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Why finding related work is so difficult?

• It's difficult to validate proposed claims
• look for what other people used as references 

to their claims
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ABSTRACT 
Software fails and fixing it is expensive. Research in failure 
prediction has been highly successful at modeling software 
failures. Few models, however, consider the key cause of failures 
in software: people. Understanding the structure of developer 
collaboration could explain a lot about the reliability of the final 
product. We examine this collaboration structure with the 
developer network derived from code churn information that can 
predict failures at the file level. We conducted a case study 
involving a mature Nortel networking product of over three 
million lines of code. Failure prediction models were developed 
using test and post-release failure data from two releases, then 
validated against a subsequent release. One model’s prioritization 
revealed 58% of the failures in 20% of the files compared with the 
optimal prioritization that would have found 61% in 20% of the 
files, indicating that a significant correlation exists between file-
based developer network metrics and failures.  

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – process metrics, 
product metrics.  

General Terms 
Reliability, Human Factors, Verification 

Keywords 
Social network analysis, negative binomial regression, logistic 
regression, failure prediction, developer network 

1. INTRODUCTION 
Software fails and fixing it is expensive. If testers can find 
software failures early in the software development lifecycle, the 
estimated cost of fixing the software dramatically decreases [10]. 
Research in failure prediction has provided many models to assess 
the failure-proneness of files, and have been highly successful at 
predicting software failures [3, 8, 11, 21, 22, 24, 25, 28].  

Few models, however, consider the key cause of failures in 
software: people. People develop software and people test 

software. For large software systems, many people need to work 
together to develop software. This collaboration has a structure – 
a structure governed by elements of human social interaction and 
software development processes. Understanding the structure of 
developer collaboration could tell us a lot about the reliability of 
the final product. 

We examine this collaboration structure using a software 
development artifact common to most large projects: code churn 
information taken from revision control repositories. Code churn 
information has provided valuable metrics for failure prediction 
[21]. For example, a file with many recent changes tends to be 
more failure-prone than an unchanged file. 

But what if that file was updated by a developer who has worked 
with a lot of other developers? Maybe a “well-known” developer 
is less failure-prone. Code churn information can also tell us how 
these developers collaborated: we know who worked on what and 
when. From there, we can form a social network of developers 
(also known as a developer network) who have collaborated on 
the same files during the same period of time. Social Network 
Analysis (SNA) quantifies our notion of “well-known” developers 
with a class of metrics known as “centrality” metrics.  

The advantage of this developer network is that it provides a 
useful abstraction of the code churn information. With careful 
interpretation, one can use a developer network mid-development 
to identify potential risks and to guide verification and validation 
(V&V) activities such as code inspections.  

Our research goal is to examine human factors in failure 
prediction by applying social network analysis to code churn 
information. Failure prediction models have been successful for 
other areas (such as static analysis [16]), so the empirical 
techniques of model selection and validation have all been used 
with static code metrics [20]. We introduce file-based metrics 
based on SNA as additional predictors of software failures. 

A case study was conducted of a large Nortel networking product 
consisting of over 11,000 files and three million lines of code to 
build and evaluate the predictive power of network metrics. 
System test and post-release failure data from Nortel’s source 
repositories and defect tracking system were used in our study.  

The rest of this paper is organized as follows: Section 2 
summarizes the background of Social Network Analysis and  
related work in failure prediction and developer networks. Section 
3 introduces our developer networks, their associated metrics, and 
the analysis in failure prediction. Sections 4 and 5 summarize our 
case study of the Nortel product. Sections 6 and 7 summarize our 
work and outlines future work, respectively. 
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software engineering. An investigation into how closely 
associated a developer network is to true collaboration is 
warranted. Comparisons of developer networks from different 
projects, processes, and domains should be made. Once we have a 
firm understanding of the developer network, we can begin to 
make proactive steps toward organizational improvement rather 
than reacting to the current state for V&V guidance. 
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Experiments setup
• 16 000 articles in Programming Languages and 

Software Engineering
• 9 participants
• 3 different tasks:

• Task 1a and Task 1b - for comparing CiteWise with Google 
Scholar

• Task 2 - for comparing summaries of CiteWise with TextRank 
algorithm
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Task 1a
Description: find a reference to the claim using     
CiteWise or Google Scholar

Observed variables: 
- search time
- number of queries
- average number of words in a query

Goal: find out which search engine is more efficient

10



Search time in Task1a
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Number of queries in Task1a
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Average number of words in Task1a

CiteWise Google Scholar

Av
er

ag
e 

nu
m

be
r o

f w
or

ds

13

CiteWise Google Scholar

Av
er

ag
e 

nu
m

be
r o

f w
or

ds
 in

 a
 q

ue
ry

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7



Task 1b
Description: find a reference to the claim using either 
Google Scholar or CiteWise

Observed variables: 

- search engine where the result was retrieved
- if a participant tried to use both search engines

Goal: find out user preferences in using search 
engines

14



Results for Task1b
Participants How SEs were used

P6 CW, GS, CW

P7 GS, CW

P8 GS, CW

P9 CW

CW - CiteWise GS - Google Scholar
15



Task 2
Description: compare two summaries generated with 
one of the popular summary generation algorithms 
(TextRank) and CiteWise

Observed variables: 

- scores given to summaries by participants

Goal: find out which summary is better

16



Results for Task 2

CiteWise TextRank
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Results summary
• CiteWise was slightly better for search time and 

number of queries, however no statistically 
significant difference

• In 50% of cases for CiteWise in Task 1a, 
participants found a reference in less than 2 queries  

• All users  succeeded with CiteWise in Task 1b
• Summaries generated with CiteWise were better
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Contributions
•     A novel IR system for scientific articles based on 
citations 
•    A new method of summary generation by means of 
citation aggregation  
•    An empirical evaluation of the system by means of 
user study experiments 
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Parser
• Extract citations

• Match citations with references

• Aggregate citations referring to the same source 
paper

21



Extracting citations
1.PDF document -> plain text
2. Breaking down a document using keywords

*{REFERENCES, References, …}

*{APPENDIX,  Appendix, …}

3.  Text normalisation 
• replace dashes in case of words splitting
• replace new lines with white spaces in case of sent. splitting

. 

. 

.
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Extracting citations
4. Break document 'body' into sentences

5. Extract sentences having references:

[12], [12, 15, 32], [6, p.35], [Alu95]

6. Extract references

[12] N. Nagappan and T. Ball, "Static analysis tools …

7. Match sentences with references

8. Publish to the Indexer
23



Aggregating citations
Besides, Arisholm et al. found        
that the cost-effectiveness of bug 
prediction based on source code 
metrics is actually close to zero 
[30] due to the correlation with 
the size. 

Also a good way to evaluate the        
prediction model would be a 
cost-efficiency evaluation where 
the cost is the LOC, since the 
costs of unit tests and code 
reviews are approximately 
proportional to the size of the 
source code file [30]. 

[30] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic 
and comprehensive investigation of methods to build and evaluate 
fault prediction models,” J. Syst. Softw., vol. 83, pp. 2–17, Jan. 2010.

.

.
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Aggregating citations
Conradi, R., Dyba, T., Sjoberg, D.I.K., and Ulsund, T., "Lessons learned and 
recommendations from two large norwegian SPI programmes." Lecture notes in 
computer science, 2003, pp. 32-45.” 

P. Molin, L. Ohlsson, 'Points & Deviations - A pattern language for fire 
alarm systems,' to be published in Pattern Languages of Program Design 
3, Addison- Wesley. 

Title is a text enclosed in quotes, e.g " or '  
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Aggregating citations

• Break reference into logical parts using NLP library, take 
the second part  

• Normalise, remove punctuation marks, lowercase
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Open issues
The mistake-counting model that we use is essentially the same as a

model discussed in Barzdin and Freivald (1972). See Angluin and Smith

(1983) for a survey that compares a number of learning models.

epre.Counter.bump() ≡ [τ = ǫ]

epost.Counter.bump() ≡

  [(this.lstnr 6= null) ⇒
    ((|τ| = 1)

    ∧ (τ[1].hm

    = this.lstnr.actionPerformed))]

 ∧ [(this.lstnr = null) ⇒ τ = ǫ]

1.

2.

27


