An LLVM back end for
sourir

Stefan Borer
Mentor: Oliver Fluckiger

Master Seminar Project @ SCG, University of Bern, FS 17



Outline

NS O~

Compiler introduction
What is sourir and why?
Quick dive into LLVM
Sourir architecture
Demo

Conclusion

Future work



Traditional Compiler

Source
code

—| Front end

AST

Optimizer

Modern compilers: multiple passes in optimizer

P

Machine

Back end |—
code

To be continued...



Sourir

Low-level programing language or
High-level intermediate representation

Primitive datatypes, no Classes, Objects
Program flow using labels, goto and branch
Consists of functions

Functions can have version’s
assume instruction

L1
L2

L3

var n = nil
readn
array t[n]
vark =10
goto L1
branchk < n L2 13
t[k] « k
ke—k+1
goto L1
drop k
stop



Dynamic programming languages

At runtime:
- Loading of new code
- Extension of objects and definitions
- Often dynamically typed

- Use just-in-time (JIT) compiler
— continuously iterate and dump code at latest possible time
Optimize code based on speculations (assume types etc.)

Eg. Javascript, Smalltalk, PHP, Python



Sourir

- Designed as IR for dynamic languages
- Explicit versions of functions
- Explicit assumptions
— Easier to reason about optimizations / deoptimizations

- out of the scope for today



LLVM

Originally: Low Level Virtual Machine
Today: “collection of modular and reusable compiler and toolchain technologies"

- Written for C, C++ but with language-agnostic design

- Front ends: D, Fortran, Objective-C, Python, R, Rust, ...

- Back ends: x86, x86-64, PowerPC, MIPS, ARM, AMD GCN, ...

- Linker, machine code translator, C++ standard library, Debugger, ...
- LLVM IR

- Optimization using passes

- Offers a JIT



LLVM IR

- Heart of LLVM

- Strongly typed RISC instruction set
- Infinite set of registers

- Static single assignment (SSA) form

Three equivalent forms:
- C++ object format
- Plain text (assembly)
- bitcode



LLVM Compiler

Source
code

—| Front end

LLVM
IR

LLVM

Optimizer

Pass

LLVM
IR

X86
Back end

—> X86 code

PowerPC
Back end

—> PPC code

LLVM
IR

Pass




Sourir JIT

Source
code

Front end
(missing)

Sourir
IR
- »

Sourir
Middle
end

LLVM
IR

LLVM JIT —

Machine
code



Demo



Conclusion

LLVM
- handy and fast

- But: “official” support doesn’t mean good documentation

Ocaml
- Function programming is fun
- But: irritating syntax
- Inconvenient setup



Future work

Basic features left: arrays, print/read, drop, booleans
Advanced: version, assume

Optimization as LLVM passes

Front end for high level language



