
Adrian Lienhard, Software Composition Group, Berne, Switzerland

New Implementation
of Traits in Squeak

The new clean and stable traits
implementation - a short overview

Adrian Lienhard, Software Composition Group, Berne, Switzerland

Requirements

• Simple installation and usage
– “One-click-installation” into

current Squeak image
– Should run on unmodified VM
– Clean design and unit tests
– Traits Browser, Monticello, FileIn/-Out, …

Adrian Lienhard, Software Composition Group, Berne, Switzerland

Design Considerations
Adding traits to a class:
a) Change method lookup

• DNU-mechanism
• Modify VM

b) Add trait methods directly to method dictionary
• “Flattening property” (no modification of the lookup

needed) but…
• Manage method dictionary and keep track of which

methods are locally defined
• Update method dictionary whenever a relevant

method in a trait has changed (=>update-mechanism)

Adrian Lienhard, Software Composition Group, Berne, Switzerland

Architecture: Modelling Traits
Traits and Classes have in common:
- method-dictionary, compiling
- setting a new trait composition
- update-mechanism to keep track

of changes in traits of it’s trait-
composition

- categorizing methods
- fileIn/Out

- name
- class-side

(classtrait vs. metaclass)

Adrian Lienhard, Software Composition Group, Berne, Switzerland

Problems

• Parallel hierarchy
– Problem: Code duplication in Class-/TraitDescription
– Alternative: Trait inherits from ClassDescription. But

too much class specific behavior, e.g., #new
• Modification of kernel classes:

– VM accesses instance-variables (superclass,
methodDict, format) by index => i-vars can not be
added to a superclass of Behavior

Adrian Lienhard, Software Composition Group, Berne, Switzerland

Architecture: Composing Traits
• Trait-composition is

constructed by a
Smalltalk expression
(using message sends)

• PureBehaviors can set
a trait- composition

• Traits keep track of
users for notification
of changes

Example:

Object subclass: #MyClass
uses: Ta @ {y->x} - {#x} + Tb
instanceVariableNames: ‘’
...

Adrian Lienhard, Software Composition Group, Berne, Switzerland

Refactoring the Traits Kernel
Tackle code duplication:
Refactor Class-/TraitDescription using traits itself

Solution:
• 9 common traits for: compiling, categorizing, testing,

fileout, …

• Total methods in traits: 78
• Local methods in ClassDescription: 59
• Local methods in TraitDescription: 35

Adrian Lienhard, Software Composition Group, Berne, Switzerland

Lessons Learned and
Future Work

• 80% of the functionality developed in 20% of the time
• Squeak: open and flexible. But still, a lot of detail work

and refactoring was needed (KCP)
• Future enhancements/fixes to Squeak kernel will have to

be handled manually
• Traits Browser, Monticello and FileIn/Out
• Future work

– Further refactoring of the kernel
– Bootstrapping

