Writing a Shape
Grammar Editor

Lars Withrich

Supervised by Manuel Leuenberger

Bachelor Thesis Fall 2017
Seminar SCG 7th November
SCG University of Bern

&
OrAS s 08

S22

"0‘\%"0’0‘\
’: 98 a8
9

LA\ AR
09,05"'0905‘09
LA NS
S TS

COXE
(K
‘oS
7

LAy
VA
RS

N

What’s a Shape Grammar?

* Defined by George Stiny in 1971

* A shape grammar <S, L, R, I> has four parts:
1. S, a finite set of shapes
2. L, a finite set of labels
3. R, a finite set of rules of the forma = B
where o€ (S, L)*and b € (S, L)°
4.1, a labelled shape € (S, L)*, called initial shape

* Creates patterns in 2D, 3D

Rules

ol B
* Add edges I:I . m

* Add points A — A

* Remove Edges

e Remove Points

* Scale the shape

* Move points around

Rule Application

 Start with an initial shape |

* Find a inside starting shape

* Find a inside starting shape
 a could be translated, rotated, scaled

a B

ce " oe

* Subshape Detection

132

a shape present in
base shape
transformed (rotated)

N

* Apply Rule

co oo

* Apply Rule
" =[1-t(a)] +t(B)

co oo

10

Cases to consider

* Only apply rules in viewport
* Width/Height of desired image

11

* Apply rules over the whole shape

¢
Not only
apply rules
here? \ [
9
®

12

* Do not generate geometry below pixel level

* In which order and how often are rules applied?

Labels

e Restrict/Guide rule

* Stop rule application

(@) (b)
Figure 1. A simple shape grammar that inscribes squares in squares. (a) Shape rules, (b) initial shape.

i
-

Rules handdrawn, no
shape rule 1 shape rule 1 [/| shape rule 2 implementation

Figure 2. Generation of a shape using the shape grammar of figure 1.

C

Figure 3. Some shapes in the language defined by the shape grammar of figure 1.

G. Stiny, 1980, Introduction to shape and shape grammars

2 -
@ x l Rule stops grammar
Figure 1. A simple shape grammar that inscribes squares in sq X s .
- AN
shap::ule 1 shap::ule 1 " slmp:;ule 2

Figure 2. Generation of a shape using the shape grammar of figure 1.

C

Figure 3. Some shapes in the language defined by the shape grammar of figure 1.

G. Stiny, 1980, Introduction to shape and shape grammars

16

Label defines orientation

2 -
(@) (b)
Figure 1. A simple shape grammar that inscribes squares in squares. (a) Shape rules, (b) initial shape.
= = =
shape rule 1 shape rule 1 ' /| shape mule 2

Figure 2. Generation of a shape using the shape grammar of figure 1.

C

Figure 3. Some shapes in the language defined by the shape grammar of figure 1.

G. Stiny, 1980, Introduction to shape and shape grammars

17

Why do we care?

e Create Textures/Patterns

* Create art

* Procedural content for games (room, level design)

* Tool for designers

283% <)5
?gi‘%z
$56335553

.
t
,
g

* Used in Computer Graphics

* «Geometry Synthesis on Surfaces using Field-Guided Shape
Grammars» (2010)

19

20

e Use it in architecture in 3D (model generation)

SHAPE RULE 1 SHAPE RULE SHAPE RULE 4 CHOSEN DESIGN FOR FINAL DEVELOP

SHAPE RULE 2 :

% SHAPE RULE 5 superuies_|
é
Ty
SHAPE RULE 3 % —_
SHAPE RULE 3 I

SHAPE RULE 4 l

e

SHAPE RULE 4 I

Nl

FINAL DESIGN

http://tanhongloong-e-portfolio.blogspot.ch/2014/07/shape-grammar-arc3153-arc3152-module.html, 29.10.2017

21

http://tanhongloong-e-portfolio.blogspot.ch/2014/07/shape-grammar-arc3153-arc3152-module.html

* Shape Grammars are interesting and cool
—> visual logic

* There has been no unified implementation found yet (?)

i

.
i
,
g
V.

22

Subshape Detection Problem

We need to

find this \ @
—

<« Inside the base

shape

23

* Rotation, Translation and Scaling can be allowed

* Subshape Detection under these conditions is difficult

ldea

* Use local coordinates for a

(0,1) a (1,

1

(0,0) v1

1)

1,0)

B

oo

25

* Local coordinates for every 3 points in base shape
* Compare points

(1.4,0.8)

(0,1)

(0,0) v1

v2 —
1,0)

26

* Local coordinates for every 3 points in base shape
* Compare points

(0,1)

v2 —

1,0)
(0,0) v1

Y o
<\

(0,0

—

B

oo

27

* Local coordinates for every 3 points in base shape
* Compare points

(0,1)

1,0)
(0,0) v1

v2 —

28

* Local coordinates for every 3 points in base shape
* Compare points
* If match is found compare lines

(0,1)

(0,0) v1

v2 —
1,0)

29

What | have done

* C++ shape grammar interpreter

* Only for simple grammars

. Rule Processing Time: 1.265709
* No editor
—
e
.p‘--d- ,,
‘_.--"'_Ff /'.,’.

e
e
s
. -
" - -
- — e
- o L
.a—""#
g _,.,—d"'" -
e d - -~
- - g
- L -

e -

Pl -

2 -~

-~
-~
7
-
-~
e
-~
-
e
/ »
-
-
-
_," T
i -~
_l.r' ~
r -~
r ~

ry -~
P
£

e
oo W m

)

[y
I

)

fury
3%

[y

=Y

=
]

L T T o O o o o S ¥ T T VU TP T U B 7% T U T 7 SO O U S "G S T (T % TR G T T G T L T % T G S S
L T T e R I I Y Sy T Ny e T = = (R S) (R S U X Sy T - = SR N M) BT S U T S o R Ve T« B

TriangleGrammar: :TriangleGrammar() {

name = "TriangleInlay";
std: :vector<Point® points = [{13, 13},
{15, 20},
{30, 30},
{30,1511;
std::vector<Line®» lines = {{0, 1},
{1, 2},
o, 21, Possibly breaking a ton of C++ idioms,
{0,323},

(2,3, 115 no prior C++ programming before

base = new Shape ({points, lines}); / thiS'

atd::vector<Point> rule points to = {[0, 0},
{0, 3},
{3, 3},
L, 2}}5
atd::vector<Point> rule points from = {[{0, 0},
{0, 3},
{3, 31};
std::vector<Line> rule lines from = {{0, 1},
1, 2},
{0, 2%};
atd::vector<Line> rule lines to = {{0, 1},

{1, 2},

10, 2},

{0, 21,

{1, 2},

{2, 211;
Shape *rule shape from = new Shape{{rule_points_from, rule_lines_from});
Shape *rule shape to = new Shape{{rule_points_to, rule_lines_to});

std: :map<Point *, Point *> r point mapping;

std::map<Line *, Line *> r line mapping;

r point mapping[rule shape from->points[0]] = rule shape to—>points[0];
r point mapping[rule shape from->points[1]] = rule shape to—>points[l];
r point mapping[rule shape from-»points[2]] = rule shape to—>points[2];

r_line mapping[rule shape from—>lines[0]] = rule_ shape to->lines[0];
r line mapping[rule shape from—>lines[1]] = rule shape to->lines[1];
r_line mapping[rule shape from—>line=s[2]] = rule_ shape to->lines[Z2];
Rule *rule = new Rule(rule shape from, rule shape to, r point mapping, r line mapping);

add rule{rule);

My Bachelor Project

* Focus on 2D Shape Grammars

* Implement an editor

* Draw rules

* Draw starting shape

ARER ? I

_; Save and load
| grammars — -

[

o] IZTetH
b\)iJ'H/\ e
L\(bhw‘— A &9

Sco\\‘ma L
\—o-\—aHOm D
Y\\.Lwlb{r 0@ "‘ffl“c" Hm«} M

Sco\\\wa L
\‘O'\WHOW D

L\)M'H/\ cdo
L\{bhw‘— &9

lod o

number 0€ D\(fh‘ca\ Kors Ao

34

35

o] 12

L,\)iA'H/\ coo
L\(bhw‘— N &9

Sca\\‘ma L
\—O'\‘&‘HOW D
Y\\.Lwlh(r 0@ q(r[,,‘c‘,‘ Hm«} M

36

Draw a starting

shape
Z1 Wit
200
. oy LQ‘J'H/\
Scﬂhwa m‘:w 50
\—o-\—aHOm D O

lod o

number 0@ Oxlarh‘a\ Kows it kN

37

e STl 2 Run grammar,
Lk N o hejgnt A &2 step forward and
o Dw

backward
number o o\(r“‘cﬁ Kows

ANlodo

38

®

usl
Adjust
parameters

kY

\—o-\—aHOm D

<\ Wi >t
- - L,\)iA'H/\ coo

L\(bhw‘— N &9

lod o

number 0@ a rh‘a\ Kows it kN

39

Roadmap

* Backend
subshape detection, shape transformation

* Front end (the editor)
with spec and roassal or maybe bloc in Pharo

* Test Algorithm
If it breaks figure out why

* Map software metrics into rules

* Software fingerprint generation

* Add coloring, tagging for further processing

Questions / Feedback

 What do you think about the subshape detection using local
coordinates?

* | hope | can create some cool images until the next presentation

References

Image 1:

http://www.elementsofparametricdesign.com/view.php?hash=&dir=files%2FPatterns%2FRecursion, 29.10.2017

Image 2:
From «Geometry Synthesis on Surfaces Using Field-Guided Shape Grammars”

https://csdl-images.computer.org/trans/tg/2011/02/figures/ttg20110202315.gif, 29.10.2017

Image 3:

https://introcs.cs.princeton.edu/java/assignments/sierpinski3.png, 29.10.2017

Image 4:

http://www.cs.duke.edu/courses/fall01/cps100/assign/recursivegraph/, 29.10.2017

Image5:

https://i.pinimg.com/originals/24/ca/f7/24caf7f4d101d4fdec36575628f1e319.jpg, 29.10.2017

Image 6:

http://www.cs.princeton.edu/courses/archive/fall08/cos126/art/anya.1.png, 29.10.2017

Image 7:

https://i.pinimg.com/originals/d1/33/77/d1337739ad66deaac7ec57cb018607b8.ipg, 29.10.2017

Image 8:

https://i.pinimg.com/originals/5b/3c/ce/5b3cce3f47c0d0248fa8c98012faaed7.ipg, 29.10.2017

43

http://www.elementsofparametricdesign.com/view.php?hash=&dir=files/Patterns/Recursion
https://csdl-images.computer.org/trans/tg/2011/02/figures/ttg20110202315.gif
https://introcs.cs.princeton.edu/java/assignments/sierpinski3.png
http://www.cs.duke.edu/courses/fall01/cps100/assign/recursivegraph/
https://i.pinimg.com/originals/24/ca/f7/24caf7f4d101d4fdec36575628f1e319.jpg
http://www.cs.princeton.edu/courses/archive/fall08/cos126/art/anya.1.png
https://i.pinimg.com/originals/d1/33/77/d1337739ad66deaac7ec57cb018607b8.jpg
https://i.pinimg.com/originals/5b/3c/ce/5b3cce3f47c0d0248fa8c98012faaed7.jpg

Image 9:

https://i.pinimg.com/736x/a7/d9/c4/a7d9c4129f62712e643536ae30a1106c--islamic-patterns-modern-patterns.jpg, 29.10.2017

Image 10:

https://cdn.dribbble.com/users/1123302/screenshots/2735420/3dpattern 1x.png, 29.10.2017

44

https://i.pinimg.com/736x/a7/d9/c4/a7d9c4129f62712e643536ae30a1106c--islamic-patterns-modern-patterns.jpg
https://cdn.dribbble.com/users/1123302/screenshots/2735420/3dpattern_1x.png

