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Android

“Easy” to develop apps

Powerful

Omnipresent

Sophisticated IDE support & guides
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Android app security

Complicated!

Knowledge is spread!
no centralized comprehensive help resource

Numerous threats!
privacy leak, data theft, denial of service, …
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The solution?

Build all the knowledge into the Android Studio IntelliJ IDE!
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The solution?

Build all the knowledge into the Android Studio IntelliJ IDE!

… but is that really a good idea?
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The solution?

Build all the knowledge into the Android Studio IntelliJ IDE!

… but is that really a good idea?

Yes, but the IDE must assist the developer!
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Smell reports
+
Interactive feedback

=

Quickfixes



10

Not as easy as it seems

How to ....

… gather contextual information?

… design the UI?

… create reasonable workflows?
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Example #01 - Missing Protection Level

Use case:

1) Permission limits access to feature

2) Another app requests permission to use that feature

A permission’s protection level defines the access scope:
normal = automatically grants everything (default!)
dangerous = user grants or denies permission



13

Example #01 - Missing Protection Level

Example:
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Example #01 - Missing Protection Level

Necessary considerations for the mitigation:

1) Detect missing protection level

How to detect incorrect protection levels?

2) Protection level is a developer decision

Ask developer for context? How?
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Example #02 - Implicit Pending Intent
(Intent → task to be performed by other app)

Use case:

1) An app creates a background task

2) Background task will be executed later

There exist different kinds of intents:
implicit → no target app specified
pending → intent receiver gets permissions of sender
implicit pending → security risk
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Example #02 - Implicit Pending Intent

Example:
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Example #02 - Implicit Pending Intent
Necessary considerations for the mitigation:

1) Make intent explicit

What if target app cannot be inferred?

How to explain the security risk to the developer?
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There are more quickfixes...

Persisted Dynamic Permission

Incorrect Protection Level

Unauthorized Intent

Sticky Broadcast

Implicit Pending Intent

Common Task Affinity
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IntelliJ in practice...

DEMO!
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IntelliJ syntax trees

code internal representation
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IntelliJ syntax trees

AST
Lowest level representation

PSI
Interface to facilitate file manipulations
Inspections, quick fixes

UAST
Unifies Kotlin and Java
Hardly documented
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IntelliJ challenges

Lack of documentation

Internal bugs / behavior
→ Debugging the IntelliJ system

IntelliJ architecture
→ Threading rules, ...

Frequent updates
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Quickfix evaluation

Still in progress

1) We let the tool run on existing apps

2) We investigate the false positives
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Lessons learned

#01: Scope is important!
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Lessons learned

#02: Start with the essentials, then extend

#03: Know-how takes time

#04: Importance of documentation
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Summary


