Bachelor thesis
Modular Exceptions

Supervised by Prof. Dr. Oscar Nierstrasz

Motivation

» Past researches have shown that many
exceptions are handled in similar ways

» However exception handling is often not
written in a reusable way

» Goal: Find a way to add exception handling in
a modular way

A
Our approach @

» Research exception handling to find patterns
» Create a list of requirements

» Test different approaches in Smalltalk

» Test different approaches in Java

» Pick the best approach

» Create a final implementation in Java

Researching exception handling

» Analyzed two research papers

» Our own Research in Smalltalk
- Looked at many methods that had a try-catch block

}ﬁ

.

“A Field Study in Java and .NET”

» Analyzed exception handling in Java libraries,

servers, server-apps and stand-alone
software

» Java exceptions are most commonly handled
by...
> ... logging them
> ... re-throwing them
> ... returning to the caller

» Proves that patterns exist

“On the Evolution of Exception
Usage in Java Projects”

» Researched the usage of custom exceptions
over standard exceptions in Java

» Standard exceptions with description text are
used the most

» Proves that our solution must be able to
primarily handle standard exceptions

%

Our own Research

» Analyzed 163 methods in Smalltalk

» Found commonly used handlers
> Canceling the method
- Returning a default value
- Resuming the method execution

» Found that exception handling is often copy-
pasted

Our requirements 1/2 /-

o
» Modular exceptions must be modular

> Must be easy to add
- Must be compatible across methods/classes

» Must handle exceptions in the most common
ways
> Logging the exception
- Re-throwing the exception
- Returning to the caller (with a default value)
- Resuming the method

Our requirements 2 /2 /-

Y
» Must not be error prone
> Inserted code must be checked by the compiler

- Exceptions thrown by our code must be debuggable
> Should never crash or corrupt the editor

Smalltalk Prototypes

» Tested three approaches

> Dynamically rewriting method code

- Smalltalk allows method code to be rewritten and
recompiled at runtime

- Wrapper objects

- Methods in Smalltalk are saved as objects in the
method dictionary of the class

- MetaLinks

- MetalLinks dynamically inserts code around method
calls

» Wrapper objects were the best approach

10

Dynamically rewriting 3

method code

» ldea: Write try-catch blocks into source code
of method

» Created helper methods that insert code into
a method’s definition

» Problems:
- Cannot check inserted code with the compiler
> Cannot undo mistakes
- May not be compatible across classes

11

Wrapper objects 3

» ldea: Wrap method definition object into our
wrapper object

» Created different wrappers for each way to
handle exceptions

» Worked very well, no problems

12

MetalLinks 3

» Idea: Use MetaLinks to wrap methods into a
try-catch block

» Worked like wrapper objects but more
complicated

» More Problems:

- Exceptions thrown from within MetalLinks crashed
the editor

13

Java prototypes)

» Tested two approaches
» Byte code transformation
> Can rewrite the code of methods dynamically

» Aspects with Aspect]
> Allows us to dynamically insert method calls

» Found aspects to be the best solution

14

Byte code transformation =)

» Idea: Dynamically rewrite byte code to insert
try-catch blocks

» Used BCEL library from Apache
» Rewrote example projects to test approach

» Same problem as dynamically rewriting
source code

15

Aspect])

» Idea: Use aspects to wrap methods into try-
catch blocks

» Created an example project and used aspects
to handle its exceptions

» Worked very well
- Flexible

> Stable
- Easy to understand

16

58] tudentDatabaseTestCancel.java - Eclipse
File Edit Source Refactor Mawigate Search Propct Run Wwindow Help

Tal SRR R R R [T T s I Rt - T, =R R e T
@, . 'él .t (o . ~ IQuick.-’-\cc:ess ‘ B ||l,-'_?.Ja\-'aEE
[Project Explorer 53 = O [J] StudentDatabaseTestCancel java 53 = O
= <)==’=>| = - F# import StudentDataBaseExample.Student; =
Bl ey = Azpect)Project 5
Eﬁsrc & public class StudentDatasbaseTestCancel {
; 48 ModularE xception 7
=S EE StudentD ataB aseE wample g public static void main(String[] args) throws Exceptiond
E| EE [ratabazeCancelE xample 2
- @ DatabaseCancelbspect 5 10 StudentDatabase DE = new StudentDatabase():
B m StudentD atabaseT estCanc g11 DE.addNewstudent (new Student ("Tom™, "Knotc™)] =
@, StudentD atabaseT estC g1z DE.addNewstudent (new Itudent ("Tom™, "Knott™) J:
[|
7 DatabaseR eturnE 2ample 13
EE StudentRetumE xample 14 Student alexfpencer = new Jtudent ("Llex™, "Ipencer™):
m Student java €15 DE.addNew3tudent (alexipencer) =
m StudentD atabase jaea €16 DE.rename3tudent (alexSpencer, "Alex", "Spencer™) ; =
F-HF TestSubjects 17
[]---ﬂ JRE Systern Library [JavaSE-1.9] 18 f/This should cause a "3tudent already exists" Exception
ﬂ Azpect) Runtime Librarny 13
I:I"-i'_f‘; BrelProject z0 i
=21
2z
23 =
= _'I_I
Markers B Conzole 52 B-r- 8
Mo conzoles to dizplay at this time.
| |

| Writable | Smart Inzert | 1:1

|Iﬂ Java EE - AspectIPr... 1 Unbenarnt - Paint |

T~ -

.:'b'Startl) D:\JavaProjekte | e 50,

i _100% || @ |«[H 2052

17

Final Implementation

» Has an example project that showcases how
it works

» Can dynamically wrap methods into try-catch
block

» Can dynamically insert handler code into
existing catch blocks

» Has templates that can be easily copy pasted
across projects

» All dynamic changes are signalized to the

user

18

The End

