Featherweight Traits

Oscar Nierstrasz
Stephane Ducasse
Nathanael Scharli



Motivation

How to implement traits in statically-typed
languages?

i.e., Java & C#



Featherweight Java

* Purely functional object calculus

= Rules for: syntax, subtyping, field/method/type lookup,
expression/method/class type-checking, computation

* Captures minimal aspects of Java types

= [gnores side-effects, super-sends, overloaded methods,
reflection, concurrency etc.

Designed to answer the question:

= How can Java be extended with generics without breaking
the type system?

A perfect basis for studying traits in Java-like languages!



Featherweight Traits

Start with FJ

= Consider only minimal changes
Adopt the principle:

w “A trait is kinda, sorta like a class”
Take care for:

= Conflicts

= Required methods

lgnore:
= Aliasing, exclusion, super-sends



FT Syntax

class C extends C uses T {

trait T uses T {M}



Subtyping

class C extends D uses T{

C<:D Vi.CL:T;

trait T uses T {M}

V1. T<:T;



Auxiliary functions

* Field lookup

= not heeded

* Method type lookup

= Give priority to class, then traits, then superclass

* Method body lookup

e Similar



Next Steps ...

Expression typing
= Unchanged (!)
Method typing

= Need to account for conflicts (no type inconsistencies allowed)

Class typing

= Need to check that conflicts are resolved and required methods
provided

Reductions rules
= Unchanged! (due to flattening)

Generics
w= Generic traits are like generic classes ...



