
Alain Stulz / 2020

Presentation II – Process & Results

4. February 2020

Bachelor Project



Alain Stulz / 2020

Assessing and Improving the Software 
Quality of an iOS App Framework 

2



Alain Stulz / 2020

Recap

3



Alain Stulz / 2020

“Festival Buddy”

4



Alain Stulz / 2020 5

• Custom Framework

How To Create Many 
Apps Efficiently?



Alain Stulz / 2020

Bern Welcome

6



Alain Stulz / 2020

Five up

7



Alain Stulz / 2020

Analyze
RQ1: How can we assess the quality of our system?

8



Alain Stulz / 2020

Non-Functional Requirements

9



Alain Stulz / 2020

Code Level

10



Alain Stulz / 2020

Module Level

11



Alain Stulz / 2020

Organization Level

12



Alain Stulz / 2020

Developer Interviews

+ Easier to start projects 
+ Consistency and speed

- Hard to understand and change  
- Effects of changes not visible

13



Alain Stulz / 2020

Lessons Learned

RQ1: How can we assess the quality of our system?

14

• Focus on Developer’s Perspective

• NFRs: Maintainability, Evolvability, …

• Use Different Data Sources

• Specific Tools for iOS Projects



Alain Stulz / 2020

Improve
RQ2: How can we improve the system’s quality?

15



Alain Stulz / 2020

Improve

16

1. Process
2. Maintenance
3. Refactoring



Alain Stulz / 2020

•Developer Conventions
•Continuous Integration
• Automate Client Projects
• Build Feedback

17

1. Process
2. Maintenance
3. Refactoring

Improve



Alain Stulz / 2020

•Remove Old Code
•Rearrange Methods

18

1. Process
2. Maintenance
3. Refactoring

Improve



Alain Stulz / 2020

•Cover and Modify
• Techniques

19

1. Process
2. Maintenance
3. Refactoring

Improve



Alain Stulz / 2020

Lessons Learned

RQ2: How can we improve the system’s quality?

20

• Set up Systems and Conventions

• Perform Basic Maintenance

• Cover and Modify

• Use Delegates for Tests



Alain Stulz / 2020

Rewrite
RQ3: What would a better software design look like?

21



Alain Stulz / 2020

Rewrite

22

1. Architecture
2. Benefits



Alain Stulz / 2020

•Clean Swift Architecture
• Split into Scenes
• Protocols

•Modularization

23

1. Architecture
2. Benefits

Rewrite



Alain Stulz / 2020

•Only Relevant Features
• Less Clutter in Framework
•Define UI in Client Projects

•More Flexibility

24

1. Architecture
2. Benefits

Rewrite



Alain Stulz / 2020

Lessons Learned

RQ3: What would a better software design look like?

25

• Small and Generalized

• Newer Tools

• Well-Defined Architecture



Alain Stulz / 2020

Conclusion

26



Alain Stulz / 2020

Conclusion

• Recommendation: Rewrite

• Changed Requirements, New Opportunities

• Refactor vs. Rewrite
• Only if you need to

• Refactor if you need to keep system

• Rewrite if system holds you back

27



Alain Stulz / 2020

Summary

Analyze
Focus on NFRs, Different Sources, Specific Tools

Improve
Systems and Conventions, Reduce Size, Cover and Modify

Rewrite
Small and Flexible, Define Architecture, Allow Customization

28



Alain Stulz / 2020 29



Alain Stulz / 2020

Testability
• Business Logic, not UI
• Move Logic out of Centralized Classes 
• Single Responsibility
• DB and Network Calls

• Reduce Dependencies
• Precompiler Flags
• Leverage Delegates for Tests

30



Alain Stulz / 2020

Strategies
• Precompiler Flags
• #define and #ifdef
• Escape out of a method early

• Mock Delegates
• Offer a well-defined interface
• Control and get insight into class

• Optional Protocol Methods
• Use @optional Keyword
• Implement methods only for testing (e.g. shouldCallAPI)

31


