MASTER N
COMPUTER

SCIENCE

A

Moldable scenario editor

Master thesis final presentation, Bern University F2020

b lvan Kravchenko
u Supervised by Nitish Patkar, Andrei Chis and Nataliia Stulova

b
UNIVERSITAT
BERN

Problem

How can business idea be reflected in documentation and code?

e Code is often poorly described

* [dea to implementation flow spans through many tools and
Instruments

e Ubiquitous language is hard to develop and manage for a variety of
business requirements

Agile idea

Iterative business process
Small iterations
Many interested process participants

Testing helps to assert that implementation is not
outdated and still conforms to the requirements.

Tests need an environment

[-.. lIII

VAR VAR
Tests on stage/test Production

Difficult to manage and repeat

Tests as specifications

SPECIFICATION

(

Executable specification Code

Executable anytime, easily repeatable

BDD

Business

Research guestion 1

What are the limitations of the
BDD tools regarding software behavior specification?

We analyzed 14 BDD tools :

Cucumber, FitNesse, Jbehave, Concordion, SpecFlow, Spock, Rspec,
Mspec, LightBDD, ScalaTest, Specs?2, Jgiven, phpspec, Gauge

Demo
Cucumber

Main observations

1.

3.

4.

5.

6.

Input and Output are strictly defined

Two ways of writing specifications:
* plain text language and 'glue code’

e code with annotations

Test output is pass or fail; best case — customized report (colors, charts, coverage)
Providing objects as an input in a scenario is not very common
Code generation is not possible

No tools provide a graphical representation of specifications

Research question 2

How can we closely couple specification and implementation and
what advantages does it give over existing tools?

Unite documentation and implementation
User-friendly scenario editing

Code generation

Demo

Results

v Connect requirements and behavior

v Allow users experiment with properties
v Generate code based on user input

v Scenario editor and creator

Future work

Reduce test development time by writing less ‘glue’ code
Think of unified way of defining ubiquitous language
Composable parameterized examples

Visual Ul improvements

Default object views for widget elements

+

" anABCustomAddressBookExamples i | m

summary

+
an EParametrizedExample

Parametrized examples Services Raw Connmections Print Meta

Label

Create a new contact
Create anew contact
Create a new address FirstName: | name
Create address book.
Add a contact to an address book.

LastName: surname

Add contacts to an address book.
Create anew email

Addresses: HomeAddress X
Create a new Phone Number

Emails: WorkEmail %

Phone nummbers: Homephone X

Description: |~ something

Generate

a GtMethodCoder{ABAddressBookExamplas>=#nil} i m

Live Diff

Key bindings Main actions Context actions Stylers Raw
AddressBook > ABAddressBookExamples
exampleSearchAddress_CHANGE_ME_inTwocontactsinabook
<gtExample>

<label: 'Generated example for

exampleSearchAddress _CHANGE_ME_inTwocontactsinabook'=
<return: #ABContact>

| result aweord aBook |

aword := 'hochschulstrasse' as: ByteString.

aBook := self addressBookTwoFullTestContacts .

aBook .

result := self exampleSearchAddress:aWord in:

PickExamples Edit Descripion Raw Connections

PickExamples Edit Raw Print Connections Meta

Label: Addagiven contactioan address book

x
i m]
> Description: Add a given contact to an address book
x
Parameter: aContact Class: ABContact Q
Examplesin: ABContactExamples Q Widget: dropdown ¥
Q
X
a Parameter: aBook Class: ABAddressBook Q
Qe Examplesin: ABAddressBookExamples Q Widget: search ¥

ABAddressBook Q

Returns:

Apply

Main observations

1. Input and Output are strictly defined

2. Two ways of writing specifications:
* plain text language and 'glue code’

* code with annotations
3. Test output is pass or fail; best case — customized report (colors, charts, coverage)
4. Providing objects as an input in a scenario is not very common

5. Code generation is not possible

6. No tools provide a graphical representation of specifications

Description:

Adding a contact to an address book

Scenario:

Feature: Add a contact to an address book

Given: AddressBook ABAddressBook and a Contact ABContact
When: The user clicks on "dd" button in 2 contact list

Then: the chosen contact should be added.

Simple example:
Imagine we have a simple address book - withone contact:

Name

John Doe

Wewanttoadd another contact

Berangaria Martin

Work +33 75142315234
Work Berangaria.Martin1@gmail.com

Work rue Pierre Motte 38 88100 SAINT-DIE France

After the execution of ABAddressBook>>#addContacts
The size of book should increase by ene.

Test case: ABAddr estExampleAddContactToAddressBook

Name

John Doe

Berangaria Martin

Examples:

AddressBook > ABAddressBookExamples
addressBookAddContact

AddressBook > ABAddressBookExamples

Parametrized Examples:

ABAddr gt toAddressBook:

AddressBosk > ABAddressBookExamples

exampleAddContact: aContact toAddressBook: znAddressBook
<gtParametrizedexample>
<gtexample>
<label: 'Add a given contact to an address book'>
«description: 'Add a given contact to an address book's
<given: #aContact ofType: #ABContact in: #ABContactExamples
elementType: #dropdown>
<given: ¥aBook ofType: #ABAddressBook in: #ABAddressBookExamples
elementType: #search>
<return: ¥ABAddressBook>
anAddressBook addContact: aContact
» anAddressBook

0 -

	Moldable scenario editor
	Problem
	Agile idea
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	BDD
	Research question 1
	Foliennummer 9
	Main observations
	Research question 2
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15

