
4. Smalltalk Coding Idioms

Birds-eye view

© Oscar Nierstrasz

ST — Introduction

1.2

Distribute responsibility — in a well-designed object-
oriented system you will typically find many, small, carefully
named methods.

This promotes fluent interfaces, reuse, and maintainability.

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.3

Roadmap

>  Snakes and Ladders — Cascade and Yourself

>  Lots of Little Methods

>  Establishing class invariants

>  Printing state

>  Self and super

>  Accessors and Query methods

>  Decomposing and naming methods

Selected material based on: Kent Beck, Smalltalk Best Practice Patterns, Prentice-Hall, 1997.

Selected material courtesy Stéphane Ducasse

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.4

Roadmap

>  Snakes and Ladders — Cascade and Yourself

>  Lots of Little Methods

>  Establishing class invariants

>  Printing state

>  Self and super

>  Accessors and Query methods

>  Decomposing and naming methods

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.5

Snakes and Ladders

See: http://en.wikipedia.org/wiki/Snakes_and_ladders

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.6

Scripting a use case

SnakesAndLadders class>>example

"self example playToEnd"

^ (self new)

add: FirstSquare new;

add: (LadderSquare forward: 4);

add: BoardSquare new;

add: BoardSquare new;

add: BoardSquare new;

add: BoardSquare new;

add: (LadderSquare forward: 2);

add: BoardSquare new;

add: BoardSquare new;

add: BoardSquare new;

add: (SnakeSquare back: 6);

add: BoardSquare new;

join: (GamePlayer named: 'Jack');

join: (GamePlayer named: 'Jill');

yourself

We need a way to:

— Construct the board

— Add some players

— Play the game

The example script
helps us to identify
responsibilities,
classes and needed
interfaces

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.7

Cascade

How do you format multiple messages to the same
receiver?

>  Use a Cascade. Separate the messages with a
semicolon. Put each message on its own line and indent
one tab. Only use Cascades for messages with zero or
one argument.

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.8

Yourself

How can you use the value of a Cascade if the last
message doesnʼt return the receiver of the
message?

>  Append the message yourself to the Cascade.

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.9

About yourself

>  The effect of a cascade is to send all messages to the
receiver of the first message in the cascade

—  self new add: FirstSquare new; …

>  But the value of the cascade is the value returned by the
last message sent

>  To get the receiver as a result we must send the
additional message yourself

(OrderedCollection with: 1) add: 25; add: 35

(OrderedCollection with: 1) add: 25; add: 35; yourself

35

an OrderedCollection(1 25 35)

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.10

Yourself implementation

>  The implementation of yourself is trivial, and occurs
just once in the system:

Object>>yourself

^ self

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.11

Do we need yourself here?

SnakesAndLadders class>>example

"self example playToEnd"

^ self new

add: FirstSquare new;

…

join: (GamePlayer named: 'Jill');

yourself

Could be. Donʼt really know yet …

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.12

Roadmap

>  Snakes and Ladders — Cascade and Yourself

>  Lots of Little Methods

>  Establishing class invariants

>  Printing state

>  Self and super

>  Accessors and Query methods

>  Decomposing and naming methods

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.13

Distributing responsibilities

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.14

Lots of Little Methods

>  Once and only once

—  “In a program written with good style, everything is said once

and only once.”

>  Lots of little pieces

—  “Good code invariably has small methods and small objects.

Only by factoring the system into many small pieces of state
and function can you hope to satisfy the ʻonce and only onceʼ
rule.”

–  Kent Beck, Smalltalk Best Practice Patterns

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.15

Class responsibilities and collaborations

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.16

Class Comments

>  Add a comment to each class indicating its
responsibilities

—  Optionally include sample code to run an example

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.17

Inheritance in Smalltalk

>  Single inheritance

>  Static for the instance variables

—  Instance variables are collected from the class and its direct and

indirect superclasses.

>  Dynamic for the methods

—  Methods are looked up at run-time depending on the dynamic

type of the receiver.

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.18

Roadmap

>  Snakes and Ladders — Cascade and Yourself

>  Lots of Little Methods

>  Establishing class invariants

>  Printing state

>  Self and super

>  Accessors and Query methods

>  Decomposing and naming methods

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.19

Creating classes

>  A class is created by sending a message to its
superclass

Object subclass: #SnakesAndLadders

instanceVariableNames: 'players squares turn die over'

classVariableNames: ''

poolDictionaries: ''

category: 'SnakesAndLadders'

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.20

Named Instance Variables

>  Instance variables:

—  Begin with a lowercase letter

—  Must be explicitly declared: a list of instance variables

—  Name should be unique in the inheritance chain

—  Default value of instance variable is nil

—  Private to the instance, not the class (in contrast to Java)

—  Can be accessed by all the methods of the class and its subclasses

—  Instance variables cannot be accessed by class methods.

—  The clients must use accessors to access an instance variable.

Design Hint:

—  Do not directly access instance variables

of a superclass from subclass methods.
This way classes are not strongly linked.

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.21

Problem — how to initialize objects?

Problem

>  To create a new instance of a class, the message new

must be sent to the class

—  But the class (an object) cannot access the instance variables of

the new object (!)

—  So how can the class establish the invariant of the new object?

Solution

>  Provide instance-side initialization methods in the

protocol initialize-release that can be used to create a
valid instance

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.22

Explicit Initialization

How do you initialize instance variables to their default
values?

>  Implement a method initialize that sets all the
values explicitly.

— Override the class message new to invoke it on new instances

SnakesAndLadders>>initialize

super initialize.

die := Die new.

squares := OrderedCollection new.

players := OrderedCollection new.

turn := 1.

over := false.

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.23

>  In Pharo, the method new calls initialize by default.

>  NB: You can override new, but you should never
override basicNew!

>  Every metaclass ultimately inherits from Behavior

–  More on this later …

Behavior>>new

^ self basicNew initialize

Who calls initialize?

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.24

Ordered Collection

How do you code Collections whose size canʼt be
determined when they are created?

>  Use an OrderedCollection as your default
dynamically sized Collection.

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.25

Invariants

>  If your objects have non-trivial invariants, or if they can
only be initialized incrementally, consider explicitly
implementing an invariant-checking method:

SnakesAndLadders>>invariant

"Should also check that snakes and ladders

lead to ordinary squares, and do not bounce

past the beginning or end of the board."

^ squares size > 1

and: [players size > 1]

and: [turn >= 1]

and: [turn <= players size]

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.26

Contracts

>  Apply Design by Contract

—  Aid debugging by checking

–  Pre-conditions to public methods

–  Non-trivial invariants

–  Non-trivial post-conditions

BoardSquare>>nextSquare

self assert: self isLastSquare not.

^ board at: position + 1

SnakesAndLadders>>reset

die := Die new.

turn := 1.

over := false.

players do: [:each | each moveTo: self firstSquare].

self assert: self invariant.

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.27

Constructor Method

How do you represent instance creation?

>  Provide methods in the class side “instance creation”
protocol that create well-formed instances. Pass all
required parameters to them.

LadderSquare class>>forward: number

^ self new setForward: number

SnakeSquare class>>back: number

^ self new setBack: number

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.28

Constructor Parameter Method

How do you set instance variables from the parameters
to a Constructor Method?

>  Code a single method that sets all the variables. Preface
its name with “set”, then the names of the variables.

SnakeSquare>>setBack: aNumber

back := aNumber.

BoardSquare>>setPosition: aNumber board: aBoard

position := aNumber.

board := aBoard

LadderSquare>>setForward: aNumber

forward := aNumber.

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.29

Roadmap

>  Snakes and Ladders — Cascade and Yourself

>  Lots of Little Methods

>  Establishing class invariants

>  Printing state

>  Self and super

>  Accessors and Query methods

>  Decomposing and naming methods

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.30

Viewing the game state

SnakesAndLadders example inspect

In order to provide a simple way to monitor the game state and to
ease debugging, we need a textual view of the game

Not very informative

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.31

Debug Printing Method

How do you code the default printing method?

—  There are two audiences:

–  you (wanting a lot of information)

–  your clients (wanting only external properties)

>  Override printOn: to provide information about
objectʼs structure to the programmer

—  Put printing methods in the “printing” protocol

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.32

Implementing printOn:

SnakesAndLadders>>printOn: aStream

squares do: [:each | each printOn: aStream]

BoardSquare>>printOn: aStream

aStream nextPutAll: '[', position printString, self contents, ']'

LadderSquare>>printOn: aStream

super printOn: aStream.

aStream nextPutAll: forward asString, '+>'

SnakeSquare>>printOn: aStream

aStream nextPutAll: '<-', back asString.

super printOn: aStream

GamePlayer>>printOn: aStream

aStream nextPutAll: name

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.33

Viewing the game state

SnakesAndLadders example inspect

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.34

Interacting with the game

With a bit of care, the Inspector can serve as a basic GUI
for objects we are developing

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.35

Roadmap

>  Snakes and Ladders — Cascade and Yourself

>  Lots of Little Methods

>  Establishing class invariants

>  Printing state

>  Self and super

>  Accessors and Query methods

>  Decomposing and naming methods

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.36

Super

How can you invoke superclass behaviour?

>  Invoke code in a superclass explicitly by sending a
message to super instead of self.

—  The method corresponding to the message will be found in the
superclass of the class implementing the sending method.

—  Always check code using super carefully. Change super to
self if doing so does not change how the code executes!

—  Caveat: If subclasses are expected to call super, consider using
a Template Method instead!

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.37

Extending Super

How do you add to the implementation of a method
inherited from a superclass?

>  Override the method and send a message to super in
the overriding method.

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.38

A closer look at super

>  Snake and Ladder both extend the printOn: method of
their superclass

BoardSquare>>printOn: aStream

aStream nextPutAll:

'[', position printString, self contents, ']'

LadderSquare>>printOn: aStream

super printOn: aStream.

aStream nextPutAll: forward asString, '+>'

SnakeSquare>>printOn: aStream

aStream nextPutAll: '<-', back asString.

super printOn: aStream.

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.39

Normal method lookup

Two step process:

—  Lookup starts in the class of the

receiver (an object)

1.  If the method is defined in the

method dictionary, it is used

2.  Else, the search continues in the

superclass

—  If no method is found, this is an

error …

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.40

Message not understood

NB: The default implementation of
doesNotUnderstand: may be
overridden by any class.

When method lookup fails, an error message is sent
to the object and lookup starts again with this new
message.

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.41

Super

>  Super modifies the usual method lookup to start in the
superclass of the class whose method sends to super

—  NB: lookup does not start in the superclass of the receiver!

–  Cf. C new bar on next slide

—  Super is not the superclass!

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.42

Super sends

A new bar

B new bar

C new bar

D new bar

E new bar

'Abar'

'Abar & Afoo'

'Abar & Cfoo'

'Abar & Cfoo & Cfoo'

'Abar & Efoo & Cfoo'

NB: It is usually a mistake to
super-send to a different method.

D>>bar should probably do self
foo, not super foo!

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.43

Self and super

Sending to self is
always dynamic

Sending to super
is always static

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.44

Roadmap

>  Snakes and Ladders — Cascade and Yourself

>  Lots of Little Methods

>  Establishing class invariants

>  Printing state

>  Self and super

>  Accessors and Query methods

>  Decomposing and naming methods

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.45

SnakesAndLaddersTest>>setUp

eg := self example.

loadedDie := LoadedDie new.

eg setDie: loadedDie.

jack := eg players first.

jill := eg players last.

Testing

>  In order to enable deterministic test scenarios, we need
to fix the game with a loaded die!

–  The loaded die will turn up the numbers we tell it to.

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.46

Getting Method

How do you provide access to an instance variable?

>  Provide a method that returns the value of the variable.

—  Give it the same name as the variable.

–  NB: not called “get…”

LoadedDie>>roll

self assert: roll notNil.

^ roll

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.47

Setting Method

How do you change the value of an instance variable?

>  Provide a method with the same name as the variable.

—  Have it take a single parameter, the value to be set.

–  NB: not called “set…”

LoadedDie>>roll: aNumber

self assert: ((1 to: 6) includes: aNumber).

roll := aNumber.

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.48

Testing the state of objects

>  To enable tests, we will need to implement various
query methods

SnakesAndLaddersTest>>testStartPosition

self assert: eg lastPosition = 12.

self assert: eg isNotOver.

self assert: eg currentPlayer = jack.

self assert: eg firstSquare isFirstSquare.

self assert: eg firstSquare isLastSquare not.

self assert: eg firstSquare position = 1.

self assert: eg firstSquare isOccupied.

self assert: (eg at: eg lastPosition) isFirstSquare not.

self assert: (eg at: eg lastPosition) isLastSquare.

self assert: (eg at: eg lastPosition) position = 12.

self assert: (eg at: eg lastPosition) isOccupied not.

self assert: jack name = 'Jack'.

self assert: jill name = 'Jill'.

self assert: jack position = 1.

self assert: jill position = 1.

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.49

Query Method

How do you represent testing a property of an object?

>  Provide a method that returns a Boolean.

—  Name it by prefacing the property name with a form of “be” — is,

was, will etc.

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.50

Some query methods

SnakesAndLadders>>isNotOver

^ self isOver not

BoardSquare>>isFirstSquare

^ position = 1

BoardSquare>>isLastSquare

^ position = board lastPosition

BoardSquare>>isOccupied

^ player notNil

FirstSquare>>isOccupied

^ players size > 0

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.51

A Test Scenario

SnakesAndLaddersTest>>testExample

self assert: eg currentPlayer = jack.

loadedDie roll: 1.

eg playOneMove.

self assert: jack position = 6.

…

self assert: eg currentPlayer = jack.

loadedDie roll: 2.

eg playOneMove.

self assert: jack position = 12.

self assert: eg isOver.

>  To carry out a test scenario, we need to play a fixed
game instead of a random one.

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.52

Roadmap

>  Snakes and Ladders — Cascade and Yourself

>  Lots of Little Methods

>  Establishing class invariants

>  Printing state

>  Self and super

>  Accessors and Query methods

>  Decomposing and naming methods

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.53

Composed Method

How do you divide a program into methods?

>  Divide your program into methods that perform one
identifiable task.

—  Keep all of the operations in a method at the same level of
abstraction.

—  This will naturally result in programs with many small methods,
each a few lines long.

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.54

Method size

>  Most methods will be small and self-documenting

—  Few exceptions:

–  Complex algorithms

–  Scripts (configurations)

–  Tests

SnakesAndLadders>>playOneMove

| result |

self assert: self invariant.

^ self isOver

ifTrue: ['The game is over']

ifFalse: [

result :=

(self currentPlayer moveWith: die),

self checkResult.

self upDateTurn.

result]

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.55

Snakes and Ladders methods

• 68 methods

• only 7 are more than 6 LOC

(including comments!)

— 1 of these is the “main” method

— the other 6 are test methods

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.56

Intention Revealing Message

How do you communicate your intent when the
implementation is simple?

>  Send a message to self.

—  Name the message so it communicates what is to be done
rather than how it is to be done.

—  Code a simple method for the message

SnakesAndLadders>>currentPlayer

^ players at: turn

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.57

Intention Revealing Selector

What do you name a method?

>  Name methods after what they accomplish.

—  Well-named methods can eliminate the need for most
comments

SnakesAndLadders>>upDateTurn

turn := 1 + (turn\\players size).

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.58

Some Naming Conventions

>  Use imperative verbs for methods performing an action

—  moveTo:, leaveCurrentSquare, playOneMove

>  Prefix testing methods (i.e., that return a boolean) with
“is” or “has”

—  isNil, isNotOver, isOccupied

>  Prefix converting methods with “as”

—  asString

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.59

Message Comment

How do you comment methods?

>  Communicate important information that is not obvious
from the code in a comment at the beginning of the
method.

—  Method dependencies

—  To-do items

—  Sample code to execute

SnakesAndLadders>>playToEnd

"SnakesAndLadders example playToEnd"

…

Hint: comments may be code smells in disguise!

— Try to refactor code and rename methods to get rid of comments!

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.60

What you should know!

✎  What does yourself return? Why is it needed?

✎  How is a new instance of a class initialized?

✎  When should you implement invariants and

preconditions?

✎  What happens when we evaluate an expression with

“print it”?

✎  Why should a method never send super a different

message?

✎  How is super static and self dynamic?

✎  How do you make your code self-documenting?

© Oscar Nierstrasz

ST — Smalltalk Coding Idioms

4.61

Can you answer these questions?

✎  When should you override new?

✎  If instance variables are really private, why can we see

them with an inspector?

✎  When does self = super?

✎  When does super = self?

✎  Which classes implement assert: ?

✎  What does self refer to in the method

SnakesAndLadders class>>example?

© Oscar Nierstrasz

ST — Introduction

1.62

Attribution-ShareAlike 3.0 Unported

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to this web page.

Any of the above conditions can be waived if you get permission from the copyright holder.

Nothing in this license impairs or restricts the author's moral rights.

License

http://creativecommons.org/licenses/by-sa/3.0/	

