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Assessing and Improving the Software 
Quality of an iOS App Framework 
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Recap
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“Festival Buddy”
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• Custom Framework

How To Create Many 
Apps Efficiently?
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Bern Welcome
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Five up
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Analyze
RQ1: How can we assess the quality of our system?
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Non-Functional Requirements
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Code Level
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Module Level
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Organization Level

12



Alain Stulz / 2020

Developer Interviews

+ Easier to start projects 
+ Consistency and speed

- Hard to understand and change  
- Effects of changes not visible
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Lessons Learned

RQ1: How can we assess the quality of our system?
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• Focus on Developer’s Perspective

• NFRs: Maintainability, Evolvability, …

• Use Different Data Sources

• Specific Tools for iOS Projects
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Improve
RQ2: How can we improve the system’s quality?
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Improve
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1. Process
2. Maintenance
3. Refactoring
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•Developer Conventions
•Continuous Integration
• Automate Client Projects
• Build Feedback

17

1. Process
2. Maintenance
3. Refactoring

Improve
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•Remove Old Code
•Rearrange Methods
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1. Process
2. Maintenance
3. Refactoring

Improve
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•Cover and Modify
• Techniques
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1. Process
2. Maintenance
3. Refactoring

Improve
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Lessons Learned

RQ2: How can we improve the system’s quality?
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• Set up Systems and Conventions

• Perform Basic Maintenance

• Cover and Modify

• Use Delegates for Tests
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Rewrite
RQ3: What would a better software design look like?
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Rewrite
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1. Architecture
2. Benefits
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•Clean Swift Architecture
• Split into Scenes
• Protocols

•Modularization

23

1. Architecture
2. Benefits

Rewrite
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•Only Relevant Features
• Less Clutter in Framework
•Define UI in Client Projects

•More Flexibility
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1. Architecture
2. Benefits

Rewrite
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Lessons Learned

RQ3: What would a better software design look like?
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• Small and Generalized

• Newer Tools

• Well-Defined Architecture
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Conclusion

26



Alain Stulz / 2020

Conclusion

• Recommendation: Rewrite

• Changed Requirements, New Opportunities

• Refactor vs. Rewrite
• Only if you need to

• Refactor if you need to keep system

• Rewrite if system holds you back
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Summary

Analyze
Focus on NFRs, Different Sources, Specific Tools

Improve
Systems and Conventions, Reduce Size, Cover and Modify

Rewrite
Small and Flexible, Define Architecture, Allow Customization
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Testability
• Business Logic, not UI
• Move Logic out of Centralized Classes 
• Single Responsibility
• DB and Network Calls

• Reduce Dependencies
• Precompiler Flags
• Leverage Delegates for Tests
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Strategies
• Precompiler Flags
• #define and #ifdef
• Escape out of a method early

• Mock Delegates
• Offer a well-defined interface
• Control and get insight into class

• Optional Protocol Methods
• Use @optional Keyword
• Implement methods only for testing (e.g. shouldCallAPI)
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