
Supervised by Prof. Dr. Oscar Nierstrasz

1



 Past researches have shown that many 
exceptions are handled in similar ways

 However exception handling is often not 
written in a reusable way

 Goal: Find a way to add exception handling in 
a modular way

2



 Research exception handling to find patterns

 Create a list of requirements

 Test different approaches in Smalltalk

 Test different approaches in Java

 Pick the best approach

 Create a final implementation in Java

3



 Analyzed two research papers

 Our own Research in Smalltalk
◦ Looked at many methods that had a try-catch block

4



 Analyzed exception handling in Java libraries, 
servers, server-apps and stand-alone 
software

 Java exceptions are most commonly handled 
by…
◦ … logging them

◦ … re-throwing them

◦ … returning to the caller

 Proves that patterns exist

5



 Researched the usage of custom exceptions 
over standard exceptions in Java

 Standard exceptions with description text are 
used the most

 Proves that our solution must be able to 
primarily handle standard exceptions

6



 Analyzed 163 methods in Smalltalk

 Found commonly used handlers
◦ Canceling the method

◦ Returning a default value

◦ Resuming the method execution

 Found that exception handling is often copy-
pasted

7



 Modular exceptions must be modular
◦ Must be easy to add

◦ Must be compatible across methods/classes

 Must handle exceptions in the most common 
ways
◦ Logging the exception

◦ Re-throwing the exception

◦ Returning to the caller (with a default value)

◦ Resuming the method

8



 Must not be error prone
◦ Inserted code must be checked by the compiler

◦ Exceptions thrown by our code must be debuggable

◦ Should never crash or corrupt the editor

9



 Tested three approaches
◦ Dynamically rewriting method code

 Smalltalk allows method code to be rewritten and 
recompiled at runtime

◦ Wrapper objects

 Methods in Smalltalk are saved as objects in the 
method dictionary of the class

◦ MetaLinks

 MetaLinks dynamically inserts code around method 
calls

 Wrapper objects were the best approach

10



 Idea: Write try-catch blocks into source code 
of method

 Created helper methods that insert code into 
a method’s definition

 Problems:
◦ Cannot check inserted code with the compiler

◦ Cannot undo mistakes

◦ May not be compatible across classes

11



 Idea: Wrap method definition object into our 
wrapper object

 Created different wrappers for each way to 
handle exceptions

 Worked very well, no problems

12



 Idea: Use MetaLinks to wrap methods into a 
try-catch block

 Worked like wrapper objects but more 
complicated

 More Problems: 
◦ Exceptions thrown from within MetaLinks crashed 

the editor

13



 Tested two approaches

 Byte code transformation
◦ Can rewrite the code of methods dynamically

 Aspects with AspectJ
◦ Allows us to dynamically insert method calls

 Found aspects to be the best solution

14



 Idea: Dynamically rewrite byte code to insert 
try-catch blocks

 Used BCEL library from Apache

 Rewrote example projects to test approach

 Same problem as dynamically rewriting 
source code

15



 Idea: Use aspects to wrap methods into try-
catch blocks

 Created an example project and used aspects 
to handle its exceptions

 Worked very well
◦ Flexible

◦ Stable

◦ Easy to understand

16



17



 Has an example project that showcases how 
it works

 Can dynamically wrap methods into try-catch 
block

 Can dynamically insert handler code into 
existing catch blocks

 Has templates that can be easily copy pasted 
across projects

 All dynamic changes are signalized to the 
user

18



19


