
Supervised by Prof. Dr. Oscar Nierstrasz

1



 Past researches have shown that many 
exceptions are handled in similar ways

 However exception handling is often not 
written in a reusable way

 Goal: Find a way to add exception handling in 
a modular way

2



 Research exception handling to find patterns

 Create a list of requirements

 Test different approaches in Smalltalk

 Test different approaches in Java

 Pick the best approach

 Create a final implementation in Java

3



 Analyzed two research papers

 Our own Research in Smalltalk
◦ Looked at many methods that had a try-catch block

4



 Analyzed exception handling in Java libraries, 
servers, server-apps and stand-alone 
software

 Java exceptions are most commonly handled 
by…
◦ … logging them

◦ … re-throwing them

◦ … returning to the caller

 Proves that patterns exist

5



 Researched the usage of custom exceptions 
over standard exceptions in Java

 Standard exceptions with description text are 
used the most

 Proves that our solution must be able to 
primarily handle standard exceptions

6



 Analyzed 163 methods in Smalltalk

 Found commonly used handlers
◦ Canceling the method

◦ Returning a default value

◦ Resuming the method execution

 Found that exception handling is often copy-
pasted

7



 Modular exceptions must be modular
◦ Must be easy to add

◦ Must be compatible across methods/classes

 Must handle exceptions in the most common 
ways
◦ Logging the exception

◦ Re-throwing the exception

◦ Returning to the caller (with a default value)

◦ Resuming the method

8



 Must not be error prone
◦ Inserted code must be checked by the compiler

◦ Exceptions thrown by our code must be debuggable

◦ Should never crash or corrupt the editor

9



 Tested three approaches
◦ Dynamically rewriting method code

 Smalltalk allows method code to be rewritten and 
recompiled at runtime

◦ Wrapper objects

 Methods in Smalltalk are saved as objects in the 
method dictionary of the class

◦ MetaLinks

 MetaLinks dynamically inserts code around method 
calls

 Wrapper objects were the best approach

10



 Idea: Write try-catch blocks into source code 
of method

 Created helper methods that insert code into 
a method’s definition

 Problems:
◦ Cannot check inserted code with the compiler

◦ Cannot undo mistakes

◦ May not be compatible across classes

11



 Idea: Wrap method definition object into our 
wrapper object

 Created different wrappers for each way to 
handle exceptions

 Worked very well, no problems

12



 Idea: Use MetaLinks to wrap methods into a 
try-catch block

 Worked like wrapper objects but more 
complicated

 More Problems: 
◦ Exceptions thrown from within MetaLinks crashed 

the editor

13



 Tested two approaches

 Byte code transformation
◦ Can rewrite the code of methods dynamically

 Aspects with AspectJ
◦ Allows us to dynamically insert method calls

 Found aspects to be the best solution

14



 Idea: Dynamically rewrite byte code to insert 
try-catch blocks

 Used BCEL library from Apache

 Rewrote example projects to test approach

 Same problem as dynamically rewriting 
source code

15



 Idea: Use aspects to wrap methods into try-
catch blocks

 Created an example project and used aspects 
to handle its exceptions

 Worked very well
◦ Flexible

◦ Stable

◦ Easy to understand

16



17



 Has an example project that showcases how 
it works

 Can dynamically wrap methods into try-catch 
block

 Can dynamically insert handler code into 
existing catch blocks

 Has templates that can be easily copy pasted 
across projects

 All dynamic changes are signalized to the 
user

18



19


