
3.1
2. Scientific part

2.1. Summary and key-words

Modern-day applications are increasingly built from ready-made software components of
both fine and coarse granularity. These components typically make architectural assump-
tions about how communication takes place with other software components. Unfortunately
one is often required to integrate components that make different kinds of assumptions,
leading to the so-called architectural mismatch problem.

Presently there exists a variety of tools, languages and techniques for building systems
from components: object-oriented languages, frameworks, 4GLs, scripting languages, user
interface builders, middleware, meta-object protocols and so on. There exists also a consid-
erable body of “best practice”, such as design patterns, standard software architectures, and
various reflective techniques. Much of this work, however, has been produced in different
communities, and it is not clear how, if at all, these techniques can be productively com-
bined in a disciplined way to build heterogeneous software systems.

We propose an approach in which five of these techniques are combined, namely:

• Black-box frameworks provide software components that encapsulate useful function-
ality

• Scripting languages allow one to specify compactly and declaratively how software
components are plugged together to achieve some desired result

• Architectural description languages are used to explicitly specify architectural styles
in terms of the interfaces, contracts and composition rules that components must ad-
here to in order to be composed

• Glue agents adapt components that need to bridge architectural styles

• Coordination models provide the coordination media that allow distributed glue agents
and components to communicate

We expect to achieve results in the following areas:

1. Identify, specify and implement glue and coordination abstractions for composing
heterogeneous software components

2. Catalogue and analyse architectural mismatch (glue) problems; experimentally apply
our techniques to selected case studies

3. Develop formal models to reason about aspects of type (interface) matching, architec-
tural styles (contracts) and coordination (implementation correctness and optimiza-
tion)

4. Further develop and refine our experimental languages and tools (Piccola, FLO, Co-
Co)



3.2
2.2. Research plan

2.2.1. State of the art and related work

Frameworks

An object-oriented “framework” is commonly understood as being a collection of abstract
and concrete classes implemented in an object-oriented programming language (such as
Smalltalk, or C++) which defines a generic, extensible architecture for a software applica-
tion. One can “instantiate a framework” by defining subclasses of the framework classes
that respond to the specific application requirements. Although the technique is very power-
ful, there are many problems with this kind of framework:

• Steep learning curve: an application developer must invest a great deal of time and ef-
fort to understand how to use and extend a typical framework.

• Weak encapsulation: Extension by inheritance is often referred to as “white-box” re-
use, since one must understand the implementation of a component (class) to reuse it
effectively.

• Implicit architecture: Although a framework defines an architecture, it is hard to find
in the source code, since one sees classes and inheritance hierarchies, not interactions
between run-time objects.

To address some of these problems, there is increasing interest is so-called “black-box” or
component frameworks, which are used and extended primarily by object and class compo-
sition rather than by inheritance. In this way an application developer can focus on interfac-
es rather than implementation details [24].

A lot of expertise concerning frameworks is to be found in the design pattern literature,
reusable mini-architectures that solve common design problems [12][19]. Reenskaug [42]
and Jacobsen [23] describe methods for constructing frameworks.

Scripting

“Scripting languages” are high-level, dynamic languages for putting together software com-
ponents that are typically programmed in more conventional, compiled languages [37]. A
classic example is the Unix, or “Bourne” Shell [11], which allows Unix commands (i.e., C
programs) to be plugged together as “pipes and filters”, provided each command in the
chain reads its input from the “standard input stream” and sends its output to the “standard
output stream.”

Scripting languages have become increasingly popular in recent years as they make it
very easy for users (i.e., application developers as well as system administrators and even
end-users) to quickly build small, flexible applications from available components. Script-
ing languages typically support a single, specific architectural style of composing compo-
nents (analogous to the pipes and filters style supported by the Unix shell), and they
typically are designed with a specific application domain in mind (such as system adminis-
tration, or GUI design).

Some of the more popular and interesting scripting languages include awk [3], Tcl [36],
Perl [46], Python [45], AppleScript [8], JavaScript [17]. Each language provides a set of
high level language features (e.g., lists, dictionaries, pattern matching and text substitution,
events) and an interface to libraries of external components. What is typically missing from
these languages is support for multiple architectural styles, and high-level features for coor-
dinating distributed software components (“agents”).

Although much of the work on scripting has been driven by practical needs, and far re-
moved from formal methods, there is nevertheless a large body of work in the area of for-



3.3
mal methods that is concerned with compositional software systems (which is the essence
of scripting). Among these works, we consider the most important to be (i) the work on
process calculi, particularly the π calculus [34] and the languages like PICT [40] that are
based on the π calculus (process calculi provide formal models for reasoning about the
composition of processes, or software agents); (ii) the work on object calculi, represented
by the work of Abadi and Cardelli [1] (which attempts to formalize types systems for rea-
soning about object composition); (iii) formal models of coordination, many of which are
inspired by Boudol’s work on the “chemical abstract machine” [10].

Architecture

An emerging discipline within the software engineering community concerns the study of
software architectures. This discipline attempts to document, classify and formally specify
generic architectural styles and specific software architectures [43][39].

Allen and Garlan have proposed to formally model software architectures using a variety
of techniques [2]. With the language Wright, they formalized a decomposition of software
elements into components and connectors [6][7]. The composition of the identified compo-
nents by means of connectors made the system architecture explicit. In a similar way, Dar-
win [29], a configuration language for distributed systems, supports a description of the
architecture by specifying the connections between ports of software agents. Rapide [27]
[28] is an “executable architecture definition language” designed for prototyping system ar-
chitectures. An architecture defined using Rapide consists of interface definitions (corre-
sponding to component specifications), connection rules (like connectors) which describe
the connections between the interfaces, and constraints. Rapide is an event-based execution
model. Rapid architectures can also be dynamic, in the sense that the number of compo-
nents in the architecture can vary as can the communication conditions.

Another approach to specifying architectural styles is to document them in the same man-
ner as design patterns. Buschmann et al. take this approach to specify architectural “pat-
terns” such as layered architectures, pipes and filters, and blackboard systems [12].

Finally Garlan et al. [21] describes the “architectural mismatch” problem, i.e. the kind of
problems one encounters when integrating systems based on different architectural styles.

Glue

Closely related to scripting is the notion of “glue”. Glue code is concerned with “putting
things together”, but the emphasis is on bridging gaps between architectural styles. A mod-
ern example is glue code that wraps a legacy application to work in a networked environ-
ment. Although scripting languages are marginally concerned with glue, in the sense that
they can be used to glue together components that have not been designed to work together,
typically the hard problems are solved at the stage in which the interface is defined between
the components and the scripting language, and not in the scripts themselves. 

Glue code is often written in languages like Smalltalk (which is good for wrapping legacy
code) or C (which is good for gaining access to low-level interfaces). Some general classes
of glue problems (like gluing databases, application code and user interfaces) are to a large
extent addressed by so-called Fourth generation systems, like Delphi [26].

Another approach to glue as a way of bridging architectural styles, is to apply a simple
form of behavioural reflection to intercept and manipulate communications between soft-
ware components. Reflective capabilities of languages like CLOS [44][25], Smalltalk [22]
or OpenC++ [14], have among others been used to introduce persistent objects [38], fault-
tolerance [20], security [16], proxy objects [32] [9] and distributed objects [31]. In this con-
text, ACT [5] an extension of SinaST [4] is based on message passing control to connect



3.4
components. All of these experiments have shown that reflection can indeed be used to link
components based on different architectural styles.

Although there is a certain body of knowledge and “best practice” concerning glue code,
there exists no survey or taxonomy of approaches, no catalogue of “glue abstractions”, and
no language, environment or tools that are well-suited to deal with general glue problems.

Coordination

Coordination languages are languages for coordination concurrent or distributed software
agents. They can be seen as “scripting languages for distributed systems.”

The prototypical coordination language is Linda [13], which is not really a language at
all, but a small set of primitives to allow software agents to communicate with each other
through a “coordination medium” known as a “tuple space.” These primitives can then be
added to any programming language, like Pascal, C or Java, in which the agents are pro-
grammed. There is a large number of experimental coordination languages, many of which
are based on Linda-like models of coordination [15].

A somewhat different view of coordination is proposed by Malone [30], who considers
coordination as the key to understanding dependencies in domains such as computer sup-
ported cooperative work and workflow systems. To our mind these views are complementa-
ry rather than competing, and we see a key application of coordination models and
languages being in application domains such as workflow systems.

Other approaches like Gluons [41], policies [35], and synchronizers [18] allow the defini-
tion of explicit entities responsible for the synchronization and coordination of components.
Generic Synchronization Policies [33] proposes the possibility to specify synchronization
separately from components.

[1] Martín Abadi and Luca Cardelli, A Theory of Objects, Springer, 1996. 
[2] Gregory Abowd, Robert Allen and David Garlan, “Formalizing Style to Understand Descriptions of

Software Architecture,” ACM Transactions on Software Engineering and Methodology, vol. 4, no. 4,
Oct. 1995, pp. 319-364. 

[3] Alfred V. Aho, B. Kernighan and P. Weinberger, “Awk — A Pattern Scanning and Processing Lan-
guage,” Report, Bell Telephone Laboratories, Sept 1978. 

[4] Mehmet Aksit and Anand Tripathi, “Data Abstraction Mechanisms in SINA/ST,” Proceedings
OOPSLA ’88, ACM SIGPLAN Notices, vol. 23, no. 11, Nov 1988, pp. 267-275. 

[5] Mehmet Aksit, Ken Wakita, Jan Bosch, Lodewijk Bergmans and Akinori Yonezawa, “Abstracting In-
ter-Object Communications Using Composition Filters,” draft manuscript, University of Twente, 1993. 

[6] Robert Allen and David Garlan, “Formal Connectors,” CMU-CS-94-115, Carnegie Mellon University,
March 1994. 

[7] Robert J. Allen, “A Formal Approach to Software Architecture,” Ph.D. thesis , School of Computer
Science, Carnegie Mellon University, Pittsburgh, May 1997. 

[8] Apple Computer, AppleScript Language Guide, Apple Technical Library, Addison-Wesley, 1993. 
[9] John K. Bennett, “The Design and Implementation of Distributed Smalltalk,” Proceedings OOPSLA

’87, ACM SIGPLAN Notices, vol. 22, no. 12, Dec. 1987, pp. 318-330. 
[10] Gérard Berry and Gérard Boudol, “The Chemical Abstract Machine,” Proceedings POPL ’90, San

Francisco, Jan 17-19, 1990, pp. 81-94. 
[11] S.R. Bourne, “The UNIX Shell,” Bell System Technical Journal, vol. 57, no. 6 (part 2), July-August

1978, pp. 1971-1990. 
[12] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad and Michael Stad, Pattern-Ori-

ented Software Architecture — A System of Patterns, John Wiley, 1996. 
[13] Nicholas Carriero and David Gelernter, How to Write Parallel Programs: a First Course, MIT Press,

cop. 1990, Cambridge, 1990. 
[14] Shigeru Chiba and Takashi Masuda, “Designing an Extensible Distributed Language with a Meta-Lev-

el Architecture,” Proceedings ECOOP’93, O. Nierstrasz (Ed.), LNCS 707, Springer-Verlag, Kaisers-
lautern, Germany, July 1993, pp. 483-502. 



3.5
[15] Paolo Ciancarini, and Chris Hankin (Ed.), “Coordination Languages and Models,” Proceedings of the
First International Conference, COORDINATION’96, LNCS 1061, Springer-Verlag, April 1996. 

[16] Jean-Charles Fabre, “Systèmes sûrs de fontionnement, tolérance aux fautes par protocoles à métaob-
jets.,” L’Objet, vol. 3, no. 1, 1997, pp. 9-29. 

[17] David Flanagan, JavaScript: The Definitive Guide, Second Edition, O’Reilly & Associates, January
1997. 

[18] Svend Frølund and Gul Agha, “A Language Framework for Multi-Object Coordination,” Proceedings
ECOOP’93, O. Nierstrasz (Ed.), LNCS 707, Springer-Verlag, Kaiserslautern, Germany, July 1993, pp.
346-360. 

[19] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns, Addison Wesley,
Reading, MA, 1995. 

[20] Jeff Garbus, David Salomon and Brian Tretter, SYBASE DBA: Survival Guide, Sams Publishing, 1995. 
[21] David Garlan, Robert Allen and John Ockerbloom, “Architectural Mismatch: Why Reuse Is So Hard,”

IEEE Software, vol. 12, no. 6, Nov 1995, pp. 17-26. 
[22] Adele Goldberg and Dave Robson, Smalltalk-80: The Language, Addison-Wesley, 1989, ISBN: 0-

201-13688-0. 
[23] Ivar Jacobson, Martin Griss and Patrik Jonsson, Software Reuse, Addison-Wesley/ACM Press, 1997. 
[24] Ralph E. Johnson and William F. Opdyke, “Refactoring and Aggregation,” Object Technologies for

Advanced Software, First JSSST International Symposium, Lecture Notes in Computer Science, vol.
742, Springer-Verlag, Nov. 1993, pp. 264-278. 

[25] Gregor Kiczales, Jim des Rivières and Daniel G. Bobrow, The Art of the Metaobject Protocol, MIT
Press, 1991. 

[26] Ray Lischner, Secrets of Delphi 2, Waite Group Press, 1996. 
[27] David C. Luckham, John L. Kenney, Larry M. Augustin, James Vera, Doug Bryan and Walter Mann,

“Specification and Analysis of System Architecture Using Rapide,” IEEE Transactions on Software
Engineering, vol. 21, no. 4, April 1995, pp. 336-355. 

[28] David C. Luckham and James Vera, “An Event-Based Architecture Definition Language,” IEEE
Transactions on Software Engineering, vol. 21, no. 9, September 1995, pp. 717-734. 

[29] Jeff Magee, Naranker Dulay and Jeffrey Kramer, Specifying Distributed Software Architectures, 1995,
to appear, ESEC 1995 . 

[30] Thomas W. Malone and Kevin Crowston, “The Interdisciplinary Study of Coordination,” ACM Com-
puting Surveys, vol. 26, no. 1, March 1994. 

[31] Jeff McAffer, “Meta-level Programming with CodA,” Proceedings ECOOP’95, W. Olthoff (Ed.),
LNCS 952, Springer-Verlag, Aarhus, Denmark, August 1995, pp. 190-214. 

[32] Paul L. McCullough, “Transparent Forwarding: First Steps,” Proceedings OOPSLA ’87, ACM SIGP-
LAN Notices, vol. 22, no. 12, Dec. 1987, pp. 331-341. 

[33] Ciaran McHale, “Synchronisation in Concurrent, Object-oriented Languages: Expressive Power, Ge-
nericity and Inheritance,” Ph.D. thesis, Department of Computer Science, Trinity College, Dublin,
1994. 

[34] Robin Milner, Joachim Parrow and David Walker, “A Calculus of Mobile Processes, Part I/II,” Infor-
mation and Computation, vol. 100, 1992, pp. 1-77. 

[35] Naftaly Minsky and Victoria Ungureanu, “Regulated Coordination in Open Distributed Systems,” Pro-
ceedings COORDINATION’97, David Garlan & Daniel Le Mètayer (Ed.), LNCS 1282, Springer-Ver-
lag, Berlin, Germany, September 1997, pp. 81-97. 

[36] John K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, 1994. 
[37] John K. Ousterhout, Scripting: Higher Level Programming for the 21st Century, May 1997, White Pa-

per. 
[38] Andreas Paepcke, “PCLOS: A Flexible Implementation of CLOS Persistence,” Proceedings

ECOOP’88, S. Gjessing and K. Nygaard (Ed.), LNCS 322, Springer-Verlag, Oslo, August 15-17,
1988, pp. 374-389. 

[39] Dewayne E. Perry and Alexander L. Wolf, “Foundations for the Study of Software Architecture,” ACM
SIGSOFT Software Engineering Notes, vol. 17, no. 4, October 1992, pp. 40-52. 

[40] Benjamin C. Pierce and David N. Turner, “Pict: A Programming Language based on the Pi-Calculus,”
Technical Report, no. CSCI 476, Computer Science Department, Indiana University, March 1997. 

[41] Xavier Pintado, “Gluons: a Support for Software Component Cooperation,” Object Technologies for
Advanced Software, First JSSST International Symposium, Lecture Notes in Computer Science, vol.
742, Springer-Verlag, Nov. 1993, pp. 43-60. 

[42] Trygve Reenskaug, Working with Objects: The OOram Software Engineering Method, Manning Publi-
cations, 1996. 



3.6
[43] Mary Shaw and David Garlan, Software Architecture: Perspectives on an Emerging Discipline, Pren-
tice-Hall, 1996. 

[44] G.L. Steele, Common Lisp The Language, Second Edition, Digital Press, 1990, ISBN: 1-55558-049-1. 
[45] Guido van Rossum, Python Reference Manual, Stichting Mathematisch Centrum, Amsterdam, 1996. 
[46] Larry Wall and Randal L. Schwartz, Programming Perl, O’Reilly & Associates, Inc., 1990. 



3.7
2.3. Contributions to the field by the applicants

As mentioned in the introduction, this project proposes to address the problems of heteroge-
neous component systems by integrating techniques from frameworks, scripting, architec-
tures, glue and coordination. The following sections list the contributions we have made to
each of those research areas. 

Frameworks

An object-oriented framework is a particularly effective approach towards organizing soft-
ware components [58]. An object-oriented framework provides a reusable architecture for a
family of applications, where variations in the problem domain are tackled by customising
components.

So far, our work has concentrated on how one can turn the design of a framework archi-
tecture from an art into a science. In [48], we forward three design guidelines that explain
how to construct an open framework architecture. And with FACE [56] and Zypher [49],
we provide tool support for respecting and documenting the framework architecture.

We have included a copy of [48] and [58] as samples of our contribution to this area.

Scripting

In an ideal component world, composing an application would correspond to the writing of
a small script that creates, customises and assembles some components into a predefined ar-
chitecture. With the book [57] and the article [59], we provide an overview of the present
problems and the possible solutions to achieve this ideal situation.

Our work on the Piccola composition language (based on the formal foundation of PiL)
[54][55][61][62] provides an experimental platform to validate certain solutions. Piccola is
based on the principle that all parts of a composition environment are agents that exchange
messages over a communication medium. Composing an application corresponds then to (i)
collecting existing component agents and (ii) gluing them together with specially developed
glue agents.

We have included a copy of [55] as a sample of our contribution to this area.

Architecture

A system architecture describes how components are plugged together using connectors.
With our work on FLO [50][51][53] we show that it is possible to embed the notion of a
connector into an object-oriented language. In this way connectors become an executable
part of a concurrent architecture, thus making the software architecture more explicit at im-
plementation level. 

We have included a copy of [51] as a sample of our contribution to this area.

Glue

Glue techniques are required to adapt components that do not really fit the system architec-
ture. Today, almost all component glue is based on wrappers that pack the original compo-
nent into a new one with a suitable interface. If used frequently, this technique gives rise to
serious performance problems.

In [61], we present the results of a literature survey on component systems and glue tech-
niques. With our work on message passing control [52], we have gathered the necessary ex-
perience to experiment with the reflective capabilities of a programming language to adapt
components. The idea is to intercept the messages that are exchanged between the compo-
nents and to patch them up so that they fit each other’s interface.



3.8
We have included a copy of [61] as a sample of our contribution to this area.

Coordination

Distributed and concurrent applications are still among the hardest ones to build. Compo-
nents are believed to contribute a lot by shrink-wrapping proven solutions for coordinating
distributed behaviour into off the shelf components. With the CoCo coordination frame-
work, we are developing a platform to experiment with coordination components in the
context of the world-wide web.

We have done a literature survey of contracts as a way to describe the protocol expected by
a certain component [47]. This contract survey has inspired our work on coordination com-
ponents as an explicit representation of a contract between components [63]

We have included a copy of [63] as a sample of our contribution to this area.

[47] Juan Carlos Cruz, Stéphane Ducasse and Patrick Steayert, Evaluating Contracts in the Object-Oriented
Paradigm, Working Paper. 

[48] Serge Demeyer, Theo Dirk Meijler, Oscar Nierstrasz and Patrick Steyaert, “Design Guidelines for Tai-
lorable Frameworks,” Communications of the ACM, October 1997, vol. 40, no. 10, pp. 60-64. 

[49] Serge Demeyer, Koen De Hondt and Patrick Steayert, The Zypher Open Hypermedia Framework, To
Appear in ACM Computing Surveys. 

[50] Stéphane Ducasse, Mireille Blay-Fornarino and Anne-Marie Pinna, “A Reflective Model for First
Class Dependencies,” Proceedings of OOPSLA’95, ACM, October 1995, pp. 265—280. 

[51] Stéphane Ducasse and Tamar Richner, “Executable Connectors: Towards Reusable Design Elements,”
Proceedings of ESEC/FSE’97, LNCS 1301, 1997, pp. 483—500. 

[52] Stéphane Ducasse, “Des techniques de contrôle de l’envoi de messages en Smalltalk,” L’Objet, vol. 3,
no. 4, 1997, pp. 355—377. 

[53] Manuel Guenter, “Explicit Connectors for Coordination of Active Objects,” Master’s thesis, Universi-
ty of Berne, 1998. 

[54] Markus Lumpe, Jean-Guy Schneider and Oscar Nierstrasz, “Using Metaobjects to Model Concurrent
Objects with PICT,” Proceedings of Langages et Modèles à Objects, Leysin, October 1996, pp. 1-12. 

[55] Markus Lumpe, Jean-Guy Schneider, Oscar Nierstrasz and Franz Achermann, “Towards a formal com-
position language,” Proceedings of ESEC ’97 Workshop on Foundations of Component-Based Sys-
tems, Gary T. Leavens and Murali Sitaraman (Ed.), Zurich, September 1997, pp. 178-187. 

[56] Theo Dirk Meijler, Serge Demeyer and Robert Engel, “Making Design Patterns Explicit in FACE, a
Framework Adaptive Composition Environment,” Proceedings ESEC/FSE ’97, M. Jazayeri and H.
Schauer (Ed.), LNCS 1301, Springer-Verlag, September, 1997, pp. 94-110. 

[57] Oscar Nierstrasz and Dennis Tsichritzis (Ed.), Object-Oriented Software Composition, Prentice Hall,
1995. 

[58] Oscar Nierstrasz and Laurent Dami, “Component-Oriented Software Technology,” Object-Oriented
Software Composition, O. Nierstrasz and D. Tsichritzis (Ed.), Prentice Hall, 1995, pp. 3-28. 

[59] Oscar Nierstrasz and Theo Dirk Meijler, “Research Directions in Software Composition,” ACM Com-
puting Surveys, vol. 27, no. 2, June 1995, pp. 262-264. 

[60] Oscar Nierstrasz, Jean-Guy Schneider and Markus Lumpe, “Formalizing Composable Software Sys-
tems — A Research Agenda,” Proceedings 1st IFIP Workshop on Formal Methods for Open Object-
based Distributed Systems FMOODS’96, Chapmann and Hall, 1996, pp. 271-282. 

[61] Oscar Nierstrasz and Markus Lumpe, “Komponenten, Komponentenframeworks und Gluing,” HMD
— Theorie und Praxis der Wirtschaftsinformatik, no. 197, September 1997, pp. 8-23. 

[62] Jean-Guy Schneider and Markus Lumpe, “Synchronizing Concurrent Objects in the Pi-Calculus,” Pro-
ceedings of Langages et Modèles à Objets ’97, Roland Ducournau and Serge Garlatti (Ed.), Hermes,
Roscoff, October 1997, pp. 61-76. 

[63] Sander Tichelaar, Juan Carlos Cruz and Serge Demeyer, “Coordination as a Variability Aspect in Open
Distributed Systems,” SCG working paper, submitted, University of Bern, 1998. 



3.9
2.4. Detailed research plan

Because of the inherent heterogeneity of the emerging software component market, a key
problem will always be how to integrate components provided by different vendors. This
basic research project will investigate how one can apply framework technology to inte-
grate partial solutions provided by “best practice” technology that includes scripting lan-
guages, glue techniques, architectural description languages and finally coordination
models and languages. 

We propose to develop a set of experimental tools and techniques that build on our previ-
ous and ongoing work in the project “Infrastructure For Software Component Frameworks”
(FNRS project no. 2000-46947.96), and that integrate best practice in the following way:

• Composition as Scripting

Scripting languages are used to create, customise and assemble components into a pre-
defined architecture. In the ideal case, applications are specified as high-level “scripts”
that indicate how individual components are put together. At this time there exists no
thorough analysis of scripting languages and the features that make them work well in
practice. We propose to carry our such an analysis and to use this as a basis for devel-
oping a systematic composition approach. The results will be used to influence the de-
sign of our own experimental composition language (Piccola).

• Support for multiple Architectural Styles

Scripting languages typically support only a single architectural style, but in practice,
complex applications must deal with multiple styles. A composition approach must al-
low multiple styles to be expressed and used. An architectural style defines a family of
systems in terms of a pattern of structural organization. More specifically, an architec-
tural style defines a vocabulary of components and connector types, and a set of con-
straints on how they can be combined. High-level syntax is essential to making
architectural styles explicit. Object-oriented frameworks go a long way to making such
styles explicit by creative and consistent use of operator overloading, and explicit for-
mulation of the contracts governing composition. We propose to investigate specifica-
tion techniques for supporting multiple architectural styles during application
composition.

• Glue code to bridge gaps in Architectural Styles

When components do not fit together, we often have to write “glue code” that bridges
the gaps. Although there is a wealth of knowledge concerning “best practice” in writ-
ing glue code, and techniques like wrappers and behavioural reflection work well to
bridge architectural gaps, there exists no “theory of glue code”, or even a comprehen-
sive survey of glue techniques in the literature. We propose to study glue problems, to
develop a taxonomy of glue abstractions that solve glue problems, and to develop lan-
guage support for specifying reusable glue abstraction based on behavioural reflection
(i.e., based on “interceptors”).

• Coordination abstractions

Increasingly, components are distributed, and even “active” (i.e., autonomous agents).
In this case, composing applications from distributed components can be seen as a co-
ordination problem (in the sense of coordination languages and models). A composi-
tion language can then be seen as a kind of coordination language. We plan to
investigate the application of composition technology to coordination problems in the
context of the Esprit Working Group COORDINA. We also propose to focus on glue
and composition problems that occur in distributed settings, in particular using middle-
ware, such as CORBA.



3.10
Expected Results

We expect to obtain research results in the following four areas:

1. Frameworks

We plan to use CoCo and FLO to (i) specify a variety of domain-specific architectural
styles as “black-box” component frameworks; (ii) develop reusable glue abstractions
for bridging architectural styles; (iii) further develop reusable abstractions for coordi-
nating distributed software components.

We therefore plan to use a component approach both for domain-specific components
as well as for the abstractions that compose, adapt and coordinate domain compo-
nents.

2. Applications

We plan to drive and to validate our approach by investigating a number of composi-
tion problems in various domains using CoCo and FLO. The COORDINA working
group is providing a variety of industrial case studies, some of which we will use as
testbeds for our approach. We also plan to carry out a detailed survey of architectural
mismatch, or “glue problems”. 

Finally, we plan to investigate the application of Piccola and our glue environment to
the integration of heterogeneous internet services (i.e., databases, http servers, COR-
BA servers, etc.) by means of explicit connectors. This experiment should show if, as
we expect, the limits of the existing approaches can be removed in a fully distributed
system.

3. Formal Aspects

Our previous work focused on modelling of composition mechanisms and abstrac-
tions using a formal process calculus in an effort to better understand the interaction
between these features. We now propose to use this formalism to facilitate reasoning
about software compositions. We seek to (i) develop a flexible type system for Picco-
la that will support an easy transition between dynamic type checking, type inference
and static type checking, to ease the integration of (static) component libraries and
(dynamic) scripts; (ii) investigate formalisms for expressing and validating contracts
between software components as an integral part of an architectural style; (iii) use the
π-calculus foundation to reason about implementation optimizations, such as reduc-
ing the number of needed threads to implement glue agents efficiently and correctly.

4. Languages and Tools

We have previously developed a series of small language prototypes based on our
process calculus modelling of composition mechanisms. We seek to extend and refine
this work in the form of the Piccola composition language, by incorporating the fea-
tures need to support scripting, glue techniques, multiple architectural styles, and co-
ordination contracts.

We also plan to develop various experimental tools for a glue environment for Picco-
la, which will enable one to visualize, monitor and interact with glue agents. We plan
to investigate tools to facilitate the interaction between the experimental platforms
(Piccola, FLO and CoCo) and external components, such as libraries, databases, GUI
systems, operating systems, internet applications and CORBA servers.



3.11
2.5. Work plan

First year

• Frameworks: develop a set of reusable glue abstractions based on established “best
practice” and incorporate those into FLO; extend CoCo to address bridging of diverse
architectural style

• Applications: apply CoCo and FLO to COORDINA case studies; catalogue “glue
problems” and experimentally apply the Piccola approach to architectural mismatch
problems

• Formal Aspects: develop a type inference system for Piccola based on type systems for
the π-calculus and for record-based object calculi; experiment with formalisms for ex-
pressing and validating contracts between concurrent software components and apply
within CoCo

• Language and Tools: develop a graphical interface for monitoring the progress of Pic-
cola “glue agents”; develop a CORBA interface to Piccola, CoCo and FLO; iterate Pic-
cola, CoCo and FLO based on the experience with frameworks and applications

Second year

• Frameworks: apply the reusable glue abstractions of FLO to glue distributed compo-
nents; apply CoCo to specify common architectural styles as component frameworks

• Applications: apply Piccola, CoCo and FLO to the integration of heterogeneous inter-
net services

• Formal Aspects: use the underlying π-calculus formalism of Piccola to epitomize per-
formance (such as reducing the number of running threads while preserving liveness);
investigate extensions of type systems to express architectural contracts

• Language and Tools: continue to iterate Piccola, CoCo and FLO; extend the Piccola
language and implementation to incorporate the type inference system.

2.5.1. What is the importance of the proposed work?

Present day applications are increasingly required to integrate functionality and features
from heterogeneous software and hardware platforms. Although some extent of “best prac-
tice” techniques are widely known and used, there is no systematic support for flexibly con-
figuring and adapting software components to work together in a heterogeneous setting.
Most so-called “middleware” approaches offer only a limited, low-level infrastructure for
integration, but do not solve the software engineering problems. This project promises to
taxonomize, systematize and integrate best practice into a framework-based approach for
composing heterogeneous software systems.

2.6. International Collaboration

2.6.1. Within which international programs or organisations will this project be carried out?

Part of this proposal is concerned with the application of framework technology to coordi-
nation problems. We are participating in an ESPRIT Working Group, called COORDINA
(BBW Nr. 96.0335-1), which consists of academic and industrial partners in Europe who
are studying and applying coordination models and languages to problems of coordination
distributed components and agents.

2.6.2. In which countries do the principle partners in this project reside?

There are no formal research partners in this project.



3.12
The COORDINA partners are in Italy, France, the Netherlands, Denmark, Great Britain,
Portugal, Germany and Switzerland.


	FORSCHUNGSGESUCH
	2. Scientific part
	2.1. Summary and key-words
	2.2. Research plan
	2.2.1. State of the art and related work

	2.3. Contributions to the field by the applicants
	2.4. Detailed research plan
	2.5. Work plan
	2.5.1. What is the importance of the proposed work?

	2.6. International Collaboration
	2.6.1. Within which international programs or organisations will this project be carried out?
	2.6.2. In which countries do the principle partners in this project reside?






