
Final Scientific Report of
A Framework Approach to Composing

Heteregeneous Applications
NFS Project No. 20-53711.98

15 November 2000

1 Results Description

The results presented below are grouped into four closely related research areas:

1. the PICCOLA language, which investigates heteregeneous component com-
position,

2. the COLAS language, which investigates coordination of active and dis-
tributed objects,

3. the building of frameworks and

4. the reengineering of object-oriented applications.

The four areas are complementary. The research led around the PICCOLA and
COLAS languages focuses on models, mechanisms and techniques for composing
and coordinating components in heterogeneous and distributed environments. Both
theoretical and practical results were achieved in these two foundational tracks. As
components are not composable per se but require an explicit composition archi-
tecture, our research into frameworks has focused on the complex issues involved
in defining suitable architectural support. While the first three research efforts are
basically top-down, the fourth track is bottom-up, and tries to answer the ques-
tion, How can we transform industrial object-oriented legacy code into more flex-
ible, component-based applications? Here we have developed a series of tools to
support reengineering of object-oriented systems towards components, and docu-
mented a catalogue of best-practice patterns for reverse- and reengineering

1



2 PICCOLA

PICCOLA is a small composition language that embodies the paradigm “Applica-
tions = Components + Scripts” [AN00a]. PICCOLA models components and com-
position abstractions by means of a unifying foundation of communicating concur-
rent agents. Flexibility and extensibility are obtained by modelling both interfaces
to components and the contexts in which they live by extensible records, or forms.
PICCOLA supports software composition by means of compositional styles which
express the kind of components and connectors that are relevant to a particular
application domain.

We have obtained the following results:

• πL Foundations. PICCOLA was originally based on the π-calculus since
this was the most promising foundation for modeling dynamically evolv-
ing concurrent systems of components. Our attempts to model composi-
tion abstractions (like mixins and inheritance) with the π-calculus led us
to conclude that forms (extensible records) are a better basis for modeling
composition than tuples, and this led to the development of the πL-calculus
[Lum99, LAN00, Sch99, SL00].

• Language design. It turns out that forms can be unified with abstractions.
This allows us to simplify and reduce the language. We iterated on the syn-
tax definition and made also use of the fact that forms can represent both
the static and dynamic environment in a programming language [ALSN00,
AN00a]. It should be noted that the current version of PICCOLA has only
three keywords (def, root, and dynamic) and 8 built-in operators. We inter-
pret this as validation for the compactness and simplicity of the PICCOLA

language design. Abstractions for flow-control like if-then-else or loop con-
structs can directly be defined within PICCOLA. Using the dynamic and
static environment, it is also possible to define abstractions for exception
handling [AN00b]. This fact allows us one side to keep the language small
and it also serves as an indication that higher order composition abstractions
can in fact be implemented.

• Compositional styles. PICCOLA encourages the separation of stable and flex-
ible parts of an application into components and scripts. We use this sepa-
ration to support software evolution. The separation is made explicit by the
use of compositional styles. A compositional style [Sch99, SN99] formalises
composition by defining component types, connectors, and rules governing
composition. We have implemented styles for scripting pipes and filters, ac-
tors, regulated actors [AKN00], events and gui-composition [AN00a], and

2



mixin-layer composition.

• Aspect-oriented programming. PICCOLA can directly express aspects as ab-
stractions [Ach00, NA00]. This also gives evidence that forms and form
abstraction are the right core mechanisms to give a language the expressive
power needed to define arbitrary composition mechanisms.

• Implementations. We replaced tuples by forms in PICT and implemented
a first prototype for PICCOLA [Ach98]. The language has evolved consid-
erably since the first prototype, and PICCOLA has now been implemented
in Java, Squeak, and Delphi. The same PICCOLA infrastructure is used to
compose components conforming to different component models. Piccola
prototypes are available at http://www.iam.unibe.ch/∼scg/Research/

We are continuing to develop PICCOLA and conduct practical experiments with
it. We have started work on distributed PICCOLA as part of the continuation of this
project. A long-term goal is to be able to support reasoning about compositions
of components based on properties of components and compositional styles. We
believe that PICCOLA and the notion of compositional style can be fruitful applied
to specify, implement, and reason about distributed and mobile agents of todays
Internet application [NSA00]. To this end we are now working on a higher-level,
direct semantics of PICCOLA that will better support reasoning than the relatively
low-level foundation of the πL-calculus.

3 CoLaS: Coordinating Active Objects

In current object-oriented languages the code responsible for coordinating active
and distributed objects is invariably tangled with the computational behaviour. As
a consequence, objects suffer from a lack of abstraction of coordination aspects,
and their implementation is polluted with external concerns like coordination and
distribution.

Hi Stef: Please check. I rephrased for readability, but may have introduced
some inaccuracies. – oscar

• Language Design. We have specified and implemented a language named
COLAS that allows us to express the coordination of active and distributed
objects as first class entities [CD99b, CD99a]. COLAS is based on a minimal
set of abstractions necessary to support coordination. Instead of developing
an entirely new language, we decided to extend an existing object-oriented
language, Smalltalk, by introducing suitable coordination abstractions.

3



In COLAS the coordination is based on the notion of Coordination Groups
that encapsulate all the information necessary for coordinating active objects.
A group specifies the participants of the coordination in terms of participant
roles, the coordination state, and the protocol for coordinating the partici-
pants.

Since message passing is at the core of object-oriented programming and
coordination is essentially a matter of controlling object interactions, we
evaluated how message passing control could be implemented effectively
in Smalltalk, the host language of COLAS [Duc99].

• Implementation. A prototype of the COLAS language is currently imple-
mented in VisualWorks and Distributed Smalltalk using Corba 2.0 services
and the I3 protocol offered by Distributed Smalltalk. COLAS is available at
http://www.iam.unibe.ch/∼scg/Research/

4 Coordination Frameworks

Components are not composable just because they are components. They have
to be used in a context where they can be composed. We name such a context
a composition architecture or composition framework. To gain understanding and
experience we built several frameworks in the areas of coordination of components.

• Design Guidelines. In [TCD00] we present a series of guidelines for devel-
oping component frameworks in which coordination is an issue.

• Coordination Medium. In [Küh98] we present a coordination medium for
distributed application that extends the notion of tuple spaces to form spaces,
with corresponding advantages for flexibility and extensibility.

• Customizable Coordination Frameworks. In [DHN00], we present, OPEN

SPACES, a framework for building families of tuple spaces based applica-
tions. OPEN SPACES defines a minimal but extensible core for building
tuple-space based applications. Hotspots can then be specialized to intro-
duce new functionality.

• Implementations. OPEN SPACES is implemented using VisualWorks and
Distributed Smalltalk and is available at http://www.iam.unibe.ch/∼scg/Re-
search/

4



5 Reengineering of Object-Oriented Applications

In parallel to our work on composing applications from heterogeneous and dis-
tributed components, we are conducting research into transforming object-oriented
legacy systems into more flexible applications based on components. Whereas the
first three tracks can be considered as being “top-down”, this last track is essen-
tially bottom-up, focusing on providing solutions that fit industrial constraints and
situations.

Our contributions in the domain of reengineering object-oriented systems in-
clude:

Hi Stef: I removed the names of individual people, and rephrased some text.
Please check. – oscar

• Definition of a language independent meta model (FAMIX). We needed to
analyse several different object-oriented languages such as Smalltalk, Java,
C++. We designed an extensible and language-independent meta-model for
representing the main elements of object-oriented programming languages.
[DDT99b]

• Implementation of a reengineering environment (MOOSE). To support our
research we developed a reengineering environment based on the meta-model
we specified. It includes the possibility to analyse several models, to define
dedicated program analysers, to compute metrics, to load and save meta-
models from different languages. [TCD00, DLT00, TDD00, TD99, Dem99]

• Evaluation of metric use in reengineering. We evaluated how software met-
rics can support a reengineering effort. From our studies, we concluded that
metrics are not reliable to detect design flaws, that metrics are a good indica-
tor of systems stabilisation, and that they can be used to recover refactorings.
[DD99, DDN00a, DLS00]

• Reverse Engineering in the Large. We developed an approach to support the
reverse engineering of large systems. The idea is to display software entities
as nodes of trivial graphs but to semantically enrich the obtain graphs with
metric values of the represented entities. [DDL99]

The approach has been validated by the implementation of CodeCrawler, a
metrics visualization tool that is based on MOOSE, and allows one to reverse
engineer large systems [Lan99].

• Detection of code duplication. We developed an approach to identify dupli-
cated code. Our approach is lexical thus limiting the language dependence.
[DRD99, DRG99]

5



This approach has been validated by the development of DUPLOC, an inter-
active tool for detecting and visualizing patterns of duplicated code in large
software systems.

• Use of Dynamic information for extracting views and roles. We developed
an iterative approach for extracting architectural views of software systems
based on the analysis of both static and dynamic information represented
using the meta-model we developed. Views of a system can be created and
refined incrementally. Moreover, we used dynamic information to support
the extraction of design roles. [RD99, Ric99]

This approach has been validated by the implementation of GAUDI, a tool to
support program understanding based on Famix and MOOSE.

• Reengineering Patterns. Reengineering projects, despite their diversity, typ-
ically encounter the same problems and solutions again and again. We have
defined a pattern form to transfer reengineering expertise and record reengi-
neering patterns. Reengineering patterns codify and record knowledge about
modifying legacy software: they help in diagnosing problems and identi-
fying weaknesses which hinder further development of the system and aid
in finding solutions which are more appropriate to the new requirements.
Reengineering patterns are stable units of expertise which can be consulted
in any reengineering effort: they describe a process without proposing a
complete methodology. [DDT99a, DDN00b, DDN00c, DRN99]

• Experiences with Design Extraction. We started some experiments with the
extraction of design information from the code. (Project connect Rose and
MOOSE, Project DoMe-Moose)

6 Publications

The publications listed below are for the period from the beginning of the project
until September 30 2000. The publications in bold are included with this report
and cover the period from September 30 1998 to September 30 2000.

From October 1996 to October 1999, our team participated in the FAMOOS
Esprit Project 21975 (Framework based Approach for Mastering Object Oriented
Systems, BBW Nr 96.0015). While the project ended in October 1999, we con-
tinued to work on the reengineering of object-oriented legacy systems. The list
of NFS publications below includes only new results which have been published
since the end of the FAMOOS project.

6



We separately include a list of relevant papers published before October 1999,
and which have already been included in the final FAMOOS report to the BBW.
These papers are listed here for information only, and should not be considered as
deliverables for this NFS project.

NFS Related Publications

[Ach98] Franz Achermann. Jpict - a framework for pi agents. tech. note, IAM,
U. Berne, November 1998.

[Ach00] Franz Achermann. Language support for feature mixing. In Workshop
on Multi-Dimensional Separation of Concerns in Software Engineer-
ing (ICSE 2000), Limerick, Ireland, June 2000.

[AKN00] Franz Achermann, Stefan Kneubuehl, and Oscar Nierstrasz. Scripting
coordination styles. In António Porto and Gruia-Catalin Roman, edi-
tors, Coordination Languages and Models, LNCS 1906, pages 19–35,
Limassol, Cyprus, September 2000.

[ALSN00] Franz Achermann, Markus Lumpe, Jean-Guy Schneider, and Oscar
Nierstrasz. Piccola – a small composition language. In Howard Bow-
man and John Derrick., editors, Formal Methods for Distributed Pro-
cessing, an Object Oriented Approach. Cambridge University Press.,
2000. to appear.

[AN00a] Franz Achermann and Oscar Nierstrasz. Applications = Components
+ Scripts – A tour of Piccola. In Mehmet Aksit, editor, Software Ar-
chitectures and Component Technology. Kluwer, 2000. to appear.

[AN00b] Franz Achermann and Oscar Nierstrasz. Explicit Namespaces. In Jürg
Gutknecht and Wolfgang Weck, editors, Modular Programming Lan-
guages, LNCS 1897, pages 77–89, Zurich, Switzerland, September
2000.

[CD99a] Juan-Carlos Cruz and Stéphane Ducasse. Coordinating open dis-
tributed systems. In Proceedings of International Workshop in Future
Trends in Distributed Computing Systems’99, 1999.

[CD99b] Juan-Carlos Cruz and Stéphane Ducasse. A group based approach for
coordinating active objects. In Proceedings of Coordination’99, LNCS
1594, pages 355–371, 1999.

7



[DDN00a] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Finding
refactorings via change metrics. In Proceedings of OOPSLA’2000,
ACM SIGPLAN Notices, pages 166–178, 2000.

[DDN00b] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Tie code and
questions: a reengineering pattern. In Proceedings of Europlop’2000,
2000.

[DDN00c] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Transform
conditional: a reengineering pattern language. In Proceedings of Eu-
roplop’2000, 2000.

[DHN00] Stéphane Ducasse, Thomas Hofmann, and Oscar Nierstrasz.
Openspaces: An object-oriented framework for reconfigurable coor-
dination spaces. In António Porto and Gruia-Catalin Roman, editors,
Coordination Languages and Models, LNCS 1906, pages 1–19, Li-
massol, Cyprus, September 2000.

[DLS00] Stéphane Ducasse, Michele Lanza, and Lucas Steiger. A query-based
approach to support software evolution. In ECOOP’2000 International
Workshop of Architecture Evolution, 2000.

[DLT00] Stéphane Ducasse, Michele Lanza, and Sander Tichelaar. Moose:
an extensible language-independent environment for reengineering
object-oriented systems. 2000. COSET’2000 (International Sympo-
sium on Constructing Software Engineering Tools).

[Duc99] Stéphane Ducasse. Evaluating message passing control techniques
in smalltalk. Journal of Object-Oriented Programming (JOOP),
12(6):39–44, June 1999.

[Küh98] Daniel Kühni. APROCO: A programmable coordination medium.
Diploma thesis, University of Bern, October 1998.

[Lan99] Michele Lanza. Combining metrics and graphs for object oriented re-
verse engineering. Diploma thesis, University of Bern, October 1999.

[LAN00] Markus Lumpe, Franz Achermann, and Oscar Nierstrasz. A Formal
Language for Composition. In Gary Leavens and Murali Sitaraman,
editors, Foundations of Component Based Systems, pages 69–90. Cam-
bridge University Press, 2000.

8



[Lum99] Markus Lumpe. A Pi-Calculus Based Approach to Software Compo-
sition. Ph.D. thesis, University of Bern, Institute of Computer Science
and Applied Mathematics, January 1999.

[NA00] Oscar Nierstrasz and Franz Achermann. Separation of concerns
through unification of concepts. In ECOOP 2000 Workshop on As-
pects & Dimensions of Concerns, 2000.

[NSA00] Oscar Nierstrasz, Jean-Guy Schneider, and Franz Achermann. Agents
everywhere, all the time. In ECOOP 2000 Workshops on Component-
Oriented Programming and Pervasive Component Systems, 2000.

[Sch99] Jean-Guy Schneider. Components, Scripts, and Glue: A concep-
tual framework for software composition. Ph.D. thesis, University of
Bern, Institute of Computer Science and Applied Mathematics, Octo-
ber 1999.

[SL00] Jean-Guy Schneider and Markus Lumpe. A Metamodel for Concur-
rent, Object-based Programming. In Christophe Dony and Houari A.
Sahraoui, editors, Proceedings of Langages et Modèles à Objets ’00,
pages 149–165, Mont Saint-Hilaire, Québec, January 2000. Hermes.

[SN99] Jean-Guy Schneider and Oscar Nierstrasz. Components, scripts and
glue. In Leonor Barroca, Jon Hall, and Patrick Hall, editors, Software
Architectures – Advances and Applications, pages 13–25. Springer,
1999.

[TCD00] Sander Tichelaar, Juan Carlos Cruz, and Serge Demeyer. Design
guidelines for coordination components. In Janice Carroll, Ernesto
Damiani, Hisham Haddad, and Dave Oppenheim, editors, Proceedings
ACM SAC 2000, pages 270–277. ACM, March 2000.

[TDD00] Sander Tichelaar, Stéphane Ducasse, and Serge Demeyer. FAMIX:
Exchange experiences with CDIF and XMI. In Proceedings of the
ICSE 2000 Workshop on Standard Exchange Format (WoSEF 2000),
June 2000.

FAMOOS Esprit Project Related Publications

[DD99] Serge Demeyer and Stéphane Ducasse. Metrics, do they really help?
In Jacques Malenfant, editor, Proceedings LMO’99 (Languages et

9



Modèles à Objets), pages 69–82. HERMES Science Publications,
Paris, 1999.

[DDL99] Serge Demeyer, Stéphane Ducasse, and Michele Lanza. A hybrid re-
verse engineering platform combining metrics and program visualiza-
tion. In Francoise Balmas, Mike Blaha, and Spencer Rugaber, editors,
WCRE’99 Proceedings (6th Working Conference on Reverse Engineer-
ing). IEEE, October 1999.

[DDT99a] Serge Demeyer, Stéphane Ducasse, and Sander Tichelaar. A pattern
language for reverse engineering. In Paul Dyson, editor, Proceedings
of the 4th European Conference on Pattern Languages of Programming
and Computing, 1999, Konstanz, Germany, July 1999. UVK Univer-
sitätsverlag Konstanz GmbH.

[DDT99b] Serge Demeyer, Stéphane Ducasse, and Sander Tichelaar. Why uni-
fied is not universal. UML shortcomings for coping with round-trip
engineering. In Bernhard Rumpe, editor, Proceedings UML’99 (The
Second International Conference on The Unified Modeling Language),
LNCS 1723, Kaiserslautern, Germany, October 1999. Springer-Verlag.

[Dem99] Serge Demeyer. Structural computing: The case for reengineering
tools. In Peter Nuernberg, editor, Proceedings of the 1rst Workshop
on Structural Computing – Hypertext’99, February 1999.

[DRD99] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A language
independent approach for detecting duplicated code. In Hongji Yang
and Lee White, editors, Proceedings ICSM’99 (International Con-
ference on Software Maintenance), pages 109–118. IEEE, September
1999.

[DRG99] Stéphane Ducasse, Matthias Rieger, and Georges Golomingi. Tool sup-
port for refactoring duplicated OO code. In Stéphane Ducasse and
Oliver Ciupke, editors, Proceedings of the ECOOP’99 Workshop on
Experiences in Object-Oriented Re-Engineering. Forschungszentrum
Informatik, Karlsruhe, June 1999. FZI-Report 2-6-6/99.

[DRN99] Stéphane Ducasse, Tamar Richner, and Robb Nebbe. Type-check elim-
ination: Two object-oriented reengineering patterns. In Francoise Bal-
mas, Mike Blaha, and Spencer Rugaber, editors, WCRE’99 Proceed-
ings (6th Working Conference on Reverse Engineering). IEEE, October
1999.

10



[RD99] Tamar Richner and Stéphane Ducasse. Recovering high-level views
of object-oriented applications from static and dynamic information.
In Hongji Yang and Lee White, editors, Proceedings ICSM’99 (Inter-
national Conference on Software Maintenance), pages 13–22. IEEE,
September 1999.

[Ric99] Tamar Richner. Using recovered views to track architectural evolution.
In ECOOP’99 Workshop Reader, number 1743 in LNCS. Springer-
Verlag, June 1999.

[TD99] Sander Tichelaar and Serge Demeyer. SNiFF+ talks to Rational Rose
– interoperability using a common exchange model. In SNiFF+
User’s Conference, January 1999. Also appeared in the ”Proceedings
of the ESEC/FSE’99 Workshop on Object-Oriented Re-engineering
(WOOR’99)” – Technical Report of the Technical University of Vi-
enna (TUV-1841-99-13).

Other Publications

[BDG99] Isabelle Borne, Serge Demeyer, and Galal Hassan Galal. Proceedings
of the ECOOP’99 workshop on object-oriented architectural evolution,
June 1999.

[DG99] Serge Demeyer and Harald Gall, editors. Proceedings of
the ESEC/FSE’99 Workshop on Object-Oriented Re-engineering
(WOOR’99). TUV-1841-99-13. Technical University of Vienna - Infor-
mation Systems Institute - Distributed Systems Group, September 1999.

[DG00] Serge Demeyer and Harald Gall. Workshop on object-oriented re-
engineering (WOOR’99). Software Engineering Notes, 25(1), January
2000.

[MD99] Ana Moreira and Serge Demeyer, editors. Object-Oriented Technol-
ogy (ECOOP’99 Workshop Reader). Number 1743 in LNCS. Springer-
Verlag, Kaiserslautern, Germany, December 1999.

[NL99] Oscar Nierstrasz and Michel Lemoine, editors. Proceedings
ESEC/FSE’99. LNCS 1687. Springer-Verlag, Toulouse, France,
September 1999.

11


