
Traits
Limitations and Ideas

Nathanael Schärli
Software Composition Group, University of Berne, Switzerland

June 23, 2004 Traits - Limitations and Ideas 2

Limitations of Traits

 No encapsulation mechanism for traits
 Traits cannot specify state variables
 Trait composition and inheritance are not fully

orthogonal
 Do we really need both mechanisms?
 Can we replace them with a single, uniform mechanism?

June 23, 2004 Traits - Limitations and Ideas 3

Limitation: Lack of Encapsulation

do:
select:
collect:
randomDo:
...

do:
isEmpty:
at:
at:put:
...

MyCollection

TEnumeration

isEmpty
isNotEmpty
ifEmpty:
...

TEmptiness

Object
do:
select:
collect:
randomDo:
generateRandom:
...

June 23, 2004 Traits - Limitations and Ideas 4

Idea: Using Interfaces

do:
select:
collect:
randomDo:
...do:

isEmpty:
at:
at:put:
...

MyCollection

TEnumeration
Object do:

select:
collect:
randomDo:
generateRandom:
...default := [do: select: collect:
 randomDo: ...]

TEnumeration’

full

generateRandom

June 23, 2004 Traits - Limitations and Ideas 5

Limitation: No State in Traits

balance
deposit:
withDraw:

BankAccount TLockingPolicy
acquireLock
releaseLock
semaphore
semaphore:

semaphore

balance
deposit:
withDraw:

balance
deposit:
withDraw:
semaphore
sempahore:

sempaphore
 ^ sempahore

sempaphore: aSema
 sempahore := aSema

June 23, 2004 Traits - Limitations and Ideas 6

Reasons against State

 No encapsulation
 State in traits would be accessible in the class anyway

 Diamond situation
 Should state be duplicated?

 State affects the generality of a trait
 Some clients may want to bind traits differently

 Initialization
 How is the state in traits initialized

June 23, 2004 Traits - Limitations and Ideas 7

Idea: Representing State as Methods

balance
deposit:
withDraw:

BankAccount TLockingPolicy
acquireLock
releaseLock
semaphore
semaphore:
default := [acquireLock
 releaseLock]sempaphore: aSema

 <slot>

sempaphore
 <slot>

OtherBankAccount
full

semaphore
semaphore:

sempaphore: aSema
 self storeInDB: aSema

sempaphore
 ^ self readFromDB

June 23, 2004 Traits - Limitations and Ideas 8

Reasons against State: Revisited

 No encapsulation
 State in traits would be accessible in the class anyway

 Diamond situation
 Should state be duplicated?

 State affects generality of a trait
 Some clients may already provide the necessary state
 Would result in “too much state”

 Initialization
 How is the state in traits initialized

June 23, 2004 Traits - Limitations and Ideas 9

Do we Need Traits Comp. & Inheritance?

 If we have traits with encapsulation and state...
 traits and classes are essentially the same
 the only difference is how they are composed:

 Classes are reused by inheritance
 Traits are reused by traits composition

 What is the difference between these composition
mechanisms?

June 23, 2004 Traits - Limitations and Ideas 10

Inheritance vs. Traits Composition

radius
area
...

DrawableColoredCircle

Circle

draw
refresh
...

Drawable

hue
saturation
...

Color

super

aliases

take precedence

June 23, 2004 Traits - Limitations and Ideas 11

Example

check
read
 self check
 ^ super read
write: anObject
 self check
 ^ super write: anObject

RWSynchronizer

ReadWriter
read
write:

SyncReadWrite

check
read
 self check
 ^ super read
write: anObject
 self check
 ^ super write: anObject

read
write:

check
read
 self check
 ^ super read
write: anObject
 self check
 ^ super write: anObject

Two precedence levels

Access to superclass
(dynamically bound)

aReadWriter

adaptee

June 23, 2004 Traits - Limitations and Ideas 12

Conclusion

 Combining trait composition with an encapsulation
mechanism opens new possibilities
 Unifying methods and slots gives us stateful traits

without much overhead
 Open problem: Initialization

 Challenges for a uniform composition mechanism
 Accessing original methods via super, aliases or both?
 What are the precedence rules?

 Do we need different levels of precedence?
 How many levels?

