
IMPROVING LIVE
DEBUGGING OF

CONCURRENT THREADS

2016
Max Leske
Andrei Chiș

recap

idea

memory & performance

future work

general concept:

improve debugging of threads

improve debugging of promises

threads

IDEA

threads

…

address space resources

process

thread
activation record /

stack frame

start routine

history of threadthread

history of thread 2

not accessible in debugger!

create

thread 1

thread 2

history of thread 2virtual call stack

accessible in debugger!

thread 2

thread 1

Creating a new thread

create copy

1

2

create thread

3

bind

4

resume thread

messages (actor model)

events

promises

solvable as special cases:

asynchronous network communication

MEMORY

1
sender

receiver
1

Object

Context

CompiledMethod
1
method

Process

suspendedContext
1

thread

activation record

object header: 64 bits

2

pinned / immutable

slots

8

identity hash

22

format

5

class index

22

unused

2

garbage collection

3

object header

extended header

slot 0 slot 1

slot 2 …

object

object header

Context

method

closureOrNil

stackp

receiver

sender pc

16 / 56 variable slots

no extended header required

96 / 256 bytes per instance

∑ ≪ 100 000 ~ 1000

small contexts: 96 kB

large contexts: 256 kB
* 2 (reification)

small contexts: 192 kB

large contexts: 512 kB

estimated upper bounds

memory consumption of contexts:

object graph (simplified)

garbage collector

partially collected

garbage collector

not collected

copy

memory consumption of object graph: ?

PERFORMANCE

small context (96 bytes) large context (256 bytes)

garbage collection time average median max average median max

included 130.211 130 167 130.148 130 152

excluded 57.127 57 71 57.112 57 66

copying stack of 100 000 frames

performance:

FUTURE WORK

threads -> processes

user interface

memory consumption

VM support

b

cre cre

res

memory consumption
of contexts:

performance:
?memory consumption

of object graph:

