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Why finding related work is so difficult?

- It's difficult to validate proposed claims
+ look for what other people used as references

to their claims
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ABSTRACT

Software fails and fixing it is expensive. Research in failure
prediction has been highly successful at modeling software
failures. Few models, however, consider the key cause of failures
in software: people. Understanding the structure of developer
collaboration could explain a lot about the reliability of the final
product. We examine this collaboration structure with the
developer network derived from code churn information that can
predict failures at the file level. We conducted a case study
involving a mature Nortel networking product of over three
million lines of code. Failure prediction models were developed
using test and post-release failure data from two releases, then
validated against a subsequent release. One model’s prioritization
revealed 58% of the failures in 20% of the files compared with the
optimal prioritization that would have found 61% in 20% of the
files, indicating that a significant correlation exists between file-
based developer network metrics and failures.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics — process metrics,
product metrics.

General Terms
Reliability, Human Factors, Verification

Keywords
Social network analysis, negative binomial regression, logistic
regression, failure prediction, developer network

1. INTRODUCTION
Software fails and fixing it is expensive. If testers can find
software failures early in the software development lifecycle, the
estimated cost of fixing the software dramatically decreases [10].

Search in Taifure prediction has provided many models 10 as
he failure-proneness of files, and have been highly successful
redicting software failures (3,8, 11,21,22,24,25,28].

Few models, however, consider the key cause of failures in
software: people. People develop software and people test
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software. For large software systems, many people need to work
together to develop software. This collaboration has a structure —
a structure governed by elements of human social interaction and
software devel p Und ding the structure of
developer collaboration could tell us a lot about the reliability of
the final product.

We examine this collaboration structure using a software
development artifact common to most large projects: code churn
i itk i sal okiatmcadanchu)

mformation has provided valuable metrics for failure predic!
[21]. For example, a file with many recent changes tends to fje
re failure-prone than an unchanged file.

But what if that file was updated by a developer who has worked
with a lot of other developers? Maybe a “well-known” developer
is less failure-prone. Code churn information can also tell us how
these developers collaborated: we know who worked on what and
when. From there, we can form a social network of developers
(also known as a developer network) who have collaborated on
the same files during the same period of time. Social Network
Analysis (SNA) quantifies our notion of “well-known” developers
with a class of metrics known as “centrality” metrics.

e advantage of this developer network is that it providc\
useful abstraction of the code churn information. With care
\terpretation, one can use a developer network mid-develop:

to N
(V&V) activities such as code inspections.

Our research goal is to examine human factors in failure
prediction by applying social network analysis to code churn
information. Failure prediction models have been successful for
other areas (such as static analysis [16]), so the empirical
techniques of model selection and validation have all been used
with static code metrics [20]. We introduce file-based metrics

or g
consisting of over 11,000 files and three million lines of code o

Code churn information has provided

valuable metrics for failure prediction
[21].

Failure prediction models have been
successful for other areas (such as
static analysis [16]), so the empirical
techniques of model selection and
validation have all been used with
static code metrics [20].

build and evaluate the predictive power of network metrics.
System test and post-release failure data from Nortel’s source
repositories and defect tracking system were used in our study.

The rest of this paper is organized as follows: Section 2
summarizes the background of Social Network Analysis and
related work in failure prediction and developer networks. Section
3 introduces our developer networks, their associated metrics, and
the analysis in failure prediction. Sections 4 and 5 summarize our
case study of the Nortel product. Sections 6 and 7 summarize our
work and outlines future work, respectively.

Research in failure prediction has
provided many models to assess the
failure-proneness of files, and have
been highly successful at predicting
software failures [3, 8, 11, 21, 22, 24,
25, 28].




software

engineering.  An investigation into how  closely

associated a developer network is to true collaboration is
warranted. Comparisons of developer networks from different
projects, processes, and domains should be made. Once we have a
firm understanding of the developer network, we can begin to
make proactive steps toward organizational improvement rather
than reacting to the current state for V&V guidance.
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Code churn information has
provided valuable metrics for
failure prediction [21].

Research in failure prediction has |

provided many models to assess
the failure-proneness of files, and
have been highly successful at
predicting software failures [3, 8,
11, 21, 22, 24, 25, 28].
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Experiments setup

16 000 articles in Programming Languages and
Software Engineering
9 participants

3 different tasks:

Task 1a and Task 1b - for comparing CiteWise with Google

Scholar

Task 2 - for comparing summaries of CiteWise with TextRank

algorithm



Task 1a

Description: find a reference to the claim using
CiteWise or Google Scholar

Goal: find out which search engine is more efficient

Observed variables:

- search time
- number of queries
- average number of words in a query

10



Search time in Taskla

Search time (sec)
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CiteWise Google Scholar
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Number of queries In Task1a
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Average number of words in Task1a
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Task 1b

Description: find a reference to the claim using either
Google Scholar or CiteWise

Goal: find out user preferences in using search
engines

Observed variables:

- search engine where the result was retrieved
- If a participant tried to use both search engines

14



Results for Task1b

Participants How SEs were used
P6 Cw, GS, CW
"""""""""""""""""" | asow
""""""""""""""""" o esow
________________________________ P 9

CW - CiteWise GS - Google Scholar
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Task 2

Description: compare two summaries generated with
one of the popular summary generation algorithms
(TextRank) and CiteWise

Goal: find out which summary is better
Observed variables:

- scores given to summaries by participants

16



Results for Task 2
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Results summary

- CiteWise was slightly better for search time and
number of queries, however no statistically
significant difference

- In 50% of cases for CiteWise in Task 1a,
participants found a reference in less than 2 queries
- All users succeeded with CiteWise in Task 1b

- Summaries generated with CiteWise were better

18



Contributions

A novel IR system for scientific articles based on
citations

A new method of summary generation by means of
citation aggregation

An empirical evaluation of the system by means of
user study experiments
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Parser

- Extract citations

- Match citations with references

- Aggregate citations referring to the same source
paper
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Extracting citations

1.PDF document -> plain text

2. Breaking down a document using keywords

VL FUTURE WORK

Since there s a large number of dverse Java projects in

the studied corpora, the patems we found are high-level
language-related patterns. But stil we noticed that many of the
bugs actualy come from wrong usage of axiemal ibraries or
frameworks, aspecially the bugs in missing invocation patiem
In any case, we ?ink that further analysis of lDrary usages
Should be uncergone 10 reveal framework-relsted panems.
AlS0 we nolicad a significant keyword similarity within

each of the atorementionad categones. We beleve that 1ext
analysis of the source code can reveal Some More precise bug
fix patterns.

We intend 10 use the colectad knowledge 10 predict bug

xact locations in the sowrce code and suggest the proper fixes
at comple sme

CLE D AT &

e e *REFERENCES, References, ...

fonferonce on Software engineerng, ICSE 05, (New York, NY, USA),
bp. 580586, ACM, 2008

2] N. Nagapean, T. Ball, and A. Zealler, "Mining metrics 10 pracict

Component talures,” in Proceedings of the 26th intermnational conference L
bn Software engineering, ICSE 06, (New York, NY, USA), pp. 452~

BE1, ACM, 2006,

3] A E. Hassan, “Precicling faults using the compléxity of code changes,”
n Proceedings of the 31st Intermatonal Conference on Software Engi-
Peering, ICSE 09, (Washington, DC, USA), pp. 78-88, IEEE Computer
jety, 2009,

4] A. Barnstein, J. Ekandayake, and M. Pinzger. “Improving dedect predic-
using temporal features and non Inaar models.” in Ninth rsems-

N workshop on Principles of software avolution: in conjunction with
6th ESEC/FSE joint meeting, IWPSE 07, (New York, NY, USA)
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3. Text normalisation

- replace dashes in case of words splitting

- replace new lines with whi# spaces in case of sent. splitting



Extracting citations

4. Break document 'body’ into sentences

5. Extract sentences having references:
[12], [12, 15, 32], [6, p.35], [Alu95]

6. Extract references

[12] N. Nagappan and T. Ball, "Static analysis tools ...

7. Match sentences with references

8. Publish to the Indexer
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Aggregating citations

Besides, Arisholm et al. found
that the cost-effectiveness of bug
prediction based on source code
metrics is actually close to zero
[30] due to the correlation with
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}[30] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic
and comprehensive investigation of methods to build and evaluate
fault prediction models,” J. Syst. Softw., vol. 83, pp. 2—17, Jan. 2010.
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Aggregating citations

Conradi, R., Dyba, T., Sjoberg, D.I.K., and Ulsund, T., "Lessons learned and
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Title Is a text enclosed in quotes, e.g " or'
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Aggregating citations

Authors Title Hest

R. P. Wilson and M. 5. Lam||Effective context sensitive pointer analysis for C programs| In PLDI, pages 1-12, June 19935. EBE!]

Break reference into logical parts using NLP library, take
the second part
Normalise, remove punctuation marks, lowercase
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Open issues

The mistake-counting model that we use is essentially the same as a
model discussed in Barzdin and Freivald (1972). See Angluin and Smith

(1983) for a survey that compares a number of learning models.
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