
Replication Mechanism of ZEMIS Ref

Tanja Küry

University of Bern

tanja.kuery@students.unibe.ch

09.01.2017



ZEMIS Ref

”ZEMIS Referenzdatenverwaltung”

Administration application for so called ’reference data’

• About 380 tables with relational dependencies

• Several applications use the data (clients)

• New applications outside scope of project ZEMIS

• Focus on replication mechanism



Replication: Initial State

Push architecture with direct database access
ZEMIS Ref replicates changes directly into the client’s db

• Direct database access

• Client - data mapping

• Database connection and schema

• ZEMIS Ref release required to add new clients

• Tight coupling - makes changing the schema complex

• Robust, no synchronisation issues, failures are detected, no
heavy workload



Replication: Variant 1

Push architecture with web service
ZEMIS Ref pushes changes via SOAP web service

• Client provides web service

• Client - data mapping

• Dynamic subscriber list

• No direct database access

• Coupling loosend, schema can be changed



Variant 1: Pro and Contra

Push architecture with web service
Will be used for new ZEMIS application (temporary solution)

• Closest to initial state

• Robust

• No synchronisation issues

• Failure detection

• No heavy workload

• Contradicts pull over push
policy

• Clients provide web service

• Coupling still tight



Replication: Variant 2

Direct pull architecture (on the go)

Clients pull each time they need information

• Always up do date

• Permission and authentication instead of mapping

• No direct access to database

• No need to store the ref data



Variant 2: Pro and Contra

Direct pull architecture (on the go)

30’000 users, 2500 calls/minute

• Always up do date

• No client - data mapping

• No direct access to database

• No need to store the ref
data ⇒ browser caching

• Depends on ZEMIS Ref
availability

• High performance
requirements ⇒ several
servers ⇒ high cost

• Robustness low, heavy
workload



Replication: Variant 3

Pull architecture with caching

ZEMIS ref offers SOAP web service, clients pull and cache the data

• No direct access to database

• Deltas can be pulled

• Loose coupling, clients can be added easily, schema can be
changed

• Clients can have differing data ⇒ conflicts

• Robustness medium high



Variant 3: Pro and Contra

Pull architecture with caching

ZEMIS ref offers SOAP web service, clients pull and cache the data

• Follows pull over push policy

• Web service provided by
ZEMIS Ref

• Loose coupling

• Robustness medium high

• When shall the clients pull?

• Clients can have differing
data ⇒ conflicts



Variant 3: First Draft



Variant 3: Validation of First XML Draft

Pull architecture with caching

Implemented web service for pull architecture with caching

• Functionality testing with soapUi

• Load testing with Apache JMeter

• XML files too big

• Problem: XML-Firewall



Variant 3: Final XML Version



Variant 3: Conclusion and Further Work

• Define requirements

• Talk to stakeholders

• WSDL and XSD are the
base

• XSD can be used for variant
1 (push)

• Human readable ⇒ more
abstraction

• Reduce size of XML

• Do not send information
twice



Replication: Variant 4

Push notify to pull architecture with web services

ZEMIS ref pushes notifications about updates, clients pull if needed

• Web service provided by clients to push notification

• Web service provided by ZEMIS Ref to pull

• No heavy workload, responses can be scheduled

• Clients need to determine whether to pull or not

• Robustness good, no differing data

• What if one client doesn’t get a notification?



Variant 4: Pro and Contra

Push notify to pull architecture with web services

ZEMIS ref pushes notifications about updates, clients pull if needed

• No direct access to database

• Loose coupling: Easy to add
new clients, schema can be
changed

• No heavy workload

• Robustness good, no
differing data

• Clients need to know
whether to pull or not

• Clients and ZEMIS Ref
provide web service



Replication: RabbitMQ Proof of concept

Using an open source message broker

ZEMIS Ref sends messages to exchange which forwards it to
queues, clients fetch them, Advanced Message Queuing Protocol

• Each client has its own
queue

• Queues have binding keys

• Messages have routing keys

• If keys match, message is
sent to queue



RabbitMQ: Pro and Contra

• Easy to set up and use

• Loose coupling

• No heavy workload

• No web service needed

• Not bound to XML - Byte
arrays

• Robust

• Against architectural
concept ⇒ optimal solution?



Summary

• ZEMIS Ref administrates reference data shared among
applications

• Decapsulation of ZEMIS Ref and its clients

• Analysed several approaches, prototypes

• One not optimal approach is already in development

• PoC for messaging service was success


