2016
Max Leske
Andrei Chis

recap
idea
memory & performance

future work

improve debugging of promises

1%

general concept: threads

improve debugging of threads

process

threads

address space resources

activation record /
thread stack frame

<«— start routine

thread history of thread

thread 2 history of thread 2

thread 1

A

: create

not accessible in debugger!

virtual call stack history of thread 2

thread 2

thread 1

accessible in debugger!

Creating a new thread

create cCopy

R
* *
. .
. .
L] a
| | | |
u n
| L
A L 4
s, K
S .

L 4

 J
...-“

bind

TYTTETTTTTTTNITTRTTTTY =

resume thread

promises

events

solvable as special cases:

asynchronous network communication

messages (actor model)

thread

1
receiver

suspendedContext
1

|

sender

method
1

activation record CompiledMethod

object header: 64 bits

s 2 f3[s] 02

slots identity hash format class index

pinned / immutable unused

garbage collection

object

object header

extended header

no extended header required

Context

object header

sender pC

stackp method

closureOrNil receiver

16 / 56 variable slots

96 / 256 bytes per instance

Y « 100 000 ~ 1000

estimated upper bounds

large contexts: 256 kB large contexts: 512 kB
* 2 (reification)
small contexts: 96 kB small contexts: 192 kB

memory consumption of contexts:

-_%4— object graph (simplified)

i garbage collector

<«—— partially collected

- copy

: garbage collector

\/

4— not collected

?

memory consumption of object graph:

PERFORMANCE

small context (96 bytes) large context (256 bytes)

garbage collection time average average

included 130.211 130.148

excluded 57.127 57.112

copying stack of 100 000 frames

performance:

FUTURE WORK

VM support

memory consumption

threads -> processes

user interface

memory consumption \/

of contexts: memory consumption

of object graph:)
performance: \/

