Writing a Shape
Grammar Editor

Lars Withrich

Supervised by Manuel Leuenberger

Bachelor Thesis Fall 2017
Seminar SCG 7th November
SCG University of Bern

&
OrAS s 08

S22

"0‘\%"0’0‘\
’: 98 a8
9

LA\ AR
09,05"'0905‘09
LA NS
S TS

COXE
(K
‘oS
7

LAy
VA
RS

N




What’s a Shape Grammar?

* Defined by George Stiny in 1971

* A shape grammar <S, L, R, I> has four parts:
1. S, a finite set of shapes
2. L, a finite set of labels
3. R, a finite set of rules of the forma = B
where o€ (S, L)*and b € (S, L)°
4.1, a labelled shape € (S, L)*, called initial shape

* Creates patterns in 2D, 3D



Rules

ol B
* Add edges I:I . m

* Add points A — A




* Remove Edges

e Remove Points

* Scale the shape

* Move points around



Rule Application

 Start with an initial shape |



* Find a inside starting shape




* Find a inside starting shape
 a could be translated, rotated, scaled
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* Subshape Detection
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a shape present in
base shape
transformed (rotated)
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* Apply Rule
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* Apply Rule
" =[1-t(a) ] +t(B)
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Cases to consider

* Only apply rules in viewport
* Width/Height of desired image
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* Apply rules over the whole shape

¢
Not only
apply rules
here? \ [
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* Do not generate geometry below pixel level

* In which order and how often are rules applied?



Labels

e Restrict/Guide rule

* Stop rule application



(@) (b)
Figure 1. A simple shape grammar that inscribes squares in squares. (a) Shape rules, (b) initial shape.
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Rules handdrawn, no
shape rule 1 shape rule 1 [ /| shape rule 2 implementation

Figure 2. Generation of a shape using the shape grammar of figure 1.
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Figure 3. Some shapes in the language defined by the shape grammar of figure 1.

G. Stiny, 1980, Introduction to shape and shape grammars



2 -
@ x l Rule stops grammar
Figure 1. A simple shape grammar that inscribes squares in sq X s .
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Figure 2. Generation of a shape using the shape grammar of figure 1.
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Figure 3. Some shapes in the language defined by the shape grammar of figure 1.

G. Stiny, 1980, Introduction to shape and shape grammars
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Label defines orientation
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(@) (b)
Figure 1. A simple shape grammar that inscribes squares in squares. (a) Shape rules, (b) initial shape.
= = =
shape rule 1 shape rule 1 ' /| shape mule 2

Figure 2. Generation of a shape using the shape grammar of figure 1.
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Figure 3. Some shapes in the language defined by the shape grammar of figure 1.

G. Stiny, 1980, Introduction to shape and shape grammars
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Why do we care?

e Create Textures/Patterns

* Create art

* Procedural content for games (room, level design)

* Tool for designers
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* Used in Computer Graphics

* «Geometry Synthesis on Surfaces using Field-Guided Shape
Grammars» (2010)
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e Use it in architecture in 3D (model generation)

SHAPE RULE 1 SHAPE RULE SHAPE RULE 4 CHOSEN DESIGN FOR FINAL DEVELOP

SHAPE RULE 2 :

% SHAPE RULE 5 superuies_|
é
Ty
SHAPE RULE 3 % —_
SHAPE RULE 3 I

SHAPE RULE 4 l

e

SHAPE RULE 4 I

Nl

FINAL DESIGN

http://tanhongloong-e-portfolio.blogspot.ch/2014/07/shape-grammar-arc3153-arc3152-module.html, 29.10.2017
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http://tanhongloong-e-portfolio.blogspot.ch/2014/07/shape-grammar-arc3153-arc3152-module.html

* Shape Grammars are interesting and cool
—> visual logic

* There has been no unified implementation found yet (?)
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Subshape Detection Problem

We need to

find this \ @
—

<« Inside the base

shape
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* Rotation, Translation and Scaling can be allowed

* Subshape Detection under these conditions is difficult
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* Use local coordinates for a
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* Local coordinates for every 3 points in base shape
* Compare points

(1.4,0.8)
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* Local coordinates for every 3 points in base shape
* Compare points
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* Local coordinates for every 3 points in base shape
* Compare points

(0,1)

1,0)
(0,0) v1

v2 —
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* Local coordinates for every 3 points in base shape
* Compare points
* If match is found compare lines

(0,1)

(0,0) v1

v2 —
1,0)
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What | have done

* C++ shape grammar interpreter

* Only for simple grammars

. Rule Processing Time: 1.265709
* No editor
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TriangleGrammar: :TriangleGrammar() {

name = "TriangleInlay";
std: :vector<Point® points = [{13, 13},
{15, 20},
{30, 30},
{30,1511;
std::vector<Line®» lines = {{0, 1},
{1, 2},
o, 21, Possibly breaking a ton of C++ idioms,
{0,323},

(2,3, 115 no prior C++ programming before

base = new Shape ({points, lines}); / thiS'

atd::vector<Point> rule points to = {[0, 0},
{0, 3},
{3, 3},
L, 2}}5
atd::vector<Point> rule points from = {[{0, 0},
{0, 3},
{3, 31};
std::vector<Line> rule lines from = {{0, 1},
1, 2},
{0, 2%};
atd::vector<Line> rule lines to = {{0, 1},

{1, 2},

10, 2},

{0, 21,

{1, 2},

{2, 211;
Shape *rule shape from = new Shape{{rule_points_from, rule_lines_from});
Shape *rule shape to = new Shape{{rule_points_to, rule_lines_to});

std: :map<Point *, Point *> r point mapping;

std::map<Line *, Line *> r line mapping;

r point mapping[rule shape from->points[0]] = rule shape to—>points[0];
r point mapping[rule shape from->points[1]] = rule shape to—>points[l];
r point mapping[rule shape from-»points[2]] = rule shape to—>points[2];

r_line mapping[rule shape from—>lines[0]] = rule_ shape to->lines[0];
r line mapping[rule shape from—>lines[1]] = rule shape to->lines[1];
r_line mapping[rule shape from—>line=s[2]] = rule_ shape to->lines[Z2];
Rule *rule = new Rule(rule shape from, rule shape to, r point mapping, r line mapping);

add rule{rule);



My Bachelor Project

* Focus on 2D Shape Grammars

* Implement an editor

* Draw rules

* Draw starting shape
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Draw a starting

shape
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Roadmap

* Backend
subshape detection, shape transformation

* Front end (the editor)
with spec and roassal or maybe bloc in Pharo

* Test Algorithm
If it breaks figure out why



* Map software metrics into rules

* Software fingerprint generation

* Add coloring, tagging for further processing



Questions / Feedback

 What do you think about the subshape detection using local
coordinates?

* | hope | can create some cool images until the next presentation
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