
Traits in Scala
LAMP/EPFL

2

The Scala Programming Language

• A programming language designed for software
components and component systems.

• Two claims:

• A language for component software needs to be scalable in the
sense that the same concepts can describe small as well as large
parts.

• Scalability can be achieved by a fusion of object-oriented and functional
programming.

• Smalltalk goes in the same direction. Main difference is
that Scala has a conventional syntax and is statically
typed.

• For usability we aim for seamless integration with Java.

3

Scala in a Nutshell

• Scala has a uniform object model
all values are objects
all objects are instances of a class
all operations are method calls

• Functions are first-class values

• Uniform and powerful abstraction concepts for both
types and values

• Specialization of classes and traits via single inheritance
and a flexible mixin-composition mechanism

• External, retroactive extensibility via views

• Decomposition of objects using pattern-matching

• Lightweight support for XML

• Implemented on the Java and .Net platforms

4

Classes in Scala

• Scala features generic class abstractions that can be
arbitrary nested:

class Buffer[T] {

 var xs: List[T] = Nil;
 def add(elem: T): unit = { xs = elem :: xs; }
 def elements: Iterator[T] = new BufferIterator

 class BufferIterator extends Iterator[T] {
 var ys = xs;
 def hasNext = !ys.isEmpty;
 def next = { ... }
 }

}

5

Single Inheritance

• Classes can be extended via single inheritance

• Here is a second independent extension

class IterableBuffer[T] extends Buffer[T] {
 def forall(p: T => Boolean): Boolean = {
 val it = elements; var res = true;
 while (res && it.hasNext) { res = p(it.next); }
 res
 }
}

class Stack[T] extends Buffer[T] {
 def push(elem: T): unit = add(elem);
 def pop: T = { val y = xs.head; xs = xs.tail; y }
}

6

Symmetric Mixin Composition

• How to join independent extensions to get a class with
combined functionality?

• Solution in Scala: symmetric mixin composition

• The mixin composition mechanism of Scala allows
programmers to reuse the delta of a class definition in
the definition of a new class.

class IterableStack[T] extends Stack[T] with IterableBuffer[T];

Superclass Mixin

Buffer

Stack IterableBuffer

IterableStack

7

Mixin Rules

• Mixin composition in Scala is symmetric:

• S serves as actual superclass of A and B, replacing their
declared superclass.

• S must be a subtype of A and B’s declared superclass.

• Here’s how mixin members are determined:

A concrete definition in S, A, or B implements any abstract
definitions of the same name in the other classes.

Concrete definitions in either A or B override concrete
definitions in S.

Two concrete definitions of the same name in A and B
constitute a conflict, which needs to be resolved in the
inheriting class.

S with A with B = S with B with A

8

Example: Ambiguities

• Imagine we have another extension of class Buffer:

• ...and we want to integrate it into our stack abstraction:

• Ambiguities have to be resolved by hand:

class ComparableBuffer[T] extends Buffer[T] {
 def forall(p: T => Boolean): Boolean = ...
 def sameElements(b: IterableBuffer[T]): Boolean =
 forall(elem => ...)
}

class MyStack[T] extends Stack[T]
 with IterableBuffer[T]
 with ComparableBuffer[T]; // ambiguous: forall

class MyStack[T] extends Stack[T]
 with IterableBuffer[T]
 with ComparableBuffer[T] {
 override def forall(p: T => Boolean) =
 super[IterableBuffer].forall(p);
}

9

Diamond Inheritance ⇒ Traits

• To avoid the duplication of state, Scala does not allow a
class to be mixed into another class multiple times

• Traits = abstract classes that do not encapsulate state
(no variables, no constructor parameters)

• Inheriting twice from a trait is legal

• Example:
trait Iterable[T] {
 def elements: Iterator[T];
 def forall(p: T => Boolean): Boolean = {
 val it = elements; var res = true;
 while (res && it.hasNext) { res = p(it.next); }
 res
 }
}

class IterableBuffer[T] extends Buffer[T]
 with Iterable[T];

10

Traits in the Scala Collection Classes

• Role of traits:

Define the basic interfaces (like Map, Set, Buffer, etc.):

- Most methods are concrete; their implementation relies on a
minimal set of abstract methods

- Concrete classes implement the abstract methods; concrete trait
methods are only overridden to improve performance

Define optional functionality (like synchronization,
checkpointing, etc.)

- Some/all concrete methods of the basic interface are overridden
with alternative implementations

• Benefits:

The programmer constructs data types from small building
blocks depending on his individual requirements

Improved code reuse through more generic class abstractions

11

Overriding Abstract Members

• Consider a mixin for synchronization:

• Problem: super calls in SynchronizedIterator reference
abstract members of Iterator.

• Hence an instance creation such as

should be illegal.

• This is flagged by the abstract override modifier
combination.

trait Iterator[T] {
 def hasNext: Boolean;
 def next: T;
 def foreach(f: T => unit): unit = while (hasNext) { f(next) };
}

trait SynchronizedIterator[T] extends Iterator[T] {
 abstract override def hasNext: Boolean = synchronized { super.hasNext }
 abstract override def next: T = synchronized { super.next }
}

new Iterator[String] with SynchronizedIterator[String]

12

Dynamic vs. Static Composition

class ListIterator[T](xs: List[T]) extends Iterator[T] {
 var ys = xs;
 def hasNext: Boolean = !ys.isEmpty;
 def next: T = { val res = ys.head; ys = ys.tail; res }
}

class IteratorProxy[T](ip: Iterator[T]) extends Iterator[T] {
 def hasNext: Boolean = ip.hasNext;
 def next: T = ip.next;
}

new IteratorProxy(new ListIterator(xs))
 with SynchronizedIterator;

new ListIterator(xs)
 with SynchronizedIterator;

Static Composition

Dynamic Composition

