ACEC Ul

Using RSS Feeds to Support Second Language
Acquisition

Bachelor Thesis Linus Schwab

Introduction to Zeeguu

Al

Demo
Architecture
Article Recommender

Conclusion

jpr—

N

1. Introduction to Zeeguu

* Three fundamental principles
* Only read the stuff you like
* Have your words everywhere with you
* Practice with personalized exercises

* Introducing Zeeguu Reader for Android
* RSS Reader with Feedly synchronization
* Learn anywhere while reading
* Provides article recommendations

i © .40l 1615

Feed Overview

= All articles 2797
= Saved for later 0
= Zeeguu Recommended 300
~ Nachrichten 2185
~ Tech 612
3 computerBase 142
B Golem.de 224
@ heise online News 246
~ Fun 24

3. Architecture: User Interface

* Activity
* Main application component
* Provide the window for the user interface
* Handle communication between fragments
* This app: MainActivity, SettingsActivity
* Fragment
e Reusable portion of user interface
* Dynamically replaced by activity
* This app: used whenever possible

3. Architecture: Overview

Data- d o
Fragment » BaseActivity
A A
Zeeguu-
ConnectionManager
f R
~—
ZeeguuAccount Database
\I:_/
Y —1 MainActivity
Database-
FeedlyAccount
Helper

v

Feedly-
ConnectionManager

4

— SettingsActivity

FeedOverview FeedEntrylist FeedEntry

MyWords

] o o

ZeeguuSettings LoginDialog

MainSettings

3. Architecture: Back End

* ConnectionManager
* Classes to communicate with Zeeguu and Feedly API
* Uses Volley

* Account

 Manages user data
* ZeeguuAccount
e Stored in SharedPreferences

* FeedlyAccount
e Handles synchronization
* Interface to Database

3. Architecture: Back End

* ORM (Object Relational Mapping)

Implemented with ORMLite

* Works with annotations

e Uses DAO pattern (Data Access Objects)

* Flexible QueryBuilder to easily construct queries

e Does not directly support many-to-many relations

e CategoryFeed _ _ Feed eniry
. TR R N R |

4. Article Recommender

* Helps the user to find suitable articles to read

* Presented in “Zeeguu Recommended” category
* Implemented on the Zeeguu server

* TwWo components
* Difficulty
* Learnability

4. Article Recommender: |dea

* Analyzes text on word-based level

* Two metrics used to estimate difficulty
 KnownWordProbability
 RankedWord (Word frequency lists)

* Problem: Shortened feed content
e Goose content extractor

* Evaluation: Case study

5. Conclusion

* Conclusion

* Zeeguu Reader makes it possible to learn a new
language in a comfortable way on Android devices

* Includes planned features, still room for extensions

* Personal Lessons Learned
* ORM: Comfortable way to implement database
* Prioritize planned features
* Gained experience in new programming languages
* Performance optimization

Questions?

Additional Material: ORM

@DatabaseTable(tablenName = "feeds") Database table
public class Feed {

// 1Id is generated by the database and set on the object

@DatabaseField(generatedId = true)
private int id; Database

fields

@DatabaseField(columnName = “"favicon", dataType= DataType.BYTE_ARRAY)
private byte[] favicon;

/%

If eager 1s set to false then the collection i1s considered to be "lazy" and will iterate
over the database using the Dao.iterator() only when a method is called on the collection.
*/

@ForeignCollectionField(eager = false, orderColumnName = "date", orderAscending = false)
private ForeignCollection<FeedEntry> entries;

—

one-to-many
)J'a
Only for read access, categories stored in this list do not get saved in the database!

(Workaround because ormlite does not directly support m:m relations)
*/
private ArraylLlst<Category> categories = new ArrayList<>(); many-to-many

Additional Material: ORM

 DAO Example

public voilid saveFeedEntry(FeedEntry entry) {
try {
if (entry.getId() == @)
teedEntryDao.create(entry);
else {
teedEntryDao.update(entry);

* Query Example

public List<FeedEntry> getRecommendediEntries(float maxDifficulty) {
try {
return callback.getDatabaseHelper().getFeedEntryDao().queryBuilder()
.orderBy("zeeguu difficulty average", true)
.where().between("zeeguu difficulty average”, @, maxDifficulty)

-query();
}

catch (SQLException e) {

Additional Material: ORM

* Schema upgrade

@override
public void onUpgrade(SQLiteDatabase db, ConnectionSource connectionSource, int oldversion, int newversion) {

try {
Log.d(DatabaseHelper.class.getName(), "onUpgrade");

// Drop the old tables

Tableutils.dropTable(connectionSource, Category.class, true);
TableUtils.dropTable(connectionSource, CategoryFeed.class, true);
Tableutils.dropTable(cannectionSource, Feed.class, true);
Tableutils.dropTable(connectionSource, FeedEntry.class, true);

// After we drop the old databases, we create the new ones
onCreate(db, connectionSource);

}

catch (SQLException e) {

Additional Material: ORM

J**
* Database class to allow a many-to-many relation between categories and feeds in ormlite
* [

[@DatabaseTable(tablename = "category feed")

public class CategoryFeed {

JE*
* This id is generated by the database and set on the object when it is passed to the create method. An id is
* needed in case we need to update or delete this object in the future (ormlite does not support multiple
* primary keys).
*/
@DatabaseField(generatedId = true)
private int id;

// This is a foreign object which just stores the id from the Category object in this table.

@DatabaseField(foreign = true, columniame = "category id", columnDefinition = "integer references categories(id) on delete cascade")
Category category;

// This is a foreign object which just stores the id from the Feed object in this table.

@DatabaseField(foreign = true, columniame = "feed id", columnDefinition = "integer references feeds(id) on delete cascade")
Feed feed;

CategoryFeed() {
// Empty constructor needed by ormlite

public CategoryFeed(Category category, Feed feed) {
this.category = category;
this.feed = feed;

Additional Material: WebView

e Zeeguu WebView
* Extended Android WebView
* Allows translation & bookmarking of words
* Injects JavaScript in every webpage
 JavaScript to Java Interface

* How does it work?
* Word selection extension
e Submit word for translation
 Bookmark: Extract context
* Highlight bookmarked word(s) using regex

Additional Material: Article R.

difficulties = []
for text in texts:
Calculate difficulty for each word
words = util.split words from text(text['content'])
words _difficulty = []
for word in words:
ranked word = Rankedword.find cache(word, language)

word difficulty = 1.0 # Value between ©® (easy) and 1 (hard)
it ranked word is not None:

Check if the user knows the word

try:

known propability = known probabilities[word] # value between @ (unknown) and 1 (known)

except KeyError:

known _propability = None
it personalized and known_propability is not HNone:
word difficulty -= float(known propability)
elif ranked word.rank <= rank boundary:
word frequency = (rank boundary - (
ranked word.rank - 1)) / rank boundary # value between @ (rare) and 1 (frequent)
word difficulty -= word frequency

words_difficulty.append(word difficulty)

Additional Material: Evaluation

e Case study
* Mircea as participant
* 9 articles from different difficulty levels
 Video recording, “think aloud”

* Analysis
* Understanding
* Time per character
* Percentage of words looked up
* Percentage of words bookmarked

Additional Material: Evaluation

* Results (Average for difficulty groups)

Fasy (0.24) 4.50 0.21s 6.52 % 5.19 %
Medium (0.32) 3.33 0.23s 7.75 % 6.81 %
Hard (0.44) 2.66 0.28 s 11.13 % 7.92 %

Additional Material: Case Study

| O | P | Q | R |

Understanding Time per Char Percentage of words looked up Percentage of words bookmarked
0.237906423 7.774390244 6.25

0.227593152
0.232

1.272727273
8.860759494

5.454545455
7.911392405

0.25974026 9.653916211 8.378870674
5.527638191

8.214285714 5

3.333333333 0.225665764 1.749467839 6.810758304

