
CiteWise
citation search engine

Aliya Ibragimova

Supervisors:
Prof. Dr. Oscar Nierstrasz 
Haidar Osman, Boris Spasojević

1

ArXiv: monthly submission rates

2

N
um

be
r o

f s
ub

m
is

si
on

s

Years

References: making sure no one
has already written your thesis

www.phdcomics.com
3

Why finding related work is so difficult?

• It's difficult to validate proposed claims
• look for what other people used as references

to their claims

4

CiteWise

5

Predicting Failures with Developer Networks and Social
Network Analysis

Andrew Meneely1, Laurie Williams1, Will Snipes2, Jason Osborne3
1Department of Computer Science, North Carolina State University, Raleigh, NC, USA

{apmeneel, lawilli3}@ncsu.edu
2Nortel Networks, Research Triangle Park, NC, USA. wbsnipes@nortel.com
 3Department of Statistics, North Carolina State University, Raleigh, NC, USA

jaosborn@ncsu.edu

ABSTRACT
Software fails and fixing it is expensive. Research in failure
prediction has been highly successful at modeling software
failures. Few models, however, consider the key cause of failures
in software: people. Understanding the structure of developer
collaboration could explain a lot about the reliability of the final
product. We examine this collaboration structure with the
developer network derived from code churn information that can
predict failures at the file level. We conducted a case study
involving a mature Nortel networking product of over three
million lines of code. Failure prediction models were developed
using test and post-release failure data from two releases, then
validated against a subsequent release. One model’s prioritization
revealed 58% of the failures in 20% of the files compared with the
optimal prioritization that would have found 61% in 20% of the
files, indicating that a significant correlation exists between file-
based developer network metrics and failures.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – process metrics,
product metrics.

General Terms
Reliability, Human Factors, Verification

Keywords
Social network analysis, negative binomial regression, logistic
regression, failure prediction, developer network

1. INTRODUCTION
Software fails and fixing it is expensive. If testers can find
software failures early in the software development lifecycle, the
estimated cost of fixing the software dramatically decreases [10].
Research in failure prediction has provided many models to assess
the failure-proneness of files, and have been highly successful at
predicting software failures [3, 8, 11, 21, 22, 24, 25, 28].

Few models, however, consider the key cause of failures in
software: people. People develop software and people test

software. For large software systems, many people need to work
together to develop software. This collaboration has a structure –
a structure governed by elements of human social interaction and
software development processes. Understanding the structure of
developer collaboration could tell us a lot about the reliability of
the final product.

We examine this collaboration structure using a software
development artifact common to most large projects: code churn
information taken from revision control repositories. Code churn
information has provided valuable metrics for failure prediction
[21]. For example, a file with many recent changes tends to be
more failure-prone than an unchanged file.

But what if that file was updated by a developer who has worked
with a lot of other developers? Maybe a “well-known” developer
is less failure-prone. Code churn information can also tell us how
these developers collaborated: we know who worked on what and
when. From there, we can form a social network of developers
(also known as a developer network) who have collaborated on
the same files during the same period of time. Social Network
Analysis (SNA) quantifies our notion of “well-known” developers
with a class of metrics known as “centrality” metrics.

The advantage of this developer network is that it provides a
useful abstraction of the code churn information. With careful
interpretation, one can use a developer network mid-development
to identify potential risks and to guide verification and validation
(V&V) activities such as code inspections.

Our research goal is to examine human factors in failure
prediction by applying social network analysis to code churn
information. Failure prediction models have been successful for
other areas (such as static analysis [16]), so the empirical
techniques of model selection and validation have all been used
with static code metrics [20]. We introduce file-based metrics
based on SNA as additional predictors of software failures.

A case study was conducted of a large Nortel networking product
consisting of over 11,000 files and three million lines of code to
build and evaluate the predictive power of network metrics.
System test and post-release failure data from Nortel’s source
repositories and defect tracking system were used in our study.

The rest of this paper is organized as follows: Section 2
summarizes the background of Social Network Analysis and
related work in failure prediction and developer networks. Section
3 introduces our developer networks, their associated metrics, and
the analysis in failure prediction. Sections 4 and 5 summarize our
case study of the Nortel product. Sections 6 and 7 summarize our
work and outlines future work, respectively.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGSOFT 2008/FSE-16, November 9--15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-59593-995-1 ...$5.00.

Research in failure prediction has

provided many models to assess the
failure-proneness of files, and have
been highly successful at predicting
software failures [3, 8, 11, 21, 22, 24,
25, 28].

Code churn information has provided

valuable metrics for failure prediction
[21].

Failure prediction models have been

successful for other areas (such as
static analysis [16]), so the empirical
techniques of model selection and
validation have all been used with
static code metrics [20].

CiteWise

6

software engineering. An investigation into how closely
associated a developer network is to true collaboration is
warranted. Comparisons of developer networks from different
projects, processes, and domains should be made. Once we have a
firm understanding of the developer network, we can begin to
make proactive steps toward organizational improvement rather
than reacting to the current state for V&V guidance.

8. ACKNOWLEDGMENTS
This research is supported by a research grant from Nortel
Networks. We would like to thank the members of the Software
Engineering Realsearch group at North Carolina State University
along with Thomas Zimmerman for his feedback.

9. REFERENCES
[1] Network Analysis: Methodological Foundations. Berlin:

Springer, 2005.
[2] Allen, T. J., Managing the Flow of Technology: MIT Press,

1977.
[3] Arisholm, E. and Briand, L. C., "Predicting Fault-prone

Components in a Java Legacy System," in 2006
ACM/IEEE International Symposium on Empirical
Software Engineering, 2006, pp. 8-17.

[4] Arisholm, E., Briand, L. C., and Fuglerud, M., "Data
Mining Techniques for Building Fault-proneness Models in
Telecom Java Software," in 18th IEEE International
Symposium on Software Reliability Engineering, 2007.

[5] Barabasi, A.-L. and Albert, R., "Emergence of scaling in
random networks," Science, vol. 286, no.5439, pp. 509-
512, 1999.

[6] Barabasi, A.-L. and Oltvai, Z. N., "Network Biology:
Understanding the Cell's Functional Organization," Nature
Reviews Genetics, vol. 5, no.2, pp. 101-113, 2004.

[7] Bengio, Y. and Grandvalet, Y., "No Unbiased Estimator of
the Variance of K-Fold Cross-Validation," J. Mach. Learn.
Res., vol. 5,pp. 1089-1105, 2004.

[8] Bernstein, A., Ekanayake, J., and Pinzger, M., "Improving
Defect Prediction using Temporal Features and Non Linear
Models," in Ninth International Workshop on Principles of
Software Evolution: in conjunction with the 6th ESEC/FSE
joint meeting, 2007, pp. 11-18.

[9] Bird, C., Gourley, A., Devanbu, P., Gertz, M., and
Swaminathan, A., "Mining email social networks in
Postgres," in 2006 international workshop on Mining
software repositories, 2006, pp. 185-186.

[10] Boehm, B. W., Software Engineering Economics.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1981.

[11] Denaro, G. and Pezz, M., "An Empirical Evaluation of
Fault-Proneness Models," in 24th International Conference
on Software Engineering, 2002, pp. 241-251.

[12] Gao, K. and Khoshgoftaar, T. M., "A Comprehensive
Empirical Study of Count Models for Software Fault
Prediction," Reliability, IEEE Transactions on, vol. 56,
no.2, pp. 223-236, June, 2007.

[13] Girvan, M. and Newman, M. E. J., "Community Structure
in Social and Biological Networks," The Proceedings of
the National Academy of Sciences, vol. 99, no.12, pp.
7821-7826, 2001.

[14] Gonzales-Barahona, J. M., Lopez-Fernandez, L., and
Robles, G., "Applying Social Network Analysis to the
Information in CVS Repositories," in 2005 International
Workshop on Mining Software Repositories, 2004.

[15] Huang, S.-K. and Liu, K.-m., "Mining Version Histories to
Verify the Learning Process of Legitimate Peripheral
Participants," in 2005 International Workshop on Mining
Software Repositories, 2005, pp. 1-5.

[16] Hudepohl, J. P., Aud, S. J., Khoshgoftaar, T. M., Allen, E.
B., and Mayrand, J., "Emerald: Software Metrics and
Models on the Desktop," Software, IEEE, vol. 13, no.5, pp.
56-60, 1996.

[17] Lave, J. and Wenger, E., Situated Learning: Legitimate
Peripheral Participation. Cambridge: Cambridge University
Press, 1991.

[18] Mockus, A. and Weiss, D. M., "Predicting Risk of
Software Changes," Bell Labs Technical Journal, vol. 5,pp.
169-180, 2002.

[19] Mockus, A., Weiss, D. M., and Zhang, P., "Understanding
and Predicting Effort in Software Projects," in 25th
International Conference on Software Engineering, 2003,
pp. 274-284.

[20] Nagappan, N. and Ball, T., "Static Analysis Tools as Early
Indicators of Pre-Release Defect Density," in 27th
International Conference on Software Engineering, 2005,
pp. 580-586.

[21] Nagappan, N. and Ball, T., "Use of Relative Code Churn
Measures to Predict System Defect Density," in 27th
International Conference on Software Engineering, 2005.

[22] Nagappan, N., Ball, T., and Zeller, A., "Mining Metrics to
Predict Component Failures," in Proceeding of the 28th
International Conference on Software Engineering, 2006,
pp. 452-461.

[23] Ohira, M., Ohsugi, N., Ohoka, T., and Matsumoto, K.-i.,
"Accelerating Cross-project Knowledge Collaboration
using Collaborative Filtering and Social Networks," in
2005 International Workshop on Mining Software
Repositories, 2005, pp. 1-5.

[24] Ostrand, T. J., Weyuker, E. J., and Bell, R. M., "Locating
Where Faults Will Be," in 2005 conference on Diversity in
computing, 2005, pp. 48-50.

[25] Weyuker, E. J., Ostrand, T. J., and Bell, R. M., "Using
Developer Information as a Factor for Fault Prediction," in
Third International Workshop on Predictor Models in
Software Engineering, 2007, pp. 8-8.

[26] Yu, L. and Ramaswamy, S., "Mining CVS Repositories to
Understand Open-Source Project Developer Roles," in
Fourth International Workshop on Mining Software
Repositories, 2007, p. 4.

[27] Zimmermann, T. and Nagappan, N., "Predicting Defects
using Network Analysis on Dependency Graphs," in 29th
International Conference on Software Engineering, 2007.

[28] Zimmermann, T., Premraj, R., and Zeller, A., "Predicting
Defects for Eclipse," in Third International Workshop on
Predictor Models in Software Engineering, 2007, p. 9.

[1] Arisholm, E. and Briand, L. C., "Predicting Fault-
prone Components in a Java Legacy System," in 2006
ACM/IEEE International Symposium on Empirical
Software Engineering, 2006, pp. 8-17.

.

.

.

[28] Zimmermann, T., Premraj, R., and Zeller, A.,
"Predicting Defects for Eclipse," in Third International
Workshop on Predictor Models in Software
Engineering, 2007, p. 9.

CiteWise

7

Code churn information has
provided valuable metrics for
failure prediction [21].

[21] Nagappan, N. and Ball, T., "Use of Relative
Code Churn Measures to Predict System
Defect Density," in 27th International
Conference on Software Engineering, 2005.

[3] Arisholm, E. and Briand, L. C., "Predicting
Fault-prone Components in a Java Legacy
System," in 2006 ACM/IEEE International
Symposium on Empirical Software Engineering,
2006, pp. 8-17.

Research in failure prediction has
provided many models to assess
the failure-proneness of files, and
have been highly successful at
predicting software failures [3, 8,
11, 21, 22, 24, 25, 28].

[21] Nagappan, N. and Ball, T., "Use of Relative
Code Churn Measures to Predict System
Defect Density," in 27th International
Conference on Software Engineering, 2005.

CiteWise

Parser Indexer

Inverted Index

. . .

DB

8

Experiments setup
• 16 000 articles in Programming Languages and

Software Engineering
• 9 participants
• 3 different tasks:

• Task 1a and Task 1b - for comparing CiteWise with Google
Scholar

• Task 2 - for comparing summaries of CiteWise with TextRank
algorithm

9

Task 1a
Description: find a reference to the claim using
CiteWise or Google Scholar

Observed variables:
- search time
- number of queries
- average number of words in a query

Goal: find out which search engine is more efficient

10

Search time in Task1a

CiteWise Google Scholar

Se
ar

ch
 ti

m
e

(s
ec

)

11

CiteWise Google Scholar

Se
ar

ch
 ti

m
e(

se
c)

50

100

150

200

250

300

Number of queries in Task1a

CiteWise Google Scholar

N
um

be
r o

f q
ue

rie
s

12

CiteWise Google Scholar

N
um

be
r o

f q
ue

rie
s

1

2

3

4

5

6

Average number of words in Task1a

CiteWise Google Scholar

Av
er

ag
e

nu
m

be
r o

f w
or

ds

13

CiteWise Google Scholar

Av
er

ag
e

nu
m

be
r o

f w
or

ds
 in

 a
 q

ue
ry

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Task 1b
Description: find a reference to the claim using either
Google Scholar or CiteWise

Observed variables:

- search engine where the result was retrieved
- if a participant tried to use both search engines

Goal: find out user preferences in using search
engines

14

Results for Task1b
Participants How SEs were used

P6 CW, GS, CW

P7 GS, CW

P8 GS, CW

P9 CW

CW - CiteWise GS - Google Scholar
15

Task 2
Description: compare two summaries generated with
one of the popular summary generation algorithms
(TextRank) and CiteWise

Observed variables:

- scores given to summaries by participants

Goal: find out which summary is better

16

Results for Task 2

CiteWise TextRank
17

6"

8"

6" 6" 6"

4"

5"

0"

2"

0"

5"

7"

2"

3"

0"

1"

2"

3"

4"

5"

6"

7"

8"

9"

1" 2" 3" 4" 5" 6" 7"

Sc
or
e&
fr
om

&0
&to

&1
0&

Par.cipants&

Cita0on"Search"

TextRank"

Results summary
• CiteWise was slightly better for search time and

number of queries, however no statistically
significant difference

• In 50% of cases for CiteWise in Task 1a,
participants found a reference in less than 2 queries

• All users succeeded with CiteWise in Task 1b
• Summaries generated with CiteWise were better

18

Contributions
• A novel IR system for scientific articles based on
citations 
• A new method of summary generation by means of
citation aggregation  
• An empirical evaluation of the system by means of
user study experiments

19

Appendix

20

Parser
• Extract citations

• Match citations with references

• Aggregate citations referring to the same source
paper

21

Extracting citations
1.PDF document -> plain text
2. Breaking down a document using keywords

*{REFERENCES, References, …}

*{APPENDIX, Appendix, …}

3. Text normalisation
• replace dashes in case of words splitting
• replace new lines with white spaces in case of sent. splitting

.

.

.

22

Extracting citations
4. Break document 'body' into sentences

5. Extract sentences having references:

[12], [12, 15, 32], [6, p.35], [Alu95]

6. Extract references

[12] N. Nagappan and T. Ball, "Static analysis tools …

7. Match sentences with references

8. Publish to the Indexer
23

Aggregating citations
Besides, Arisholm et al. found
that the cost-effectiveness of bug
prediction based on source code
metrics is actually close to zero
[30] due to the correlation with
the size.

Also a good way to evaluate the
prediction model would be a
cost-efficiency evaluation where
the cost is the LOC, since the
costs of unit tests and code
reviews are approximately
proportional to the size of the
source code file [30].

[30] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic
and comprehensive investigation of methods to build and evaluate
fault prediction models,” J. Syst. Softw., vol. 83, pp. 2–17, Jan. 2010.

.

.

24

Aggregating citations
Conradi, R., Dyba, T., Sjoberg, D.I.K., and Ulsund, T., "Lessons learned and
recommendations from two large norwegian SPI programmes." Lecture notes in
computer science, 2003, pp. 32-45.”

P. Molin, L. Ohlsson, 'Points & Deviations - A pattern language for fire
alarm systems,' to be published in Pattern Languages of Program Design
3, Addison- Wesley.

Title is a text enclosed in quotes, e.g " or '

25

Aggregating citations

• Break reference into logical parts using NLP library, take
the second part

• Normalise, remove punctuation marks, lowercase

26

Open issues
The mistake-counting model that we use is essentially the same as a

model discussed in Barzdin and Freivald (1972). See Angluin and Smith

(1983) for a survey that compares a number of learning models.

epre.Counter.bump() ≡ [τ = ǫ]

epost.Counter.bump() ≡

 [(this.lstnr 6= null) ⇒
 ((|τ| = 1)

 ∧ (τ[1].hm

 = this.lstnr.actionPerformed))]

 ∧ [(this.lstnr = null) ⇒ τ = ǫ]

1.

2.

27

