
2. Smalltalk Basics

Birds-eye view

© Oscar Nierstrasz

ST — Introduction

1.2

Less is More — simple syntax and semantics
uniformly applied can lead to an expressive and
flexible system, not an impoverished one.

© Oscar Nierstrasz

ST — Smalltalk Basics

2.3

Roadmap

>  Everything is an Object

>  Syntax on a Postcard

>  Three Kinds of Messages

>  Methods, variables and blocks

>  Test-Driven Development

>  Managing Projects

Selected material courtesy Stéphane Ducasse

© Oscar Nierstrasz

ST — Smalltalk Basics

2.4

Roadmap

>  Everything is an Object

>  Syntax on a Postcard

>  Three Kinds of Messages

>  Methods, variables and blocks

>  Test-Driven Development

>  Managing Projects

© Oscar Nierstrasz

ST — Smalltalk Basics

2.5

Objects in Smalltalk

>  Everything is an object

—  Things only happen by message passing

—  Variables are dynamically bound

>  State is private to objects

—  “protected” for subclasses

>  Methods are public

—  “private” methods by convention only

>  (Nearly) every object is a reference

—  Unused objects are garbage-collected

>  Single inheritance

© Oscar Nierstrasz

ST — Smalltalk Basics

2.6

Accept, DoIt, PrintIt and InspectIt

>  Accept

—  Compile a method or a class definition

>  DoIt

—  Evaluate an expression

>  PrintIt

—  Evaluate an expression and print the

result (#printOn:)

>  InspectIt

—  Evaluate an expression and inspect the
result (#inspect)

© Oscar Nierstrasz

ST — Smalltalk Basics

2.7

Hello World

>  At anytime, in any tool, we can dynamically ask the
system to evaluate an expression.

—  To evaluate an expression, select it and with the middle mouse

button apply doIt.

Transcript show: 'hello world'

© Oscar Nierstrasz

ST — Smalltalk Basics

2.8

“Hello World”

>  Transcript is a kind of “standard output”

—  a TextCollector instance associated with the launcher.

© Oscar Nierstrasz

ST — Smalltalk Basics

2.9

Everything is an Object

>  Smalltalk is a consistent, uniform world, written in
itself

—  You can learn how it is implemented, you can extend it or even

modify it.

—  All the code is available and readable.

–  The workspace is an object.

–  The window is an instance of SystemWindow.

–  The text editor is an instance of ParagraphEditor.

–  The scrollbars are objects too.

–  'hello word' is an instance of String.

–  #show: is a Symbol

–  The mouse is an object.

–  The parser is an instance of Parser.

–  The compiler is an instance of Compiler.

–  The process scheduler is also an object.

© Oscar Nierstrasz

ST — Smalltalk Basics

2.10

Roadmap

>  Everything is an Object

>  Syntax on a Postcard

>  Three Kinds of Messages

>  Methods, variables and blocks

>  Test-Driven Development

>  Managing Projects

© Oscar Nierstrasz

ST — Smalltalk Basics

2.11

Smalltalk Syntax on a Postcard

exampleWithNumber: x

"A method that illustrates every part of Smalltalk method syntax

except primitives. It has unary, binary, and key word messages,

declares arguments and temporaries (but not block temporaries),

accesses a global variable (but not and instance variable),

uses literals (array, character, symbol, string, integer, float),

uses the pseudo variable true false, nil, self, and super,

and has sequence, assignment, return and cascade. It has both zero

argument and one argument blocks. It doesn’t do anything useful, though"

|y|

true & false not & (nil isNil) ifFalse: [self halt].

y := self size + super size.

#($a #a 'a' 1 1.0)

do: [:each | Transcript

show: (each class name);

show: (each printString);

show: ' '].

^ x < y

© Oscar Nierstrasz

ST — Smalltalk Basics

2.12

Language Constructs

^
 return

"…"
 comment

#
 symbol or array

'…'
 string

[]
 block or byte array (VisualWorks)

.
 statement separator

;
 message cascade

|…|
 local or block variable

:=
 assignment (also _ or ←)

$_
 character

:
 end of selector name

e _r_
 number exponent or radix

!
 file element separator (used in change sets)

<primitive: ...>
 for VM primitive calls

© Oscar Nierstrasz

ST — Smalltalk Basics

2.13

Examples

comment:
 "a comment"

character:
 $c $h $a $r $a $c $t $e $r $s $# $@

string:
 'a nice string'

symbol:
 #mac #+

array:
 #(1 2 3 (1 3) $a 4)

dynamic array (Pharo):
 { 1 + 2 . 3 / 4 }

Integer:
 1, 2r101

real:
 1.5, 6.03e-34,4, 2.4e7

fraction:
 1/33

boolean:
 true, false

pseudo variables
 self, super

point:
 10@120

Note that @ is not an element of the syntax, but just a message sent
to a number. This is the same for /, bitShift, ifTrue:, do: ...

© Oscar Nierstrasz

ST — Smalltalk Basics

2.14

Roadmap

>  Everything is an Object

>  Syntax on a Postcard

>  Three Kinds of Messages

>  Methods, variables and blocks

>  Test-Driven Development

>  Managing Projects

© Oscar Nierstrasz

ST — Smalltalk Basics

2.15

Messages instead of keywords

>  In most languages, basic operators and control constructs are
defined as language constructs and keywords

>  In Smalltalk, there are only messages sent to objects

—  bitShift: (>>) is just a message sent to a number

—  ifTrue: (if-then-else) is just a message sent to a boolean

—  do:, to:do: (loops) are just messages to collections or numbers

>  Minimal parsing

>  Language is extensible

10 bitShift: 2

(x>1) ifTrue: [Transcript show: 'bigger']

#(a b c d) do: [:each | Transcript show: each ; cr]

1 to: 10 do: [:i | Transcript show: i printString; cr]

© Oscar Nierstrasz

ST — Smalltalk Basics

2.16

Smalltalk Syntax

Every expression is a message send

>  Unary messages

>  Binary messages

>  Keyword messages

Transcript cr

5 factorial

3 + 4

Transcript show: 'hello world'

2 raisedTo: 32

3 raisedTo: 10 modulo: 5

© Oscar Nierstrasz

ST — Smalltalk Basics

2.17

Precedence

(…) > Unary > Binary > Keyword

1.  Evaluate left-to-right

2.  Unary messages have highest precedence

3.  Next are binary messages

4.  Keyword messages have lowest precedence

5.  Use parentheses to change precedence

2 raisedTo: 1 + 3 factorial

1 + 2 * 3

1 + (2 * 3)

128

9

(!)

7

© Oscar Nierstrasz

ST — Smalltalk Basics

2.18

Binary Messages

>  Syntax:

—  aReceiver aSelector anArgument

—  Where aSelector is made up of 1 or 2 characters from:

+ - / \ * ~ < > = @ % | & ! ? ,

—  Except: second character may not be $

>  Examples:
 2 * 3 - 5

5 >= 7

6 = 7

'hello', ' ', 'world'

(3@4) + (1@2)

2<<5

64>>5

© Oscar Nierstrasz

ST — Smalltalk Basics

2.19

Roadmap

>  Everything is an Object

>  Syntax on a Postcard

>  Three Kinds of Messages

>  Methods, variables and blocks

>  Test-Driven Development

>  Managing Projects

© Oscar Nierstrasz

ST — Smalltalk Basics

2.20

More syntax

>  Comments are enclosed in double quotes

>  Use periods to separate expressions

>  Use semi-colons to send a cascade of messages to the
same object

"This is a comment."

Transcript cr; show: 'hello world'; cr

Transcript cr.

Transcript show: 'hello world’.

Transcript cr

"NB: don’t need one here"

© Oscar Nierstrasz

ST — Smalltalk Basics

2.21

Variables

>  Declare local variables with | … |

>  Use := to assign a value to a variable

>  Old fashioned assignment operator: ← (must type “_”)

| x y |

x := 1

© Oscar Nierstrasz

ST — Smalltalk Basics

2.22

Method Return

>  Use a caret to return a value from a method or a block

>  Methods always return a value

—  By default, methods return self

max: aNumber

^ self < aNumber

ifTrue: [aNumber]

ifFalse: [self]
 1 max: 2
 2

© Oscar Nierstrasz

ST — Smalltalk Basics

2.23

Block closures

>  Use square brackets to delay evaluation of expressions

^ 1 < 2 ifTrue: ['smaller'] ifFalse: ['bigger']

'smaller'

© Oscar Nierstrasz

ST — Smalltalk Basics

2.24

Variables

>  Local variables within methods (or blocks) are delimited
by |var|

>  Block parameters are delimited by :var|

OrderedCollection>>collect: aBlock

"Evaluate aBlock with each of my elements as the argument."

| newCollection |

newCollection := self species new: self size.

firstIndex to: lastIndex do:

[:index |

newCollection addLast: (aBlock value: (array at: index))].

^ newCollection

[:n | |x y| x := n+1. y := n-1. x * y] value: 10
 99

© Oscar Nierstrasz

ST — Smalltalk Basics

2.25

Control Structures

>  Every control structure is realized by message sends

|n|

n := 10.

[n>0] whileTrue:

[
Transcript show: n; cr.

n := n-1
]

1 to: 10 do: [:n| Transcript show: n; cr]

(1 to: 10) do: [:n| Transcript show: n; cr]

© Oscar Nierstrasz

ST — Smalltalk Basics

2.26

Creating objects

>  Class methods

>  Factory methods

OrderedCollection new

Array with: 1 with: 2

1@2

"a Point"

1/2

"a Fraction"

© Oscar Nierstrasz

ST — Smalltalk Basics

2.27

Creating classes

>  Send a message to a class (!)

Number subclass: #Complex

instanceVariableNames: 'real imaginary'

classVariableNames: ''

poolDictionaries: ''

category: 'ComplexNumbers'

© Oscar Nierstrasz

ST — Smalltalk Basics

2.28

Some Conventions

>  Method selector is a symbol, e.g., #add:

>  Method scope conventions using >>

—  Instance Method defined in the class Node

—  Class Method defined in the class Node class  
(i.e., in the class of the the class Node)

>  aSomething is an instance of the class Something

Node>>accept: aPacket

Node class>>withName: aSymbol

© Oscar Nierstrasz

ST — Smalltalk Basics

2.29

Roadmap

>  Everything is an Object

>  Syntax on a Postcard

>  Three Kinds of Messages

>  Methods, variables and blocks

>  Test-Driven Development

>  Managing Projects

© Oscar Nierstrasz

ST — Smalltalk Basics

2.30

Change sets

>  Make sure your changes are logged to a new change set

© Oscar Nierstrasz

ST — Smalltalk Basics

2.31

SUnit

© Oscar Nierstrasz

ST — Smalltalk Basics

2.32

Money

TestCase subclass: #MoneyTest

instanceVariableNames: 'chf2 chf8 chf10'

classVariableNames: ''

poolDictionaries: ''

category: 'Money'

>  We will implement the Money example in Smalltalk

—  First, we develop a test case for a single currency

NB: This is just a message sent to the TestCase class object (!)

© Oscar Nierstrasz

ST — Smalltalk Basics

2.33

SetUp

>  We will need setters for the private Money state

MoneyTest>>setUp

chf2 := Money new currency: 'CHF'; amount: 2.

chf8 := Money new currency: 'CHF'; amount: 8.

chf10 := Money new currency: 'CHF'; amount: 10.

© Oscar Nierstrasz

LECTURE TITLE

34

Protocols

Classify methods into protocols that reveal their intent

© Oscar Nierstrasz

ST — Smalltalk Basics

2.35

MoneyTest>>testEquals

>  Some obvious tests

MoneyTest>>testEquals

self assert: chf2 = chf2.

self assert: chf2 = (Money new currency: 'CHF'; amount: 2).

self assert: chf2 != chf8.

© Oscar Nierstrasz

ST — Smalltalk Basics

2.36

Money

>  We define Money as a subclass of Object, with getters
and setters

Object subclass: #Money

instanceVariableNames: 'currency amount'

classVariableNames: ''

poolDictionaries: ''

category: 'Money'

Money>>currency: aString

currency := aString.

Money>>currency

^ currency

Money>>amount: aNumber

amount:= aNumber.

Money>>amount

^ amount

© Oscar Nierstrasz

ST — Smalltalk Basics

2.37

Failing tests

© Oscar Nierstrasz

ST — Smalltalk Basics

2.38

Comparisons

Money>>= aMoney

^ self currency = aMoney currency

and: [self amount = aMoney amount]

Money>>!= aMoney

^ (self = aMoney) not

© Oscar Nierstrasz

ST — Smalltalk Basics

2.39

Constructors

MoneyTest>>testEquals

self assert: chf2 = chf2.

self assert: chf2 =

(Money currency: 'CHF' amount: 2).

self assert: chf2 != chf8.

We need a constructor on the class side of Money

© Oscar Nierstrasz

ST — Smalltalk Basics

2.40

Class methods

NB: Which “self” is referred to in the method body?

© Oscar Nierstrasz

ST — Smalltalk Basics

2.41

Addition

Money>>+ aMoney

^ Money currency: self currency

amount: self amount + aMoney amount

MoneyTest>>testAdd

self assert: chf2 + chf8 = chf10

And so on …

© Oscar Nierstrasz

ST — Smalltalk Basics

2.42

Filing out your changes

>  You can “file out” all your changes so they can be
loaded into another image

© Oscar Nierstrasz

ST — Smalltalk Basics

2.43

Change Sets

'From Pharo1.0beta of 16 May 2008 [Latest update: #10418] on 8 September 2009
at 1:58:51 pm'!

Object subclass: #Money

instanceVariableNames: 'currency amount'

classVariableNames: ''

poolDictionaries: ''

category: 'Money'!

TestCase subclass: #TestMoney

instanceVariableNames: 'chf2 chf8 chf10'

classVariableNames: ''

poolDictionaries: ''

category: 'Money'!

!Money methodsFor: 'as yet unclassified' stamp: 'on 7/2/2007 13:21'!

!!= aMoney

^ (self = aMoney) not! !

!Money methodsFor: 'as yet unclassified' stamp: 'on 7/2/2007 13:26'!

+ aMoney

self assert: [self currency = aMoney currency].

^ Money currency: self currency amount: self amount + aMoney amount! !

!Money methodsFor: 'as yet unclassified' stamp: 'on 7/2/2007 13:20'!

= aMoney

^ self amount = aMoney amount and: [self currency = aMoney currency]! !

...

© Oscar Nierstrasz

ST — Smalltalk Basics

2.44

Extensions

>  Creating new instances of Money is still cumbersome

—  We would like to be able to write instead code like this:

TestMoney>>setUp

chf2 := 2 chf.

chf8 := 8 chf.

chf10 := 10 chf.

Extension protocols

© Oscar Nierstrasz

ST — Smalltalk Basics

2.45

To extend an existing class for a category MyProject, define
the protocol *MyProject (or *myproject) for that class.

© Oscar Nierstrasz

ST — Smalltalk Basics

2.46

Roadmap

>  Everything is an Object

>  Syntax on a Postcard

>  Three Kinds of Messages

>  Methods, variables and blocks

>  Test-Driven Development

>  Managing Projects

© Oscar Nierstrasz

ST — Smalltalk Basics

2.47

SqueakSource.com

© Oscar Nierstrasz

ST — Smalltalk Basics

2.48

Categories, Projects and Packages

>  A system category MyProject (and possibly
MyProject-*) contains the classes of your application

>  A Monticello package MyProject contains the
categories MyProject and MyProject-*

—  NB: If you have sub-categories, keep the top one empty!

>  A SqueakSource project MyProject stores everything
in the Monticello package MyProject

© Oscar Nierstrasz

ST — Smalltalk Basics

2.49

Loading a project

>  To load a project from SqueakSource.com

—  Find the project in SqueakSource

—  Open the Monticello Browser

—  Add an HTTP Repository

–  Accept the code fragment from the SqueakSource page

—  Open the repository and load the latest version

© Oscar Nierstrasz

ST — Smalltalk Basics

2.50

Loading a project

© Oscar Nierstrasz

ST — Smalltalk Basics

2.51

Creating a project

>  To create a project on SqueakSource.com

—  Define your categories MyProject or MyProject-*

—  Create a SqueakSource project named MyProject

—  Define a Monticello package MyProject

—  Add an HTTP Repository for MyProject

–  Accept the code fragment from the SqueakSource page

—  Save the package

© Oscar Nierstrasz

ST — Smalltalk Basics

2.52

What you should know!

✎  How can you indicate that a method is “private”?

✎  What is the difference between a comment and a

string?

✎  Why does 1+2*3 = 9?

✎  What is a cascade?

✎  How is a block like a lambda expression?

✎  How do you create a new class?

✎  How do you inspect an object?

© Oscar Nierstrasz

ST — Smalltalk Basics

2.53

Can you answer these questions?

✎  Why does Smalltalk support single (and not multiple)
inheritance?

✎  Is the cascade strictly necessary?

✎  Why do you need to declare local variables if there are

no static types?

✎  How can you discover the class of a GUI object?

✎  How does SUnit differ from JUnit?

© Oscar Nierstrasz

ST — Introduction

1.54

Attribution-ShareAlike 3.0 Unported

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to this web page.

Any of the above conditions can be waived if you get permission from the copyright holder.

Nothing in this license impairs or restricts the author's moral rights.

License

http://creativecommons.org/licenses/by-sa/3.0/	

