Class Comments Analysis

Seminar Software Composition, Bern University H2019
lvan Kravchenko

Supervised by Pooja Rani

Motivation

* Class comments provides high-level overview
* Helps to understand complex programs

Problem

Different programming languages follow different programming
convention

e Contain different information types
 Follow different style guidelines
* Tool support exist for writing proper comments

Java

Class comment example:

/**
* A class representing a window on the screen.

* For example:

* <pre>
* Window win = new Window (parent) ;
* win.show () ;

* </pre>

* @author Sami Shaio
* @version 1.13, 06/08/06

* (@see java.awt.BaseWindow
* @see java.awt.Button
*x/

class Window extends BaseWindow {

Python

class ExampleError(Exception):
"""Exceptions are documented in the same way as classes.

The __init__ method may be documented in either the class level
docstring, or as a docstring on the __init__ method itself.

Either form is acceptable, but the two should not be mixed. Choose one
convention to document the __init__ method and be consistent with it.

Note:
Do not include the ‘self’ parameter in the "‘Args’ ' section.

Args:
msg (str): Human readable string describing the exception.
code (:o0bj:'int", optional): Error code.

Attributes:
msg (str): Human readable string describing the exception.
code (int): Exception error code.

Class comment example:

/**

* A class representing a window on the screen.
* For example:

* <pre>

* Window win = new Window (parent);

* win.show () ;

* </pre>

* @author Sami Shaio
* @version 1.13, 06/08/06

* @see java.awt.BaseWindow
* (@see java.awt.Button
*/

class Window extends BaseWindow {

class ExampleError(Exception):

"""Exceptions are documented in the same way as classes.

The __init__ method may be documented in either the class level
docstring, or as a docstring on the __init__ method itself.

Either form is acceptable, but the two should not be mixed. Choose one
convention to document the __init__ method and be consistent with it.

Note:
Do not include the self' parameter in the '‘Args’

\

section.

Args:
msg (str): Human readable string describing the exception.
code (:obj:'int’, optional): Error code.

Attributes:
msg (str): Human readable string describing the exception.
code (int): Exception error code.

class ExampleError(Exception):
"""Exceptions are documented in the same way as classes.

The __init__ method may be documented in either the class level
docstring, or as a docstring on the __init__ method itself.

Either form is acceptable, but the two should not be mixed. Choose one
convention to document the __init__ method and be consistent with it.

Note

Do not include the ‘self' parameter in the '‘Parameters'‘ section.

Parameters
msg : str

Human readable string describing the exception.
code : :obj:'int', optional

Numeric error code.

Attributes
msg : str

Human readable string describing the exception.
code : int

Numeric error code.

Problem

We investigate class comments

* What information they contain?
* How they’re influenced by the style guidelines?
* What tools support exist for writing class comments?

Methodology

Select programming —> Select |:> Extract code |:> Analyze

language projects comments
- Popular - Open-source project - Separate comments - Manually analyze
- Documentation - Decent - Class comments - Categorize into
guidelines code/comment ratio - Gather style guideline existing taxonomy
- Big developer - Have style guidelines

community

Related work on comments

Classifying code comments
in Java open-source software systems

Luca Pascarella
Delft University of Technology
Delft, The Netherlands
L.Pascarella@tudelft.nl

Abstract—Code comments are a key software component
ining i ion about the ing i i

Several studies have shown that code comments enhance the
readability of the code. Nevertheless, not all the comments have
the same goal and target audience. In this paper, we investigate
how six diverse Java OSS projects use code comments, with the
aim of understanding their purpose. Through our analysis, we
produce a taxonomy of source code comments; subsequently, we
investigate how often each category occur by manually classify-
ing more than 2,000 code from the afe i

projects. In addition, we conduct an initial evaluation on how
to ically classify code at line level into our
taxonomy using machine learning; initial results are promising
and suggest that an accurate classification is within reach.

1. INTRODUCTION

While writing and reading source code, software engineers
routinely introduce code comments [6]. Several researchers
investigated the usefulness of these comments, showing that
thoroughly commented code is more readable and maintain-
able. For exampl i et al. one of the
first experiments ing that code improve
program readability [35]; Tenny ef al. confirmed these results
with more experiments [31], [32]. Hartzman er al. investi-
gated the economical maintenance of large software products
showing that comments are crucial for maintenance [12]. Jiang
et al. found that comments that are misaligned to the anno-
tated functions confuse authors of future code changes [13].
Overall, given these results, having abundant comments in the
source code is a recognized good practice [4]. Accordingly,
researchers proposed to evaluate code quality with a new
metric based on code/comment ratio [21], [9].

Nevertheless, not all the comments are the same. This is
evident, for example, by glancing through the comments in
a source code file! from the Java Apache Hadoop Frame-
work [1]. In fact, we see that some comments target end-
user programmers (e.g., Javadoc), while others target internal
developers (e.g., inline); moreover, each is
used for a different purpose, such as providing the implementa-
tion rationale, separating logical blocks, and adding reminders;
finally, the interpretation of a comment also depends on its
position with respect to the source code.

Defining a taxonomy of the source code comments that
developers produce is an open research problem.

Classifying code comments in Java open-source software

systems
Luca Pascarella, Alberto Baccelli

Alberto Bacchelli
Delft University of Technology
Delft, The Netherlands
A.Bacchelli@tudelft.nl

Haouari et al. [11] and Steidl et al. [28] presented the ear-
liest and most i results in . i
Haouari et al. inv & developers” habits, fo-
cusing on the position of comments with respect to source code
and proposing an initial taxonomy that includes four high-
level categories [11]; Steidl ef al. proposed a semi-automated
approach for the quantitative and qualitative evaluation of
comment quality, based on classifying comments in seven
high-level categories [28]. In spite of the innovative techniques
they proposed to both rsta pers’ ¢
habits and assessing comments’ quality, the classification of
comments was not in their primary focus.

In this paper, we focus on increasing our empirical under-
standing of the types of comments that developers write in
source code files. This is a key step to guide future research
on the topic. Moreover, this increased understanding has the
potential to (1) improve current quality analysis approaches
that are restricted to the comment ratio metric only [211, [9]
and 1o (2) strengthen the reliability of other mining approaches
that use source code comments as input (e.g., [30], [23]).

To this aim, we conducted an in-depth analysis of the
comments in the source code files of six major OSS systems
in Java. We set up our study as an exploratory investigation.
We started without hypotheses regarding the content of source
code comments, with the aim of discovering their purposes
and roles, their format, and their frequency. To this end,
we (1) conducted three iterative content analysis sessions
(involving four researchers) over 50 source files including
about 250 comment blocks to define an initial taxonomy of
code comments, (2) validated the taxonomy externally with 3
developers, (3) inspected 2,000 source code files and manually
classified (using a new application we devised for this purpose)
over 15,000 comment blocks comprising more than 28,000
lines, and (4) used the resulting dataset to evaluate how
effectively can be y ifi

Our results show that developers write comments with a
large variety of different meanings and that this should be
taken into account by analyses and techniques that rely on
code The most category of
summarizes the purpose of the code, confirming the impor-
tance of research related to automatically creating this type
of Finally, our ificati

Classifying Python Code Comments
Based on Supervised Learning

Jingyi Zhang!, Lei Xu?®), and Yanhui Li?

! School of Management and Engineering, Nanjing University,
Nanjing, Jiangsu, China
jyzhangchn@outlook.com

2 Department of Computer Science and Technology, Nanjing University,
Nanjing, Jiangsu, China
{xlei,yanhuili}@nju.edu.cn

Abstract. Code comments can provide a great data source for under-
standing programmer’s needs and underlying implementation. Previous
work has illustrated that code comments enhance the reliability and
maintainability of the code, and engineers use them to interpret their
code as well as help other developers understand the code intention
better. In this paper, we studied comments from 7 python open source
projects and contrived a taxonomy through an iterative process. To clar-
ify comments characteristics, we deploy an effective and automated app-
roach using supervised learning algorithms to classify code comments
according to their different intentions. With our study, we find that
there does exist a pattern across different python projects: Summary
covers about 75% of comments. Finally, we conduct an evaluation on the
behaviors of two different supervised learning classifiers and find that
Decision Tree classifier is more effective on accuracy and runtime than
Naive Bayes classifier in our research.

Keywords: Code comments classification + Supervised learning
Python

Classifying Python Code Comments Based on Supervised

Learning
Jingyi Zhang, Lei Xu, Yanhui Li

“upd

Java Python
SUMMARY Summary
EXPAND Summary, Expand
RATIONALE Summary
DEPRECATION -
EXCEPTION Exception
TODO Todo
INCOMPLETE -
COMMENTED CODE -
DIRECTIVE -
FORMATTER -

LICENSE Metadata
OWNERSHIP Metadata
POINTER partly Links
AUTOMATICALLY GENERATED -

NOISE noise
partly USAGE Parameters
USAGE Usage

- Version

partly TODO, INCOMPLETE

Development Notes

Methodology

Select programming
language

Java

—

Select
projects

- Apache Spark

- Apache Hadoop
- Eclipse

- Vaadin

- Guava

- Guice

Extract code
comments

- Class
comments
- Style guidelines

:> Analyze

- Representative
sample set
- From each project

Initial Results

Summary
Ownership
Deprecation
Pointer
Warning
Expand
Usage

Categories

Todo
Rational
Formatter

Exception

Vaadin Project: 50 Classes

I 10

I
I
I 4
I
- 2

H Count

What are the different style guidelines?

Apache Google Oracle

Apache Spark Guava Vaadin
Apache Hadoop Guice Eclipse

How do they cover documentation?

e Extract comment related guidelines.

* Rules existing for writing comments:
What content should be written?
In what style the content should be written?

Examples of style guidelines

Oracle:

 Class/interface/field descriptions can omit the subject and simply state the
object

* A class should use tags like @since, @version, @author

Google:

* Asummary fragment should not be complete sentence

Hadoop:

* Do not use @author tags

Tool support

* Checkstyle
e PMD

* Findbugs
* JaCoCo

Each tool has a set of rules to check for style guideline and code
practices

Tool support

Tool Comment |Comment |Comment |Required
formatting | content size tag
Checkstyle v v v
PMD v v —
Findbugs - — — —
JaCoCo — — — —

Everything is related to syntax rules, limited checks related to content

17

Challenges

* How to define a class?
(annotation, interface,
inner class, enum,
package-based data)

 Orphan comments and
dangling comments

m

n
o
-
g
i

* @author crazybobfgoogle.com (Bob

4 p—

= oOny
. COYINICT

public abstract class

* Trmrmoars ~ e 1wun +h -~ 77 N u— -
Lrnel cLass witcn j Fadad (T,

class Module {
int a;
int b;

}

AbstractModule implements Module {

i’h

18

e Taxonomy mapping from Java to Python

e Extracting style guidelines related to project

Forthcoming plans

* Analyze remaining Java projects

* Create same dataset for python

* Analyze python comments
 Compare with python style guidelines

* How NLP can help to analyze guidelines that are not covered by the
statistical analysis tools

 Comparison of differences between java and python class comments

