidelberg, August 2014. URL: http://

5

http://scg.unibe.ch/asa
http://scg.unibe.ch/archive/papers/Arya14aJSME.pdf
http://scg.unibe.ch/archive/papers/Arya14aJSME.pdf
http://dx.doi.org/10.1002/smr.1598
http://scg.unibe.ch/archive/papers/Chis15c-PracticalDomainSpecificDebuggers.pdf
http://scg.unibe.ch/archive/papers/Chis15c-PracticalDomainSpecificDebuggers.pdf
http://dx.doi.org/10.1016/j.cl.2015.08.005
http://dx.doi.org/10.1016/j.cl.2015.08.005
http://scg.unibe.ch/archive/papers/Kurs15a-BoundedSeas.pdf
http://scg.unibe.ch/archive/papers/Kurs15a-BoundedSeas.pdf
http://dx.doi.org/10.1016/j.cl.2015.08.002
http://scg.unibe.ch/archive/papers/Lung14a.pdf
http://scg.unibe.ch/archive/papers/Lung14a.pdf
http://dx.doi.org/10.1016/j.scico.2012.04.007
http://scg.unibe.ch/archive/papers/Nier13cAgileModeling.pdf
http://dx.doi.org/10.1016/j.scico.2013.11.011
http://dx.doi.org/10.1016/j.scico.2013.11.011
http://scg.unibe.ch/archive/papers/Teru15a-delegation-proxies.pdf
http://dx.doi.org/10.1007/978-3-662-46734-3_2
http://dx.doi.org/10.1007/978-3-662-46734-3_2
http://scg.unibe.ch/archive/papers/Wern13a.pdf
http://scg.unibe.ch/archive/papers/Wern13a.pdf
http://dx.doi.org/10.5381/jot.2013.12.3.a1
http://scg.unibe.ch/archive/papers/Aesc13a-PL1Ecosystem.pdf
http://dx.doi.org/10.1109/WCRE.2013.6671320
http://dx.doi.org/10.1109/WCRE.2013.6671320
http://scg.unibe.ch/archive/papers/Cara16b.pdf
http://scg.unibe.ch/archive/papers/Cara16b.pdf
http://scg.unibe.ch/archive/papers/Cara14c.pdf
http://scg.unibe.ch/archive/papers/Cara14c.pdf
http://dx.doi.org/10.1109/SCAM.2014.38
http://scg.unibe.ch/archive/papers/Chis14b-MoldableDebugger.pdf
http://dx.doi.org/10.1007/978-3-319-11245-9_6
http://dx.doi.org/10.1007/978-3-319-11245-9_6
http://scg.unibe.ch/archive/papers/Chis15a-MoldableInspector.pdf
http://scg.unibe.ch/archive/papers/Chis15a-MoldableInspector.pdf
http://dx.doi.org/10.1145/2814228.2814234
http://scg.unibe.ch/archive/papers/Cara14a-SpecifyValidateQualityRequirements.pdf
http://scg.unibe.ch/archive/papers/Cara14a-SpecifyValidateQualityRequirements.pdf


scg.unibe.ch/archive/papers/Cara14a-SpecifyValidateQualityRequirements.pdf, doi:
10.1007/978-3-319-09970-5_32.

[CLN15] Andrea Caracciolo, Mircea Lungu, and Oscar Nierstrasz. A unified approach to architecture conformance check-
ing. In Proceedings of the 12th Working IEEE/IFIP Conference on Software Architecture (WICSA), pages 41–50.
ACM Press, May 2015. URL: http://scg.unibe.ch/archive/papers/Cara15b.pdf, doi:10.1109/
WICSA.2015.11.

[GC15] Tudor Gı̂rba and Andrei Chiş. Pervasive Software Visualizations. In Proceedings of 3rd IEEE Working Conference
on Software Visualization, VISSOFT’15, pages 1–5. IEEE, September 2015. URL: http://scg.unibe.ch/
archive/papers/Girb15b-PervasiveSoftwareVisualizations.pdf, doi:10.1109/VISSOFT.
2015.7332409.

[KBC+15] Juraj Kubelka, Alexandre Bergel, Andrei Chiş, Tudor Gı̂rba, Stefan Reichhart, Romain Robbes, and Ali-
aksei Syrel. On understanding how developers use the Spotter search tool. In Proceedings of 3rd
IEEE Working Conference on Software Visualization - New Ideas and Emerging Results, VISSOFT-
NIER’15, pages 145–149. IEEE, September 2015. URL: http://scg.unibe.ch/archive/papers/
Kube15a-OnUnderstandingHowDevelopersUseTheSpotterSearchTool.pdf, doi:10.1109/
VISSOFT.2015.7332426.

[KLN14b] Jan Kurš, Mircea Lungu, and Oscar Nierstrasz. Bounded seas: Island parsing without shipwrecks. In Benoı̂t Combemale,
David J. Pearce, Olivier Barais, and Jurgen J. Vinju, editors, Software Language Engineering, volume 8706 of Lecture
Notes in Computer Science, pages 62–81. Springer International Publishing, 2014. URL: http://scg.unibe.ch/
archive/papers/Kurs14b-BoundedSeas.pdf, doi:10.1007/978-3-319-11245-9_4.

[MCL+15] Nevena Milojković, Andrea Caracciolo, Mircea Lungu, Oscar Nierstrasz, David Röthlisberger, and Romain Robbes.
Polymorphism in the spotlight: Studying its prevalence in Java and Smalltalk. In Proceedings of the 2015 IEEE 23rd
International Conference on Program Comprehension, pages 186–195. IEEE Press, 2015. Published. URL: http:
//scg.unibe.ch/archive/papers/Milo15a.pdf, doi:10.1109/ICPC.2015.29.

[MLN15b] Leonel Merino, Mircea Lungu, and Oscar Nierstrasz. Explora: A visualisation tool for metric analysis of software
corpora. In VISSOFT’15: Proceedings of the 3rd IEEE Working Conference on Software Visualization, pages 195–199.
IEEE, 2015. URL: http://scg.unibe.ch/archive/papers/Meri15b.pdf, doi:10.1109/VISSOFT.
2015.7332436.

[NL12] Oscar Nierstrasz and Mircea Lungu. Agile software assessment. In Proceedings of International Conference on
Program Comprehension (ICPC 2012), pages 3–10, 2012. URL: http://scg.unibe.ch/archive/papers/
Nier12bASA.pdf, doi:10.1109/ICPC.2012.6240507.

[OLLN16] Haidar Osman, Manuel Leuenberger, Mircea Lungu, and Oscar Nierstrasz. Tracking null checks in open-source Java
systems. In Proceedings of the 23rd IEEE International Conference on Software Analysis, Evolution, and Reengineering
(SANER), March 2016. to appear. URL: http://scg.unibe.ch/archive/papers/Osma16a.pdf.

[OLN14] Haidar Osman, Mircea Lungu, and Oscar Nierstrasz. Mining frequent bug-fix code changes. In Soft-
ware Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week -
IEEE Conference on, pages 343–347, February 2014. URL: http://scg.unibe.ch/archive/papers/
Osma14aMiningBugFixChanges.pdf, doi:10.1109/CSMR-WCRE.2014.6747191.

[SCG+15] Aliaksei Syrel, Andrei Chiş, Tudor Gı̂rba, Juraj Kubelka, Oscar Nierstrasz, and Stefan Reichhart. Spotter: to-
wards a unified search interface in IDEs. In Proceedings of the Companion Publication of the 2015 ACM SIG-
PLAN Conference on Systems, Programming, and Applications: Software for Humanity, SPLASH Companion
2015, pages 54–55, New York, NY, USA, 2015. ACM. URL: http://scg.unibe.ch/archive/papers/
Syre15a-SpotterPosterAbstract.pdf, doi:10.1145/2814189.2817269.

[SLN14a] Boris Spasojević, Mircea Lungu, and Oscar Nierstrasz. Mining the ecosystem to improve type inference for dynami-
cally typed languages. In Proceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! ’14, pages 133–142, New York, NY, USA, 2014. ACM. URL:
http://scg.unibe.ch/archive/papers/Spas14c.pdf, doi:10.1145/2661136.2661141.

[SLN14b] Boris Spasojević, Mircea Lungu, and Oscar Nierstrasz. Overthrowing the tyranny of alphabetical ordering in doc-
umentation systems. In 2014 IEEE International Conference on Software Maintenance and Evolution (ERA Track),
pages 511–515, September 2014. URL: http://scg.unibe.ch/archive/papers/Spas14b.pdf, doi:
10.1109/ICSME.2014.84.

[SLN16] Boris Spasojević, Mircea Lungu, and Oscar Nierstrasz. A case study on type hints in method argument names in Pharo
Smalltalk projects. In Proceedings of the 23rd IEEE International Conference on Software Analysis, Evolution, and
Reengineering (SANER), March 2016. to appear. URL: http://scg.unibe.ch/archive/papers/Spas16a.
pdf.

[WNTD14] Erwann Wernli, Oscar Nierstrasz, Camille Teruel, and Stephane Ducasse. Delegation proxies: The power of prop-
agation. In Proceedings of the 13th International Conference on Modularity, MODULARITY ’14, pages 1–12,
New York, NY, USA, 2014. ACM. URL: http://scg.unibe.ch/archive/papers/Wern14a.pdf, doi:
10.1145/2577080.2577081.

6

http://scg.unibe.ch/archive/papers/Cara14a-SpecifyValidateQualityRequirements.pdf
http://scg.unibe.ch/archive/papers/Cara14a-SpecifyValidateQualityRequirements.pdf
http://dx.doi.org/10.1007/978-3-319-09970-5_32
http://dx.doi.org/10.1007/978-3-319-09970-5_32
http://scg.unibe.ch/archive/papers/Cara15b.pdf
http://dx.doi.org/10.1109/WICSA.2015.11
http://dx.doi.org/10.1109/WICSA.2015.11
http://scg.unibe.ch/archive/papers/Girb15b-PervasiveSoftwareVisualizations.pdf
http://scg.unibe.ch/archive/papers/Girb15b-PervasiveSoftwareVisualizations.pdf
http://dx.doi.org/10.1109/VISSOFT.2015.7332409
http://dx.doi.org/10.1109/VISSOFT.2015.7332409
http://scg.unibe.ch/archive/papers/Kube15a-OnUnderstandingHowDevelopersUseTheSpotterSearchTool.pdf
http://scg.unibe.ch/archive/papers/Kube15a-OnUnderstandingHowDevelopersUseTheSpotterSearchTool.pdf
http://dx.doi.org/10.1109/VISSOFT.2015.7332426
http://dx.doi.org/10.1109/VISSOFT.2015.7332426
http://scg.unibe.ch/archive/papers/Kurs14b-BoundedSeas.pdf
http://scg.unibe.ch/archive/papers/Kurs14b-BoundedSeas.pdf
http://dx.doi.org/10.1007/978-3-319-11245-9_4
http://scg.unibe.ch/archive/papers/Milo15a.pdf
http://scg.unibe.ch/archive/papers/Milo15a.pdf
http://dx.doi.org/10.1109/ICPC.2015.29
http://scg.unibe.ch/archive/papers/Meri15b.pdf
http://dx.doi.org/10.1109/VISSOFT.2015.7332436
http://dx.doi.org/10.1109/VISSOFT.2015.7332436
http://scg.unibe.ch/archive/papers/Nier12bASA.pdf
http://scg.unibe.ch/archive/papers/Nier12bASA.pdf
http://dx.doi.org/10.1109/ICPC.2012.6240507
http://scg.unibe.ch/archive/papers/Osma16a.pdf
http://scg.unibe.ch/archive/papers/Osma14aMiningBugFixChanges.pdf
http://scg.unibe.ch/archive/papers/Osma14aMiningBugFixChanges.pdf
http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747191
http://scg.unibe.ch/archive/papers/Syre15a-SpotterPosterAbstract.pdf
http://scg.unibe.ch/archive/papers/Syre15a-SpotterPosterAbstract.pdf
http://dx.doi.org/10.1145/2814189.2817269
http://scg.unibe.ch/archive/papers/Spas14c.pdf
http://dx.doi.org/10.1145/2661136.2661141
http://scg.unibe.ch/archive/papers/Spas14b.pdf
http://dx.doi.org/10.1109/ICSME.2014.84
http://dx.doi.org/10.1109/ICSME.2014.84
http://scg.unibe.ch/archive/papers/Spas16a.pdf
http://scg.unibe.ch/archive/papers/Spas16a.pdf
http://scg.unibe.ch/archive/papers/Wern14a.pdf
http://dx.doi.org/10.1145/2577080.2577081
http://dx.doi.org/10.1145/2577080.2577081


International Workshop papers
[Car15a] Andrea Caracciolo. On the evaluation of a DSL for architectural consistency checking. In Extended Abstracts of the

Eighth Seminar on Advanced Techniques and Tools for Software Evolution (SATToSE 2015), pages 55–57, July 2015.
URL: http://scg.unibe.ch/archive/papers/Cara15c.pdf.

[Car15b] Andrea Caracciolo. A unified approach to automatic testing of architectural constraints. In Proceedings of ICSE
2015 (37st International Conference on Software Engineering), Doctoral Symposium, volume 2, pages 871–874.
ACM Press, 2015. URL: http://scg.unibe.ch/archive/papers/Cara15a.pdf, doi:10.1109/ICSE.
2015.281.

[CGN14a] Andrei Chiş, Tudor Gı̂rba, and Oscar Nierstrasz. The Moldable Inspector: a framework for domain-specific object
inspection. In Proceedings of International Workshop on Smalltalk Technologies (IWST 2014), 2014. URL: http:
//scg.unibe.ch/archive/papers/Chis14a-MoldableInspector.pdf.

[CGN15] Andrei Chiş, Tudor Gı̂rba, and Oscar Nierstrasz. Towards moldable development tools. In Proceedings of the 6th Work-
shop on Evaluation and Usability of Programming Languages and Tools, PLATEAU ’15, 2015. URL: http://scg.
unibe.ch/archive/papers/Chis15d_TowardsMoldableDevelopmentTools.pdf, doi:10.1145/
2846680.2846684.

[CGNS15b] Andrei Chiş, Tudor Gı̂rba, Oscar Nierstrasz, and Aliaksei Syrel. GTInspector: A moldable domain-aware ob-
ject inspector. In Proceedings of the Companion Publication of the 2015 ACM SIGPLAN Conference on Systems,
Programming, and Applications: Software for Humanity, SPLASH Companion 2015, pages 15–16, New York, NY,
USA, 2015. ACM. URL: http://scg.unibe.ch/archive/papers/Chis15b-GTInspector.pdf, doi:
10.1145/2814189.2814194.

[CLN14b] Andrea Caracciolo, Mircea Lungu, and Oscar Nierstrasz. Dicto: A unified DSL for testing architectural rules. In
Proceedings of the 2014 European Conference on Software Architecture Workshops, ECSAW ’14, pages 21:1–21:4,
New York, NY, USA, 2014. ACM. URL: http://scg.unibe.ch/archive/papers/Cara14b-Dicto.pdf,
doi:10.1145/2642803.2642824.

[CLT+16] Andrea Caracciolo, Mircea Lungu, Oskar Truffer, Kirill Levitin, and Oscar Nierstrasz. Evaluating an architecture confor-
mance monitoring solution. In Proceedings of the 7th IEEE International Workshop on Empirical Software Engineering in
Practice (IWESEP), March 2016. to appear. URL: http://scg.unibe.ch/archive/papers/Cara16c.pdf.

[CNG13] Andrei Chiş, Oscar Nierstrasz, and Tudor Gı̂rba. Towards a moldable debugger. In Proceedings of the 7th Work-
shop on Dynamic Languages and Applications, 2013. URL: http://scg.unibe.ch/archive/papers/
Chis13a-TowardsMoldableDebugger.pdf, doi:10.1145/2489798.2489801.

[HLSN13] Nicole Haenni, Mircea Lungu, Niko Schwarz, and Oscar Nierstrasz. Categorizing developer information needs in
software ecosystems. In Proceedings of the 1st Workshop on Ecosystem Architectures, pages 1–5, 2013. URL:
http://scg.unibe.ch/archive/papers/Haen13a-EcosystemInformationNeeds.pdf.

[HLSN14] Nicole Haenni, Mircea Lungu, Niko Schwarz, and Oscar Nierstrasz. A quantitative analysis of de-
veloper information needs in software ecosystems. In Proceedings of the 2nd Workshop on Ecosys-
tem Architectures (WEA’14), pages 1–6, 2014. URL: http://scg.unibe.ch/archive/papers/
Haen14a-QuantitativeEcosystemInformationNeeds.pdf, doi:10.1145/2642803.2642815.

[KLN14a] Jan Kurš, Mircea Lungu, and Oscar Nierstrasz. Top-down parsing with parsing contexts. In Proceedings of International
Workshop on Smalltalk Technologies (IWST 2014), 2014. URL: http://scg.unibe.ch/archive/papers/
Kurs14a-ParsingContext.pdf.

[LK13] Mircea Lungu and Jan Kurš. On planning an evaluation of the impact of identifier names on the readability and main-
tainability of programs. In USER’13: Proceedings of the 2nd Workshop on User evaluations for Software Engineering
Researchers, pages 13 – 15, 2013. URL: http://scg.unibe.ch/archive/papers/Lung13a-Planning.
pdf.

[Mer14] Leonel Merino. Adaptable visualisation based on user needs. In SATToSE’14: Pre-Proceedings of the 7th International
Seminar Series on Advanced Techniques & Tools for Software Evolution, pages 71–74, July 2014. URL: http://scg.
unibe.ch/archive/papers/Meri14a.pdf.

[Mil14] Nevena Milojković. Towards cheap, accurate polymorphism detection. In SATToSE’14: Pre-Proceedings of the 7th
International Seminar Series on Advanced Techniques & Tools for Software Evolution, pages 54–55, July 2014. URL:
http://scg.unibe.ch/archive/papers/Milo14a.pdf.

[MLN15a] Leonel Merino, Mircea Lungu, and Oscar Nierstrasz. Explora: Infrastructure for scaling up software visualisation to
corpora. In SATToSE’14: Post-Proceedings of the 7th International Seminar Series on Advanced Techniques & Tools for
Software Evolution, volume 1354. CEUR Workshop Proceedings (CEUR-WS.org), 2015. http://ceur-ws.org/Vol-1354/.
URL: http://scg.unibe.ch/archive/papers/Meri15a.pdf.

[Osm15] Haidar Osman. Null check analysis. In Extended Abstracts of the Eighth Seminar on Advanced Techniques and Tools for
Software Evolution (SATToSE 2015), pages 86–88, July 2015. URL: http://scg.unibe.ch/archive/papers/
Osma15a.pdf.

[SL13] Dennis Schenk and Mircea Lungu. Geo-locating the knowledge transfer in stackoverflow. In Proceedings of the 5th Inter-
national Workshop on Social Software Engineering, pages 21–24, 2013. URL: http://scg.unibe.ch/archive/
papers/Sche13a-GeolocatingStackOverflow.pdf.

7

http://scg.unibe.ch/archive/papers/Cara15c.pdf
http://scg.unibe.ch/archive/papers/Cara15a.pdf
http://dx.doi.org/10.1109/ICSE.2015.281
http://dx.doi.org/10.1109/ICSE.2015.281
http://scg.unibe.ch/archive/papers/Chis14a-MoldableInspector.pdf
http://scg.unibe.ch/archive/papers/Chis14a-MoldableInspector.pdf
http://scg.unibe.ch/archive/papers/Chis15d_TowardsMoldableDevelopmentTools.pdf
http://scg.unibe.ch/archive/papers/Chis15d_TowardsMoldableDevelopmentTools.pdf
http://dx.doi.org/10.1145/2846680.2846684
http://dx.doi.org/10.1145/2846680.2846684
http://scg.unibe.ch/archive/papers/Chis15b-GTInspector.pdf
http://dx.doi.org/10.1145/2814189.2814194
http://dx.doi.org/10.1145/2814189.2814194
http://scg.unibe.ch/archive/papers/Cara14b-Dicto.pdf
http://dx.doi.org/10.1145/2642803.2642824
http://scg.unibe.ch/archive/papers/Cara16c.pdf
http://scg.unibe.ch/archive/papers/Chis13a-TowardsMoldableDebugger.pdf
http://scg.unibe.ch/archive/papers/Chis13a-TowardsMoldableDebugger.pdf
http://dx.doi.org/10.1145/2489798.2489801
http://scg.unibe.ch/archive/papers/Haen13a-EcosystemInformationNeeds.pdf
http://scg.unibe.ch/archive/papers/Haen14a-QuantitativeEcosystemInformationNeeds.pdf
http://scg.unibe.ch/archive/papers/Haen14a-QuantitativeEcosystemInformationNeeds.pdf
http://dx.doi.org/10.1145/2642803.2642815
http://scg.unibe.ch/archive/papers/Kurs14a-ParsingContext.pdf
http://scg.unibe.ch/archive/papers/Kurs14a-ParsingContext.pdf
http://scg.unibe.ch/archive/papers/Lung13a-Planning.pdf
http://scg.unibe.ch/archive/papers/Lung13a-Planning.pdf
http://scg.unibe.ch/archive/papers/Meri14a.pdf
http://scg.unibe.ch/archive/papers/Meri14a.pdf
http://scg.unibe.ch/archive/papers/Milo14a.pdf
http://scg.unibe.ch/archive/papers/Meri15a.pdf
http://scg.unibe.ch/archive/papers/Osma15a.pdf
http://scg.unibe.ch/archive/papers/Osma15a.pdf
http://scg.unibe.ch/archive/papers/Sche13a-GeolocatingStackOverflow.pdf
http://scg.unibe.ch/archive/papers/Sche13a-GeolocatingStackOverflow.pdf


[SLN14] Boris Spasojević, Mircea Lungu, and Oscar Nierstrasz. Towards faster method search through static ecosystem anal-
ysis. In Proceedings of the 2014 European Conference on Software Architecture Workshops, ECSAW ’14, pages
11:1–11:6, New York, NY, USA, August 2014. ACM. URL: http://scg.unibe.ch/archive/papers/
Spas14aFasterMethodLookup.pdf, doi:10.1145/2642803.2642814.

Book chapters
[KLR+13] Jan Kurš, Guillaume Larcheveque, Lukas Renggli, Alexandre Bergel, Damien Cassou, Stéphane Ducasse, and Jannik

Laval. PetitParser: Building modular parsers. In Deep Into Pharo, page 36. Square Bracket Associates, September 2013.
URL: http://scg.unibe.ch/archive/papers/Kurs13a-PetitParser.pdf.

Miscellaneous
[CLN14c] Andrea Caracciolo, Mircea Lungu, and Oscar Nierstrasz. Dicto: Keeping software architecture under

control. ERCIM News, 99, October 2014. URL: http://ercim-news.ercim.eu/en99/special/
dicto-keeping-software-architecture-under-control.

Selected PhD, MSc and Bachelors Theses
[Aes13] Erik Aeschlimann. St1-PL/1: Extracting quality information from PL/1 legacy ecosystems. Masters thesis, University of

Bern, December 2013. URL: http://scg.unibe.ch/archive/masters/Aesc13b.pdf.

[Aga15] Bledar Aga. Marea — a tool for breaking dependency cycles between packages. Masters thesis, University of Bern,
January 2015. URL: http://scg.unibe.ch/archive/masters/Aga15a.pdf.

[Car16] Andrea Caracciolo. A Unified Approach to Architecture Conformance Checking. PhD thesis, University of Bern, March
2016. URL: http://scg.unibe.ch/archive/phd/caracciolo-phd.pdf.

[Giv13] Attieh Sadeghi Givi. Layout sensitive parsing in the PetitParser framework. Bachelor’s thesis, University of Bern, October
2013. URL: http://scg.unibe.ch/archive/projects/Sade13a.pdf.

[Gug15] Joël Guggisberg. Automatic token classification — an attempt to mine useful information for parsing. Bachelor’s thesis,
University of Bern, December 2015. URL: http://scg.unibe.ch/archive/projects/Gugg15a.pdf.

[Hae14] Nicole Haenni. Information needs in software ecosystems development — a contribution to improve tool support across
software systems. Masters thesis, University of Bern, September 2014. URL: http://scg.unibe.ch/archive/
masters/Haen14b.pdf.

[Sch14a] Dennis Schenk. Quicksilver — a framework for hierarchical data analysis. Masters thesis, University of Bern, September
2014. URL: http://scg.unibe.ch/archive/masters/Sche14a.pdf.

[Sch14b] Niko Schwarz. Scaleable Code Clone Detection. PhD thesis, University of Bern, February 2014. URL: http://scg.
unibe.ch/archive/phd/schwarz-phd.pdf.

[Tru15] Oskar Truffer. Continuous integration with architectural invariants — a case study about architectural monitoring in
practice. Masters thesis, University of Bern, December 2015. URL: http://scg.unibe.ch/archive/masters/
Truf15a.pdf.

[Vog14] Simon Vogt. Clone detection that scales. Masters thesis, University of Bern, February 2014. URL: http://scg.
unibe.ch/archive/masters/Vogt14a.pdf.

8

http://scg.unibe.ch/archive/papers/Spas14aFasterMethodLookup.pdf
http://scg.unibe.ch/archive/papers/Spas14aFasterMethodLookup.pdf
http://dx.doi.org/10.1145/2642803.2642814
http://scg.unibe.ch/archive/papers/Kurs13a-PetitParser.pdf
http://ercim-news.ercim.eu/en99/special/dicto-keeping-software-architecture-under-control
http://ercim-news.ercim.eu/en99/special/dicto-keeping-software-architecture-under-control
http://scg.unibe.ch/archive/masters/Aesc13b.pdf
http://scg.unibe.ch/archive/masters/Aga15a.pdf
http://scg.unibe.ch/archive/phd/caracciolo-phd.pdf
http://scg.unibe.ch/archive/projects/Sade13a.pdf
http://scg.unibe.ch/archive/projects/Gugg15a.pdf
http://scg.unibe.ch/archive/masters/Haen14b.pdf
http://scg.unibe.ch/archive/masters/Haen14b.pdf
http://scg.unibe.ch/archive/masters/Sche14a.pdf
http://scg.unibe.ch/archive/phd/schwarz-phd.pdf
http://scg.unibe.ch/archive/phd/schwarz-phd.pdf
http://scg.unibe.ch/archive/masters/Truf15a.pdf
http://scg.unibe.ch/archive/masters/Truf15a.pdf
http://scg.unibe.ch/archive/masters/Vogt14a.pdf
http://scg.unibe.ch/archive/masters/Vogt14a.pdf

	Summary of results
	Research output

