Benchmarking Android
Security Analysis

A Bachelors Project,
Final Presentation

by Timo Spring
Supervised by Claudio Corrodi

1. Project Overview
What is it about?

Problem

* Millions of android apps
 Hundreds of analysis tools

* |Large scale taxonomies
classitying them

 |Lack of comparison in
practice

Project Idea

Run selected tools on
common dataset

Compare the results from
the different tools

1. Project Overview
Benchmarking concept

Small scale Large scale quantitative
qualitative * [F-Droid dataset
« DroidBench dataset (~1.5k apps)
(119 apps) « Automatically analyse
« Common Configuration number of detections and
matchings

 Manually check the validity
of the reported leaks

2. Tool Selection Process
Focus on vulnerabillity detection

ADDICTED, Amandroid, ApkCombiner, App-Ray, AppAudit, AppCaulk,
AppCracker, AppFence, AppGuard, AppProfiler, AppSealer, Aquifer, ASM,
AuthDroid, Bagheri, Bartel, Bartsch, Bifocals, Buhov, Buzzer, CMA,
CoChecker, ComDroid, ConDroid, ContentScope, Cooley, COPES, COVERT,
CredMiner, CRePE, CryptoLint, Desnos, DexDiff, DroidAlarm, DroidChecker,
DroidCIA, DroidGuard, DroidRay, Droidsearch, Enck, Epicc, FineDroid,
-lowdroid, Gallo, Geneiatakis, Grab’nRun, Harehunter, HornDroid, IcCTA,
PClnspection, IVDroid, Juxtapp, Kantola, KLD, Lintent, Lu, MalloDroid,
Matsumoto, Mutchler, NoFrak, Nolnjection, Onwuzurike, PaddyFrog,
PatchDroid, PClLeaks, PermCheckTlool, PermissionFlow, Poeplau, Pscout,
QUIRE, Ren, SADroid, SCanDroid, Scoria, SecUP, SEFA, Smith, SMV-
HUNTER, STAMBA, Stowaway, SUPOR, TongxinLi, Vecchiato, VetDroid,

WeChecker, Woodpecker, Zuo

2. Tool Selection Process
... only few tools obtainable and runnable

COVERT,

Epicc,
Flowdroid, HornDroid, IccTA,

3. Selected Tools In A Nutshell

lools in a nutshell — pretty much the same

Type:
Artefact:

Sensitivity

Sources
and Sinks

Uses

COVERT Flowdroid IccTA |IC3 (Epicc) Horndroid
Static & Formal Static Static Static Static & Formal
Manifest Manifest Manifest Manifest

Layout Layout
Code Code Code Code
Flow Flow Flow Flow Flow™
Field Field Field Field*
Context Context Context Context Context
yes yes yes No yes
Flowdroid Flowdroid Flowdroid

IC3

* partially

3. Benchmarking Implementation
Runs tools and parses output

Class: org.cert.sendsms.ButtonListener
Method: onClick(android.view.View) void
Sink Method: sendMessage(String uid) void
Detected by: flowdroid, 1iccta

» Easy to extend with new tools (artefact, parser, results)
« Usabillity

4. Small Scale Analysis
DroidBench facilitates analysis for true/false positives

* 119 apps with known data leak vulnerabilities
» 125 leaks (sinks) — indicated in source code
* Enables analysis for true/false positives

4. Evaluation — Small Scale Analysis
Metrics for comparison

Number of reported vulnerabllities
- True / false positives
Precision & recall
- Compare performance

McNamar's Test
- Pairwise comparison (similarity)

4. Evaluation — Small Scale Analysis
@ Overview of true and false positives

DROIDBENCH LEAKS

100

75

5

25 I "
. - -

Flowdroid Horndroid COVERT IC3 IccTA

o

® True Positives ™ False Positives

4. Evaluation — Small Scale Analysis
@ Flowdroid with highest accuracy

DROIDBENCH LEAKS

125 --
. ~70% ~58% ~68%
75
>0 ~41%
25
~55%
O |

Flowdroid Horndroid COVERT IC3 IccTA

® True Positives ™ False Positives

4. Evaluation — Small Scale Analysis
@ COVERT and IC3 under-perform

DROIDBENCH LEAKS

125 --
~70% ~58% ~68%

100

75

50

25

0 - |]
Flowdroid Horndroid COVERT IccTA

® True Positives ™ False Positives

4. Evaluation — Small Scale Analysis
COVERT with highest precision

Precision
~70%

4. Evaluation — Small Scale Analysis
IC3 very unprecise and inaccurate

Precision
~10%

4. Evaluation — Small Scale Analysis
Flowdroid and Horndroid recall most true positives

DROIDBENCH LEAKS

125 =

~79% recall

100

75

50

1l _
0 —

Flowdroid Horndroid COVERT IC3 IccTA

® True Positives ™ False Positives

4. Evaluation — Small Scale Analysis
How about our implementation?

100

~79%

75

50

25

Flowdroid Benchmarking

® Flowdroid B Benchmarking

4. Evaluation — Small Scale Analysis
Agreement effect on probability of correct classification

HornDroid COVERT IC3 IccTA
FlowDroid 0.776
HornDroid
COVERT
I1C3

n Agreement of tools fairly impacts the probability of true classification

4. Evaluation — Small Scale Analysis
(©) Best performing tools are significantly similar

HornDroid COVERT IC3 IceTA
FlowDroid 2.77
HornDroid 6.01
COVERT
I1C3

n Statistical significant similarities among tools are observable

4. Evaluation — Small Scale Analysis
Summarized

* Flowdroid has best performance among tools
« Benchmarking can leverage base approaches

* Tools with better performance tend to be significantly similar

5. Next steps

[arge Scale Analysis

* Run analysis on F-Droid data set (~1.5k real world apps)
 Verify number of matchings among tools

» Already detected 669 vulnerabillities for 108 real world apps

10 vulnerabilities are reported by at least two tools

n Time consuming: A lot of time outs, especially for Horndroid

4. Evaluation — Large Scale Analysis
® Analysis are time consuming

100

75

50

o5 I
0

Flowdroid Horndroid COVERT IccTA
B Completed B Timed Out (60min)

4. Evaluation — Large Scale Analysis
® Data leaks are present in real world applications

600

500

400

300

200

100

Flowdroid Horndroid COVERT IC3 IccTA
¥ Flowdroid ®Horndroid B COVERT ®RI|C3 N|ccTA

0

6. Lessons Learned
User need for Benchmarking tools

The avallabllity of artefacts in the Android
security domain is poor

Similar structure does not mean similar
performance

Benchmarking can leverage base approaches
= and increase quality of results

/. Bonus
Paper submitted to ESS0S 18

Engineering Secure Software and Systems

Benchmarking Android Data Leak Detection
Tools

Claudio Corrodi, Timo Spring, Mohammad Ghafari, and Oscar Nierstrasz

Software Composition Group, University of Bern, Bern, Switzerland

Abstract Security of mobile application available in virtual stores is
a concern because platform providers cannot vet every published ap-
plication. Consequently, many applications—both malign and benign—
exhibit security issues, such as leaking of sensitive data. In recent years,
researchers have proposed a myriad of techniques and tools to detect such
issues. However, it is unclear how these approaches perform compared
to each other. The tools are often no longer available, thus comparing
different approaches is almost infeasible.

In this work, we review approaches for detecting data leaks in Android
applications. From an initial list of 87 approaches, only 5 could be ob-
tained and executed, and produced results in the selected domain. We
compare these using a set of known vulnerabilities and discuss the overall
performance of the tools.

We further propose an approach to compare security analysis tools by
normalising their interfaces, which simplifies result reproduction and ex-
tension.

Keywords: data leak, Android, benchmarking

1 Introduction

Security of mobile applications is a hot topic in both research and industry.
With millions of available applications in virtual stores, platform providers such

Backup

4. Backup -

Formulas

Accuracy =

Precision =

Recall =

TP + TN
TP + TN + FP + FN

TP
TP + FP

TP
TP + FN

McNamar’s Test:

o (Ino1 — nig| — 1)?

X pr—
np1 + N1o

Confidence Interval: 99%

4. Backup — Small Scale Analysis

@ Custom Configuration reduces number of reported leaks

200

175

150

125

100

75

50

% in
; -

Flowdroid Horndroid COVERT IccTA

B Common Config B Custom Config

