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general concept:

improve debugging of threads

improve debugging of promises

threads
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history of thread 2

not accessible in debugger!
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history of thread 2virtual call stack

accessible in debugger!
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Creating a new thread
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messages (actor model)

events

promises

solvable as special cases:

asynchronous network communication
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object header: 64 bits
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object header

extended header

slot 0 slot 1

slot 2 …

object



object header

Context

method

closureOrNil

stackp
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sender pc

16 / 56 variable slots

no extended header required

96 / 256 bytes per instance



∑ ≪ 100 000 ~ 1000

small contexts: 96 kB

large contexts: 256 kB
* 2 (reification)

small contexts: 192 kB

large contexts: 512 kB

estimated upper bounds



memory consumption of contexts:



object graph (simplified)

garbage collector

partially collected



garbage collector

not collected

copy



memory consumption of object graph: ?



PERFORMANCE



small context (96 bytes) large context (256 bytes)

garbage collection time average median max average median max

included 130.211 130 167 130.148 130 152

excluded 57.127 57 71 57.112 57 66

copying stack of 100 000  frames



performance:



FUTURE WORK



threads -> processes

user interface

memory consumption

VM support
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