
Android Security Code Smell
Quickfixes

BSc Thesis – Final Presentation

Dominik Briner

19 January 2021

Software Composition Group

University of Bern

Android

“Easy” to develop apps

Powerful

Omnipresent

Sophisticated IDE support & guides

2

3

Android app security

Complicated!

Knowledge is spread!
no centralized comprehensive help resource

Numerous threats!
privacy leak, data theft, denial of service, …

4

Android security code smells
pe

rc
en

ta
ge

 o
f a

pp
s

concurrent smells

5

The solution?

Build all the knowledge into the Android Studio IntelliJ IDE!

6

7

The solution?

Build all the knowledge into the Android Studio IntelliJ IDE!

… but is that really a good idea?

8

The solution?

Build all the knowledge into the Android Studio IntelliJ IDE!

… but is that really a good idea?

Yes, but the IDE must assist the developer!

9

Smell reports
+
Interactive feedback

=

Quickfixes

10

Not as easy as it seems

How to

… gather contextual information?

… design the UI?

… create reasonable workflows?

11

12

Example #01 - Missing Protection Level

Use case:

1) Permission limits access to feature

2) Another app requests permission to use that feature

A permission’s protection level defines the access scope:
normal = automatically grants everything (default!)
dangerous = user grants or denies permission

13

Example #01 - Missing Protection Level

Example:

14

Example #01 - Missing Protection Level

Necessary considerations for the mitigation:

1) Detect missing protection level

How to detect incorrect protection levels?

2) Protection level is a developer decision

Ask developer for context? How?

15

Example #02 - Implicit Pending Intent
(Intent → task to be performed by other app)

Use case:

1) An app creates a background task

2) Background task will be executed later

There exist different kinds of intents:
implicit → no target app specified
pending → intent receiver gets permissions of sender
implicit pending → security risk

16

Example #02 - Implicit Pending Intent

Example:

17

Example #02 - Implicit Pending Intent
Necessary considerations for the mitigation:

1) Make intent explicit

What if target app cannot be inferred?

How to explain the security risk to the developer?

18

There are more quickfixes...

Persisted Dynamic Permission

Incorrect Protection Level

Unauthorized Intent

Sticky Broadcast

Implicit Pending Intent

Common Task Affinity

19

IntelliJ in practice...

DEMO!

20

IntelliJ syntax trees

code internal representation

21

IntelliJ syntax trees

AST
Lowest level representation

PSI
Interface to facilitate file manipulations
Inspections, quick fixes

UAST
Unifies Kotlin and Java
Hardly documented

22

IntelliJ challenges

Lack of documentation

Internal bugs / behavior
→ Debugging the IntelliJ system

IntelliJ architecture
→ Threading rules, ...

Frequent updates

23

Quickfix evaluation

Still in progress

1) We let the tool run on existing apps

2) We investigate the false positives

24

Lessons learned

#01: Scope is important!

25

Lessons learned

#02: Start with the essentials, then extend

#03: Know-how takes time

#04: Importance of documentation

25

Summary

