EggShell

a workbench for the assessment of modeling
pipelines for scientific communities

Dominik Seliner
selinerdominik@gmail.com
05.07.2016

Motivation (1)

Motivation (2)

...................

Motivation (3)

Aspectual Mixin Layers: Aspects and Features in Concert

Sven Apel Thomas Leich Gunter Saake
University of Magdeburg University of Magdeburg University of Magdeburg
P.O. Box 4120 P.O. Box 4120 P.O. Box 4120
39016, Magdeburg, Germany 39016, Magdeburg, Germany 39016, Magdeburg, Germany
apel@iti.cs.uni- leich@iti.cs.uni- saake @iti.cs.uni-
magdeburg.de magdeburg.de magdeburg.de

ABSTRACT

Feature-Oriented Programming (FOP) decomposes complex
software into features. Features are main abstractions in
design and implementation. They reflect user requirements
and incrementally refine one another. Although, features
crosscut object-oriented architectures they fail to express

all kinds of crosscutting concerns. This weakness is exactly
the strength of aspects, the main abstraction mechanism

of Aspect-Oriented Programming (AOP). In this article we
contribute a systematic evaluation and comparison of both
paradigms, AOP and FOP, with focus on incremental soft-
ware development. It reveals that aspects and features are

not competing concepts. In fact AOP has several strengths

to improve FOP in order to implement crosscutting features.
Symmetrically, the development model of FOP can aid AOP

in implementing incremental designs. Consequently, we pro-
pose the architectural integration of aspects and features in
order to profit from both paradigms. We introduce aspec-
tual mixin layers (AMLs) , an implementation approach that
realizes this symbiosis. A subsequent evaluation and a case
study reveal that AMLs improve the crosscutting modular-

ity of features as well as aspects become well integrated into
incremental development style.

Categories and Subject Descriptors: D.3.3 [Software |:
Programming Languages— Language Constructs and Featu-
res ; D2.11 [Software]: Software Engineering— Software Ar-
chitectures

General Terms: Design, Languages

Keywords: Feature-Oriented Programing, Aspect-Orien-
ted Programming, Component Techniques, Collaborations

1. INTRODUCTION

Program families [30] and incremental software develop-
ment [35] have a long tradition and are still subjects of cur-
rent research. A main objective of research in this field is
to simplify the maintenance, reuse, customization, and evo-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE’06, May 20-28, 2006, Shanghai, China.

Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

122

lution of software. Two programming paradigms heavily
discussed in this context are ~ Feature-Oriented Programming
(FOP) [7] and Aspect-Oriented Programming (AOP) [15].

FOP was developed to implement software incrementally
in a step-wise manner. Features reflect requirements and
program characteristics that are of interest to stakeholders.

The main idea is that features are mapped one-to-one to
modular implementation units (feature modules). Since it
has emerged that traditional abstractions as classes and ob-

jects are too small units of modularity, features contain a set

of classes that contribute to the features in collaborations [7,
32, 28, 20]. Therefore, refinement of features means refine-
ment of their structural elements.

AOP addresses similar issues but with a different focus:
AOP focuses mainly on separating and modularizing cross-
cutting concerns. It introduces aspects which encapsulate
code that would be otherwise tangled with other concerns
and scattered over the base program. Thereby, separation
of concerns is achieved that is important to implement com-
plex software, i.e. product lines. Although the initial focus
does not lie on incremental software development several
research efforts go into this direction [23, 28, 10, 24, 20],
however, with numerous problems that are discussed here.

Relationship of aspects and features. In this paper we
explore the relationship of AOP and FOP an therewith the
connection between aspects and features. ' 'We do not per-
ceive them as competing approaches but rather as approaches
that can profit from each other. The idea of FOP is to
decompose a system architecture into units that are of in-
terest to the stakeholders. Since features encapsulate col-
laborations and refine one another, the underlying object-
oriented architecture becomes organized at a higher level.
It is decomposed along these collaborations. Despite these
advantages, FOP has drawbacks regarding (1) the crosscut-
ting modularity, in particular the ability to localize, sepa-
rate, and modularize certain kinds of crosscutting concerns
as well as (2) the ability to seamlessly integrate structural
independent features [28, 20]. Both are highly related since
an integration of independent features results usually in a
crosscutting interconnection of the corresponding structural
elements. This is where AOP comes into play.

Aspects modularize concerns that otherwise crosscut other
concerns. But they are not adequate to implement all kinds
of features. In many cases aspects cannot implement fea-

"In the remaining paper we use AOP/FOP and aspects/fea-
tures synonymously, despite the fact that the former are
programming paradigms and the latter their main concepts.

Int. J. Ad Hoc and Ubiquitous Computing, Vol. 2, No. 4, 2007 263

A survey on context-aware systems

Matthias Baldauf

V-Research, Industrial Research and Development,
Stadtstrasse 33, 6850 Dornbirn, Austria
E-mail: matthias.baldauf@v-research.at

Schahram Dustdar* and Florian Rosenberg

Distributed Systems Group, Information Systems Institute,

Vienna University of Technology, Argentinierstrasse 8/184-1, 1040 Vienna, Austria
E-mail: dustdar@infosys.tuwien.ac.at E-mail: rosenberg @infosys.tuwien.ac.at
*Corresponding author

Abstract: Context-aware systems offer entirely new opportunities for application developers and
for end users by gathering context data and adapting systems behaviour accordingly. Especially
in combination with mobile devices these mechanisms are of high value and are used to
increase usability tremendously. In this paper, we present common architecture principles of
context-aware systems and derive a layered conceptual design framework to explain the different
elements common to most context-aware architectures. Based on these design principles, we
introduce various existing context-aware systems focusing on context-aware middleware and
frameworks, which ease the development of context-aware applications. We discuss various
approaches and analyse important aspects in context-aware computing on the basis of the
presented systems.

Keywords: context-awareness; context framework; context middleware; sensors; context model;
context ontology; context-aware services.

Reference to this paper should be made as follows: Baldauf, M., Dustdar, S. and Rosenberg, F.
(2007) “A survey on context-aware systems’, Int. J. Ad Hoc and Ubiquitous Computing, Vol. 2,
No. 4, pp.263-277.

Biographical notes: Matthias Baldauf is project manager at V-Research, an Austrian

competence center for industrial research and development. In the Department of Technical
Logistics he develops location-aware systems based on GPS, GSM and RFID technology with a

focus on track and trace solutions. His research interests include modern localisation methods and

efficient, flexible localisation architectures.

Schahram Dustdar is a Full Professor of Computer Science with a focus on Internet Technologies
at the Distributed Systems Group, Information Systems Institute, Vienna University of
Technology (TU Wien). In 1999 he co-founded Caramba Labs Software AG (CarambaLabs.com)
in Vienna, a venture capital co-funded software company focused on software for collaborative
processes in teams. Caramba Labs was nominated for several (international and national) awards.
He has published some 100 scientific papers as conference-, journal-, and book contributions.
He has written three academic books, one professional book, and co-edited six
books/proceedings. More information can be found at: http://www.infosys.tuwien.ac.at/Staff/sd.

Florian Rosenberg is research assistant and PhD student at the Distributed Systems Group,
Information Systems Institute, Vienna University of Technology. His research areas include
context-aware and autonomic services, service-oriented architectures and web service
technologies. More information can be found at: http://www.infosys.tuwien.ac.at/Staff/rosenberg.

background to make the user and his tasks the central focus
rather than computing devices and technical issues.

With the appearance and penetration of mobile devices such
as notebooks, PDAs, and smart phones, pervasive
(or ubiquitous) systems are becoming increasingly popular
these days. The term ‘pervasive’ introduced first by Weiser
(1991) refers to the seamless integration of devices into
the users everyday life. Appliances should vanish into the

Copyright © 2007 Inderscience Enterprises Ltd.

One field in the wide range of pervasive computing are
the so-called context-aware (or sentient) systems.
Context-aware systems are able to adapt their operations to
the current context without explicit user intervention and
thus aim at increasing usability and effectiveness by taking
environmental context into account. Particularly when it

Heuristic

A heuristic is an approach to problem solving, lear-
ning, or discovery that employs a practical method
not guaranteed to be optimal or perfect, but varies in
its accuracy depending on the data set at hand.

-Definition adapted from wikipedia

EggShell

a workbench for the assessment of modeling
pipelines for scientific communities

EggShell

defining pipeline O

Modeling-Pipeline (1)

Modeling-Pipeline (2)

pft="195" right="416" top="52" bottom="67">
id="116"fam e e S a R =aRase 1 ine" col
="norma /span>

v<line left="

6" right="284" top="76" bottom="88">
<span id=" '

" "9" vertical-align="baseline" colc

DT - ==

verticy

ont-size="7 -align="super" color="

"329" right="398" top="75" botQum="88">

"f£17" font-size="9" vertical-aligp="baseline" colc
="nMrmaly>Philippas Tsigas<
"£17 ont-size= b vertical-align=gsupe glor="

"208" right="403" top="94" bottom="10§">

'f17" font-size="9" vertical-align="bafeline" colc

mal">Department of Computer Science & gineerinc
</line>

v<lina left

216" riaht+="208" +an="10R" hat+am="118"

Title Author 1 Author 2

TrustNeighbothoods in a Nutshell Niklas EImqvist Philippas Tsigas

Feature-centric environment David Rothlisberger | Orla Greevy

Modeling-Pipeline (3)

2014 Second IEEE Waorkng Cemferenes on Software Wisuahration

Integrating Anomaly Diagnosis Techniques into
Spreadsheet Environments

Daniel Kuless

Imiziate of Softwar Tectaolops

University of Soumgeen
daniel Kulesx &Fiafoemank. urd-SIum pam de

Joras Scheurich Fabian Beck
YVmmbracon Rosveess Conte
Universiry of Stungan Universiry of Szamgaer

ponis sCheursch i@ gms e

[lh.ﬂ.bbﬂ.#'l-:l-th.lb.—.ﬂ'_ﬂ!_ﬂﬁt

like B:em for thor Bcaiblily. bos! oadslisg appnmches o

mrdrd
creadon of imdependent e fasra by separatieg the defimi-
i of bl sccmarios from e spocilfic veloos prowad @ the
spreadshes—|na ks st rrdde B wpardied fram prodostion
tde = prolocheal sltware. Y combine e Ioling apprach
with stk aealyss and Imegrate e Imn @ comman visnal
spredaher! covirenmesl mm=ed SIFEL [sapperts osos in
ImeracevEly creading, evecunng and analvrieg their ose e
vormardzs wilk o numhber of vosusl ke, Fisdimgs frem tes
ijralitacve cwdles imdicsts thar thes concepd is aliaide for rasnal
sprrdahor! uscra

« Pordadly soccesaped {eg., [P These oood-Bied &5
proeches fequeife (ofsederpiis sy Of ODATREWe
bevaues Chew nely on user-desaed epeCifconons. Hear
Crpecadly, they Barve 2 Eopher chaaes Of SIaTming: Sommiinyr
e this fully macemanedd Epetaches.

o Manual {ef. [&c These appenicies can b clormmsd
EFefl Wil o0l i pfe Comparahie W0 Getoi bl Oele
inspectaons A profeweons] softwere dewsliopmens [V
They are cxscmed manoally by cxpers. Formal o
oon penceds Jefiniloes aoComparssd By Checklsr e
Cypifed represenmrves of ok sopeoaches. The =fhCiconry
of Ml spproaches cuf b bodansd by Dol il auf e

TuCure) compeehendioe of aearTy Begh-risk e’ e

parrow the EPecion sCope.

1 INTRODUCTION

While end users lowve spreadstocts for their Sexitalny, wov-

=l i cme i el B e e —— e — e e e

In prneral. agtomated spproaches. om0 b the chapane:
et lcast offmmin oy, Niameal approaches omise the e
resubis et v iime-cossammp and ey on expeTia who @T
hard I find v 1 brper orpamracons. Farcially soiormeand

10

Modeling-Pipeline (4)

Title Author 1 Author 2
TrustNeighbothoods in a Nutshell Niklas EImqvist Philippas Tsigas
Feature-centric environment David Rothlisberger | Orla Greevy

. E

.
.
.
.
.
.

Modeling-Pipeline (5)

Questions about the
accuracy of a model

Visualising Software

Simon Scarle
Computer Science & Creative Technologies
University of the West of England
Bristol, BS16 1QY, UK
simon.scarle@uwe.ac.uk

Abstract—Current metrics-based approaches to visualise un-
familiar software systems face two key limitations: (1) They
are limited in terms of the number of dimensions that can
be projected, and (2) they use fixed layout algorithms where
the resulting positions of entities can be vulnerable to mis-
interpretation. In this paper we show how computer games
technology can be used to address these problems. We present
the PhysVis software exploration system, where software metrics
can be variably mapped to parameters of a physical model and

as a Particle System

Neil Walkinshaw
Department of Computer Science
The Umniversity of Leicester
Leicester, LE1 7RH, UK
nw91 @le.ac.uk

which software can be represented. As with existing tech-
niques, PhysViz provides the means by which to represent
entities in terms of their spacial coordinates, proximity, and
visual properties such as colour, size and transparency. How-
ever, PhysViz also incorporates a basic implementation of
Newtonian point-mass physics (a standard component of a
games particle effects systems), which enables us to model
entities in terms of physical attributes, such as their mass,

Author 1 Author 2

Visualising Software as a Particle System | Computer Science Neil Walkinshaw

Visualization

-
. .
-
. - o
- - -
Heuristic #1 . n
- - -
-
. -
- L] - L]
AR
L]
] . - L] - *
Y - - . - . .
Heuristic #2 vy 'S
. . . Y . .
.
3 . .
L] L]

Assessment

Performance Evolution Blueprint: Understanding the Impact of Software Evolution on Performance

Ducasse, S.

Denker, M.

Alcocer, J.P.S. (Juan Pablo Sandoval Alcocer)
Bergel, A.

Sandoval Alcocer, J.P.

Feature-centric Environment

Software Compaosition Group
University of Berne, Switzerland
[roethlis, greewy, lienhard} @& iamunibe.ch

1. Introduction

The task of locating the parts of the code that are rale-
wamt o a feature in abject-oriented systems is widely recog:
nized as a non-trivial task and a body of reverse engineer-
ng reseanch collectively refermd to 25 featum identfication
has emerged |1, 2). A software engineer frequently neads
to understand which parts of 8 system implament a leature
to carty aut maintenance Activities, aschange requests and
baug reparts are usually expressadintenms of features [4].
The main focus of feature identifica tion research to date is
ina reverse engineering context. Despite the fact thatre-
search has highlighted the usefulnessof feature identifica-
tion techniques for program comprehandion, vary little of
this effiort has found its way into the software enginess™s de-
welapment S niment
in this pager, we demaonstrate atool providing a perspec
tive of & system that reflects how features are implemented
o u pp art m aentenan o sotvites. By Evtegmitng thes toolin
a dewelapment emvironment we supp art feasture understand
ing while performing maintenance botivities. This e nviron-
ment, called Featum-centric Emdronment, comp anes sevvaral
fe atur es visuslly, provides a detsiled view for a single fea-
ture and integrates 3 code bmwserfoqusing an a single fea
ture of & software system. All these differant views are an-
riched with metrics, they 2 interconnected and the useris
ab ke 1o inferact with them
Inthe foll owing we introduce the Feature-centric Envi-
ranment and i diflorent views

2. The Feature-centric Environment

The Fe sture-centric Environment provides. three differ-
ant views of features: The Feature Owerview, the Feature
Tree and the Feature Artilact Brovser. All these three views
are enriched with the Feature Affinity metric introduced in
a previous work [3]. Applying this metric guides and sup-
ports the saftwarne anginesr during the navigation andun-
derstanding of ane ormany features. We astign a oodor that

rapresents its Feature Alfinity value to the visual represan-
tation of a method used in & feature . Qur¢hoice of colors
cones pond to aheat mag, g, colors from cyan o red

Compact Feature Dverdiew
The feature overview visuslipes more than one fea-
ture. The softw are engineer can decide haw many fea-
tures ghe wants o vsualize st the 2amae tima (ee
Figure 1 {1]]. Far every chosen feature, a lst ofall
methads used in the current feature 5 provided. Be-
ey method s displayed a5 4 small colored box where
the codor represents the feature affinity value, the list
is sorted aoc ofding to this metric value. Olicking on &
mathad aperns the feature tree wheme all scoumences of
the sebacted methad ane highlighted

Feature Teee
In the feature tree view we present the method call
tree, captured a3 a result of exer cising one feature {see
Figure 1{2]]. The first methad executed for a feature
g, tha "main™ methad) forms the root of this tree.
W thads imé oked in this root node foam the firstlevel
aof the teee, henoe fienodesreprsem method s and the
edges are message sends from asender to b receiver.
Aginthe feature o ended, the nodes are colorad ac-
eording to their feature affinity value The tree i col-
lapsed ta the first twa bevis at the beginning, butevary
nodecan be expanded and collapsed again afteswands
Liioe #his, e user can conwen bemtly nadgate even lange
call trees of & le sture. Every node of the tree provides
a buttan to look up the method of this node in the fea-
ture artifsct b mwser.

Feature Artilact Browser
The soume arif acts of an individu 2l feature are pre-
sented as text in the feature artifact browser (see Fig-
ure 1{3]]. It displays only the classes and methadsac-
tualiyuzed in the feature. Clagses and method s not par
ticipa ting in the runtime behavior of a feature are not
displ ayed. This makes it mucheasier for the user tofo-
ous on & single feature of the software. Thefeature ar-

Popup | Document Preview

Assessment Grid

15

Element from the Assess-
ment Grid (1)

25%
25%

1 fake author

2 missed authors 509%

16

Element from the Assess-
ment Grid (2)

Assessment Grid

18

Sandl3a

Performance Evolution Blueprint: Understanding the Impact of Software Evolution on Performance

Ducasse, S.

Denker, M.

Alcocer, J.P.S. (Juan Pablo Sandoval Alcocer)
Bergel, A.

Sandoval Alcocer, J.P.

19

Popup Shape

20

Popup Top (1)

25%

75%

=)

100%

21

Popup Top (2)
i — I

22

Popup Top (3)

50% 16%

[T 1T 1

LI

23

Popup Bottom

Sandl3a

Lower part of the Popup

Performance Evolution Blueprint: Understanding the impact of Software Evolution on Performance

Alcocer, J.P.S (Juan Pablo Sandoval Alcocer)

Sandoval Alcocer, J.P

Paper Preview

Feature-centric Enviranment

David Rothlisberger, Orda Greevy and Adrian Lienhard

Software Composition Group
University of Berne, Switzerland
{roethlis, greewy, lienhard} @ iamuunibe.ch

1. Introduction

The task of locating the paris of the ¢ ode that are rele-
want ta a feature in ohject-anenied systems is widely recog
nired a5 a non-irivial task and a body of reverse engineer-
ing research collectively refermd to 2 featum identfication
has emenged |1, 2]. A softaane enginesr frequently neads
1o understand which paris of 8 system implement a leature
o carry aut maintenance activities, aschange requests and
bug reports are usually expresedintenms of features 4]
The main focus of feature i dentification researnch to date is
ina reverse enginesring contedt. Despite the fact thatre
seprch has highlighted the uselulnessof festure identifics-
tion technigues for pragram compre hension, very little of
thiz effort has found its way inta the software enginesr’s de

WEUTIT At e i et
in this paper, we demaons trate atoolproviding a perspec
tive af & aystem that reflects how Teatures ar e implemented
o support maintenan o acfvities. By integm ting this toolin
2 devwelopment emaranment we suppoart featune understand
ing while performing m sintenance setivities. Thisenviron-
e, caliexd Fesa e omn e Emvinonm ent, oomp anes sevaral
features visually, provides o detailed view Tor 8 single fea-
ture and integraies a code hmows erfoou sing an a single fea
tune of & softwane Systam. All these different views ane en-
riched with metrics, they am Interconnacted and the useris
ahle o inferact with them_
Inthe fellawing we int radue e the Feature-centric Envi-
ranmentand its diffierent viows.

2. The Feature-centric Environment

Tihe Fe ature-centric Enviranment provides. thres difler-
ent views of features: The Feature Owerview, the Feature
Tres and the Feature Artilact Browser . Al these thresa views
are ensichedwith the Feature Affinity metric introduced in
& previouswaor k | 3). Applying this metric guides and sup-
peorts the software @nginesr during the navigastion andun-
derstanding of one armany feastures. We assign & color that

repr eenls it Featune Alfinity valus to the visual represan-
tation of 8 method used in 8 feature | Durchoice of colors
canespand ta aheat map, &g, colars from cyan fo red.

Coripac t Fanture Overview
The feature overview visualizes more than ane fea-
ture. The softw are engineer can decide how many fea-
tured shewants to visualize at the same time [see
Figure 1 (1]]. Far every choden feature, a list of all
e thads used in the cunrent featur e is provided. By-
ary methed & displayed a3 o 2mall coloned box wherne
the eolor represents the feature aflinity value, the list
i sorted socor ding to this met ric va lue, Dlicking on &
mathod opens the featuns tres whese all ooousenoes aof
the selected method are highlighted.

Fesature Tese

In thee feature tree view we present the me thaod c all

tres, captured 858 result -:I-T-E.l.-&f{'ﬁ-il'lg_{bl'le Tagturs |20a

Figure 1(2)]. The first methad exscuted for a feature
[, the “main” method] fors the root of this tres.
Methadsineoked in this root node form the firstleel
of the tese, henoe fienodesrepmseamtmethod s and the
adges are messsge sends from a sander 1o 8 neosiver.
Asinthe feature overiew, the nodes are colored ac-
winding to their faature alfinity value The tres i ool

Lapsed ta the first twa lewds at the beginning, but ewary
nadecan be expanded and collapsed again afterwards_

iz Shis, e wsercan conen kently nadgate own barge
call trees of 8 festure. Bvery node of the tree provides

& buttan to leak up the methodaf this node in the fes-
ture artifact hmowser.

Fagture Artilact Browser
The soure artfadts of an ndiidu 2l feature are pre
sented as text in the feature anifact browser (see Fig
wra 1{3)]. 1t displays anly the clagses and methaeds ae-
tually used in the feature. Oasses and methods nat par
ticipating in the runtime behavior of 8 feature are not
displ ayed. This makes it much estier for the user tofo-
ol o & Single faature of the softwane. Theleatur e ar-

25

Use Case

260

Conclusion

1. Simultaneously creating pipelines and the

visualization
2. ~70% accuracy with help from the visualization

3. Visualization can be used to further improve the
heuristics

27

Summary

1. Need for modeling communities

2. Pipeline for creating such models

3. Assessing the output of a pipline with the
visualization

28

Questions

29

