Veritying Concurrency
Runtimes using Graph
Transformation Systems

Claudio Corrodil, Chris Poskitt?, Alexander HeuRner3

1Software Composition Group, University of Bern, Switzerland
2Singapore University of Technology and Design, Singapore

3Software Technologies Research Group, University of Bamberg, Germany



ETH:zurich

O Chair of
Software Engineering



http://se.inf.ethz.ch/

ETH:zurich

O Chair of
Software Engineering



http://se.inf.ethz.ch/

Chair of
Software Engineering

Concurrency Made Easy

{O-O Concurrency models}

Testing

{ Verification } [

[ Robotics }



http://se.inf.ethz.ch/

Chair of
Software Engineering

Concurrency Made Easy

0O-0 Concurrency models

Verification { Testing

{ Robotics }



http://se.inf.ethz.ch/

SCOOP

Simple Concurrent Object-Oriented Programming

g N
Goal: Raise concurrency abstractions from error-

prone (lock based) models to O-O programming
L )







SCOOP

eat (left, right: separate FORK)

do
left.pick up
right.pick _up
print (“I am eating!”)
left.put down
right.put _down

end

p
Separate block: No intervening calls

between “pick_up” and “put_down”
-




Execution Models

“Request Queues”

—> FORK

Separate block guarantees?

P1 ﬂ P2, P3

Performant?



Execution Models

“Request Queues”

—> FORK

Separate block guarantees?

P1 a P2, P3
Performant? x



Execution Models

“Request Queues”

—> FORK

Separate block guarantees?

P1 ﬂ P2, P3
Performant? x

“Queues of Queues”

> FORK
A A Separate block guarantees?
p1 £ 1 P2 F] p3

Performant?



Execution Models

“Request Queues”

—> FORK

Separate block guarantees?

P1 ﬂ P2, P3
Performant? x

“Queues of Queues”

> FORK
A A Separate block guarantees?
p1 £ 1 P2 F] p3

Performant?



Execution Models

“Distributed SCOOP”

Extension of “Queues of Queues” model

Y

oy,




Correctness

[ No race conditions? }

[ Absence of deadlocks? }




Correctness

[ No race conditions? }

/

Is this still a solution?

eat (left, right: separate FORK)

(&

do
print (“I am eating!”)
end

)

[ Absence of deadlocks? }




Our work

(U

Can we model and simulate—modularly—
competing semantics for a language like SCOOP,
and analyse them for semantic discrepancies?

)




Approach

* Model runtimes as graph transformation

systems a
| | B} b —{g}d D}
* Modular / paramterisable semantics + s ¢
c -d—>|p

* Analyse parameterised GTS against .—"’—.
representative programs in GROOVE Crnerd e ‘Jch:




Graph Transformation Systems

Configuration / state graph



Graph Transformation Systems

Transformationrule  —_ —  «——--

next



Graph Transformation Systems

Configuration / state graph Item L AL —— next—*| —
g grap value = 0 value = 1 value = 2 value = 3

Transformationrule  —_ —  «——--

next



Graph Transformation Systems
Configuration / state graph E et EH

Transformationrule  —_ —  «——--

next



Graph Transformation Systems

I
‘ \ put down /
— put

pick up put__down down /
[2x]

eat

5204 : closed
main.0

State-space exploration

t put _down P k_up
Nondeterministic application of 206 : closed 207 ; closed
any matching rule out_down [2x] ot
main.0
put_down

s209 : closed
main.0

(labeled transition system)



SCOOP GTS

Static part: control flow graphs

name = "right"

i i i e i e e e e P P T P E PP TP P TP P PP PP PP PP PP PP PP PP P PED S .
- | ParameterMapping target
index =1 parameter InitialState to action ActionCommand pe :
: s e class = "PHILOSOPHER" | ™ procedure = "use" |-to stater ControlState [-to action ctlonCOmnl"lnand" to_state FinalState | :
. procedure = "eat" ‘ - - procedure = "use — :
: target .
. parameter arge

ParameterMapping ParameterExpression

. index = 2 name = "left"



SCOOP GTS

Dynamic part: Handlers and memory state

Handler ReferenceValue I**value Variable
idle name = "right" :

Object ‘ L E

t = "PHILOSOPHER" refers_to i .
ype | storage _variable :
handler

Object : I .

handler—l type = J"FORK" ’ EEV&'U&I:IOI"I -

tofpee __target variable

]
_idle ‘ ParameterExpression

name = "right"

Static part: control flow graphs

: | ParameterMapping

index =1 parameter InitialState to action ActionCommand pe
s e class = "PHILOSOPHER" | ™ procedure = "use" |-to stater ControlState [-to action ctlonComnl“lland" to_state FinalState | :
procedure = "eat" ‘ - - procedure = "use — :
t t .
parameter arge
ParameterMapping ParameterExpression
index = 2 name = "left"

name = "right"

.
N m N R NN N NN RN R NN RN NN R NN NN RN NN RN RN NN NN NN RN RN RN EEE N NN NN NN EEE N NN N NN N EE SR EEE N NN NN N NN AN EENEEEEEEEI NN NN NN NN I NN N NN T NN NN N EEN I RGN EEEEEEEEEEEEEEEEEEEEEEEEEEEEES



SCOOP GTS

__'_EE"E‘_I_‘_’_"E‘_F_'?_'_I_ """""" _frame~— ’{ StackFrame L ------- frame - | E valuatmn
; f - |

_____________________

active frame

_target_:vana ble Memory _expression

¥ storage
DeclaredExpression ‘ l ‘ Expression ‘
Processor
_token
“- et source
current state S ——

current_ state

ControIState Fto actlon—{ActlonAsmgnment}ito state—>{ ControlState




Detecting errors

‘ Processorl = I Processor‘

current_state  current_state

N/

InitialState
class = "PHILOSOPHER"
procedure = "eat”

. Error
émessage = "Mutual exclusion error. Both philosophers have entered the eat method.”



Graph

DP 2 eager

DP 2 lazy

DP 3 eager

DP 3 lazy

PC 20

Runtime
QoQ
RQ
DSCOOP
QoQ
RQ
DSCOOP
QoQ
RQ
DSCOOP
QoQ
RQ
DSCOOP
QoQ
RQ
DSCOOP

Configurations

5,863
4,219
13,046
9,609
5,679
18,874
227,797
99,198
523,513
444,689
170,249
1,288,663
50,286
12,890
90,434

Time [s]

25.5
18.2
52.9
40.8
23.5
73.0
1,480.6
436.3
2,726.0
2,424.9
1,090.1
5,999.5
575.0
141.6
997.7



Publications

Towards Practical Graph-Based Verification for an
Object-Oriented Concurrency Model

Alexander HeuBner Christopher M. Poskitt  Claudio Corrodi
University of Bamberg, Germany Benj amin Morandi

Department of Computer Science
ETH Ziirich, Switzerland

To harness the power of multi-core and distributed platforms, and to make the development of con-
current software more accessible to software engineers, different object-oriented concurrency models
such as SCOOP have been proposed. Despite the practical importance of analysing SCOOP pro-
grams, there are currently no general verification approaches that operate directly on program code
without additional annotations. One reason for this is the multitude of partially conflicting semantic
formalisations for SCOOP (either in theory or by-implementation). Here, we propose a simple graph
transformation system (GTS) based run-time semantics for SCOOP that grasps the most common

features of all known semantics of the language. This run-time model is implemented in the state-
Af tha art 3ITC tanl MDYV E vhich allawvie o ta cimailata analsica and srarifir a cnnheoat ~f QOCOND



Publications

A Graph-Based Semantics Workbench for
Concurrent Asynchronous Programs

Claudio Corrodi'?*, Alexander Heufner?, and Christopher M. Poskitt!4*

! Department of Computer Science, ETH Ziirich, Switzerland
2 Software Composition Group, University of Bern, Switzerland
3 Software Technologies Research Group, University of Bamberg, Germany
4 Singapore University of Technology and Design, Singapore

Abstract. A number of novel programming languages and libraries have
been proposed that offer simpler-to-use models of concurrency than
threads. It is challenging, however, to devise execution models that suc-
cessfully realise their abstractions without forfeiting performance or in-
troducing unintended behaviours. This is exemplified by Scoopr—a con-
current object-oriented message-passing language—which has seen mul-
tiple semantics proposed and implemented over its evolution. We propose



Publications

A Semantics Comparison Workbench for
Concurrent, Asynchronous, Distributed
Programs

Claudio Corrodi', Alexander Heuftner?, and Christopher M. Poskitt?

lSoftware Composition Group, University of Bern, Switzerland
2Software Technologies Research Group, University of Bamberg, Germany
3Singapore University of Technology and Design, Singapore

Abstract. A number of high-level languages and libraries have been proposed that offer novel and sim-
ple to use abstractions for concurrent, asynchronous, and distributed programming. The execution models
that realise them, however, often change over time—whether to improve performance, or to extend them to
new language features—potentially affecting behavioural and safety properties of existing programs. This
is exemplified by SCOOP, a message-passing approach to concurrent object-oriented programming that has



Acknowledgments

* Many slides are adapted from related similar presentations given by
Chris Poskitt and Alexander HeulSner

* Dining philosophers image taken from Wikipedia

e D-SCOOQP figure taken from “An Interference-Free Programming
Model for Network Objects” (Schill, Poskitt, Meyer; 2016)



